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Preface

The rapidly developing methods of systems biology can help investigators in various areas 
of modern biomedical research to make inference and predictions from their data that 
intuition alone would not discern. Many of these methods, however, are commonly 
perceived as esoteric and inaccessible to biomedical researchers: Even evaluating their 
applicability to the problem at hand seems to require from the biologist a broad knowl-
edge of mathematics or engineering. This book is written by scientists who do possess 
such knowledge, who have successfully applied it to biological problems in various con-
texts, and who found that their experience can be crystallized in a form very similar to a 
typical biological laboratory protocol.

Learning a new laboratory procedure may at first appear formidable, and the inter-
ested researchers may be unsure whether their problem falls within the area of applicability 
of the new technique. The researchers will rely on the experience of others who have 
condensed it into a methods paper, with the theory behind the method, its step-by-step 
implementation, and the pitfalls explained thoroughly and from the practical angle. It is 
the intention of the authors of this book to make the methods of systems biology widely 
understood by biomedical researchers by explaining them in the same proven format of a 
protocol article.

It is recognized that, in comparison to the systems biology methods, many of the 
laboratory methods are much better established and their theory may be understood to a 
greater depth by interested researchers with a biomedical background. We intend, how-
ever, this volume to shatter the perceived insurmountable barrier between the laboratory 
and systems-biological research techniques. We hope that many laboratory researchers 
will find a method in it that they will recognize as applicable to their field, and that the 
practical usefulness of the basic techniques described here will stimulate interest in their 
further development and adaptation to diverse areas of biomedical research.

Pittsburgh, PA Ivan V. Maly
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      Chapter 1

 Introduction: A Practical Guide to the Systems 
Approach in Biology       

     Ivan V.   Maly      

  Summary 

 This essay provides an informal review of the modern systems-centric biological methodology for the 
practical researcher. The systems approach is defined, and a generic recipe for employing it in biomedical 
research is offered. General caveats are discussed that pertain to biological complexity, to explanation in 
molecular terms, and to bottom-up investigation. An outlook on the development of systems biology is 
also given.  

  Key words:   Systems biology ,  Methodology ,  Mathematical modeling ,  Complexity ,  Physiology .    

    

 What is systems biology? Over the past 40 years, practicing sys-
tems biologists delimited their field in a great number of ways. At 
times the definition was restricted to applications of the formal 
systems theory in biology; more recently, the tendency has been 
to focus on biomolecular interactions or on multivariate analysis 
as systems biology’s proper subject and method  (1–  5) . This essay 
is written from a conservative biologist’s perspective and takes a 
less specific view of the topic. First, what should we call a system, 
in the context of the scientific way to parse the world into con-
cepts? We recognize a system in a certain number of different and 
interacting objects. Noninteracting objects do not form a system. 
Also, it is hardly useful to see any substantial number of inter-
acting, but identical objects as a system. Science has powerful 
methods to study aggregate behavior of identical objects.  Notably, 
such methods tend to disregard the corpuscular nature of the 
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4 Maly

individual objects and take a view of their collections as continua. 
In this case, biology can freely borrow methodologically from 
established areas of physics. In contrast, studying behavior of 
collections of interacting nonidentical objects remains a meth-
odological challenge. We will, therefore, restrict the meaning of 
“system” to a system of interacting nonidentical parts. Study of 
a living object by discerning so-defined systems in it will then be 
called systems biology. Its status as a distinct discipline should 
engender no jealousy: The definition limits the subject of systems 
biology to what the scientific method is currently handling per-
haps least confidently. 

 The difficulty appears to stem from the limitation of the 
human mind itself  (6,   7) : we are nearly incapable of consider-
ing more than a few things at a time. Psychophysical experiments 
suggest the limit of about seven, which corresponds well to the 
number of the nonidentical, interacting elements that deserve to 
be called a system, as commonly perceived in the systems biology 
practice. It is important to observe that the limitation is not just 
to our intuition, but to rational reasoning as well. We can consider 
larger systems of course, but the effects resulting from interactions 
of more than a few elements at a time will likely be missed. To 
reason about systems whose complexity is beyond our immediate 
grasp, we must extend our mind with formal deduction, under the 
general rubric or mathematics. As applied to the natural world, 
it is termed mathematical modeling. Involving mathematics in 
nonsystems biological research can be necessitated by a desire of 
quantitative precision in understanding; in systems biology, it is 
indispensable for any progress whatsoever, because even the crud-
est qualitative effects are liable to be overlooked by the unaided 
mind that has evolved for rather different purposes. 

 That quantitative precision is rarely sought in modern sys-
tems biology is important to recognize, so as not to confuse the 
nature of the mathematics employed with the goals of the inves-
tigation. And certainly, those who are just considering employ-
ing systems analysis especially should not decide against it, if it 
is qualitative inference about their subject that they are after. 
We owe the quantitative, continuous-variable flavor of our most 
widely applied mathematics to its original development for the 
purposes of celestial mechanics and similarly particular problems 
of quantitative precision. As a consequence, the modern systems-
biological modeling has to be done most commonly in terms of 
dynamics of continuous quantities first, to an exceeding preci-
sion (“phosphorylation goes up by 73%”), and then the results 
are reinterpreted in terms of qualitative statements about discrete 
events (“this genotype permits cell division”), to arrive at the 
kind of knowledge that is actually being sought. This is no dif-
ferent from how experimental measurements are most commonly 
employed.  
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 So how should we conduct a mechanistic systems analysis of the 
object of our investigation? The following may be suggested:
   1.    On the basis of the existing empirical knowledge, make a 

choice of the model elements (system parts) that is efficient 
for specifying the system (e.g., mitogens and their activa-
tors in the system of cell proliferation control). The efficient 
choice is not unique and requires a great deal of creativity on 
the part of the biologist. Some of the most general caveats are 
discussed in the next section of this chapter.  

   2.    Identify those properties of the elements that would reflect 
the relevant interactions between the elements (e.g., mitogen 
phosphorylation levels).  

   3.    Express the element properties, and interactions that affect 
them, in the structure of a mathematical model. (e.g., rate of 
phosphorylation equals activator concentration times the rate 
constant, and so on.) Practice shows that it is not very impor-
tant what exact kinetic laws, etc., to use to begin – this may be 
“ironed out” later to the extent that it matters for the actual 
goal of the investigation. It is highly advisable, however, from 
the beginning to take pains to be consistent with dimensions 
of all quantities introduced (not to add apples to oranges in 
your formulae).  

   4.    Determine the following by means of numerical analysis of the 
model, guided closely by biological thinking (this is a great 
deal of work if done systematically, but only a thorough analy-
sis is worth the trouble):
   (a)    What known features of the system can be objectively 

(mathematically) derived from the known features of its 
elements and interactions (e.g., the mitogen activity can 
indeed be “predicted” to peak at intervals, as with cell divi-
sion.). Determining this gives us confidence in our under-
standing of the system in terms of the selected elements 
and interactions. Simultaneously, it codifies our knowledge 
completely and unambiguously in the form of the model 
that “by itself can do what the system does the way we 
think it does.” Only for the simplest “systems” found 
seldom in biology is this outcome not worth the effort of 
the formal analysis.  

   (b)    What elements and interactions implicated in the system 
at the outset prove to be dispensable for the explanation 
achieved. (e.g., the peaks are predicted whether activator 
C is available or not.) These elements are relieved of duty, 
and in a sense the rigorous explanation becomes simpler 
than the intuitive one was. This outcome can direct further 

2. The Basic 
Protocol
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experimentation, although it predicts a “negative result.” 
(Similarly it may be worth checking why we think we know 
that behavior of the system which turns out impossible to 
derive formally from what we know about the parts.)  

   (c)    What previously unknown features of the system can be 
deduced from the previously known interactions and ele-
ments. Determining this directs further experimental 
study of the system as a whole. It corresponds to the most 
conventional notion of “prediction” and of the role of 
modeling.  

   (d)    What previously unknown elements or interactions, or what 
features of them (e.g., how much of what protein species, 
how fast a reaction) must be assumed to explain the known 
features of the system. Determining this directs further 
experimental investigation into the system elements. This 
is perhaps the most valuable outcome in the framework of 
top-down investigation, which is advocated below.         

 The author contends that attempting analysis along these 
lines can benefit nearly every line of biological investigation, 
where appreciable empirical knowledge has been accumulated, 
i.e., most any line of investigation in modern biology. Chapters 
in this volume describe specific approaches and their caveats at 
the level of detail that should give a head start even to a complete 
novice. To those accustomed to the use of mathematical modeling 
in experimental research (physicists) or to systems-centric think-
ing (engineers), the generic “protocol” outlined above may look 
even trivial. There are, however, certain problems about applying 
these methodological ideas to modern biology. It is unlikely that 
these problems should be resolved in the same systems biology 
framework, but recognizing them might be of help in setting up 
a systems approach to the subject of the investigation more effec-
tively and in interpreting its results more consciously.  

    

    Successful explanation of the whole in terms of the parts depends 
critically on the investigator’s choice of the parts to implicate in 
the explanation. Challenging problems in modern biomedicine 
concern explanation of behavior of cells, these apparently sim-
plest physicochemical systems which are alive in every sense of 
the word. It has proved a challenging objective to explain cells 
in terms of the biomolecular species that are found in them. Sys-
tems biology is called upon to facilitate this task with its methods, 
not replace the objective. Singular examples of molecular self-

3. Methodological 
Caveats

3.1. The Molecular 
Approach and 
Complexity
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organization into life-like assemblies  (8)  are certainly fascinating, 
enough so to consider the general approach of explaining cells in 
terms of molecules, with the help of the systems biology meth-
ods. 

 Complexity of explanation of cells in terms of molecules is 
widely acknowledged by biologists and their engineer and phys-
icist colleagues. The latter especially are familiar with the prob-
lem of carefully selecting parts in terms of which to explain the 
whole. A popular quip among physicists is “modeling bulldozers 
with quarks,” i.e. subsubatomic particles – meaning an absurdly 
bad methodological choice, which would result in clearly insur-
mountable difficulties of complexity. Instead, it is of course recom-
mended to explain the workings of a bulldozer in terms of its 
obvious functional parts: wheels, gears, levers. Modern biological 
knowledge suggests that biomolecules, proteins especially, are such 
functional units within the cells. The analogy appears powerful 
enough to motivate applications of the systems analysis, proven to 
be adequate for the bulldozers and gears. The greater complexity 
of the cell as a biomolecular system is seen only as a worthy chal-
lenge, not the absurd one from the quip about quarks. Indeed, the 
absurdity was meant to reside in the number of parts, and it seems 
clear that there are “more quarks” in a bulldozer than there are 
biomolecules in a cell. The reader is invited to “do the math” using 
the estimates he favors. We alluded in the beginning to the fact 
that it is the number of different parts that challenges the scientific 
method, whereas the count of identical parts can be of little con-
cern. There are perhaps only a few quark types, elementary particle 
types, subatomic particle types, and atomic types in a bulldozer, 
which matter is arranged rather uniformly into the relatively few 
types of mechanical parts, such as the wheels, gears, and levers. 
On the whole, there are very few  different  parts in a bulldozer, 
even counting quarks, compared with the most conservative esti-
mates of the number of chemically distinct polypeptides alone in 
a human cell. From the systems standpoint, then, it should appear 
more challenging to attempt explaining cells in terms of their con-
stituent biomolecules than bulldozers from quarks. 

 The appealingly straightforward approach of explaining 
cells in terms of molecules, with the help of the systems biol-
ogy methods, is thus faced with a complexity problem of pro-
portions that are considered plainly insurmountable in another 
context. Our analysis was based, however, on the strict chemi-
cal definition of the component unit, such as the polypeptide 
chain of unique sequence. In modern biology, this is rarely the 
definition of a protein as the functional unit. Rather, proteins 
are identified by their function itself. As was noted early by 
Albrecht-Buehler  (9) , referring to a biomolecular species in 
the modern molecular-biological discourse almost never means 
referring to any of its actual physical properties. The chemical 
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structure, to a degree, is still part of the definition – for exam-
ple, chemically distinct entities with the same function may be 
recognized as separate isoenzymes. The multisubunit nature 
of the typical protein of molecular cell biology, its variability 
arising from existence of isoforms of each component, and the 
extreme variability of posttranslational modifications may also 
at times be acknowledged. However , the actual usage of the 
term protein as a unit of cell-biological explanation is hardly 
encumbered by these complications. It is even unimportant in 
the modern usage of “protein,” which exact polypeptide subu-
nits it is meant to include, and which are its auxiliary adap-
tors, etc. Molecular motor dynein is one well-known example 
of this methodologically powerful definition of a “protein,” 
which has traded structural clarity for functional one. From 
the systems standpoint, this has the potential of reducing com-
plexity enormously and making the task of explaining cells in 
terms of the so-defined “molecules” feasible again. 

 However, in a certain alarming sense, some of us may find 
that our subject has left with the complexity, for functions are 
not things. Yes, useful reasoning about cells in terms of the func-
tionally defined “molecules” is possible. Yet this activity is very 
different from the straightforward (if impossible) explanation of 
cells from the actual, chemically-defined molecules. Taking a less 
“objectivist” approach, we may find explanation of the system in 
terms of functions of its parts, even without any attempt to oth-
erwise define the parts, acceptable and perhaps even more effi-
cient than explanation in terms of any material parts. Explanation 
in terms of functions is appealing logically, because in the logical 
framework, we would expect to be able to proceed from assum-
ing the known functions of the parts. In the situation of any natu-
ral-scientific investigation, however, the elementary functions are 
always more or less unknown. Is this fact a minor annoyance that 
ought not to stand in the way of the straightforward research 
strategy, or should it affect our methodological outlook? Shrager 
 (10)  suggests that it should, because functions that we assign 
to the (biomolecular) parts depend, in the actual research prac-
tice, on the explanation that we are constructing for the system. 
Should tautology slip in through this way of defining the parts in 
terms of which to study the system, no ordinary amount of objec-
tive experimentation may be able to remove it. At the very least, 
this dependence of the parts on the whole – introduced entirely 
by the investigator! – means that the investigation and explana-
tion are no longer from the parts to the whole – which, it might 
appear, was our intended goal and method. Let us abstract now 
from the problematic use of functionally-defined biomolecules 
as system parts, and discuss other ways in which the bottom-up 
character of the explanation can be degraded.  
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    In most realistic systems analyses, some of the model elements 
are not strictly internal to the system. Mathematically, they are 
boundary conditions or other types of constraints. Biologically, 
they account for actual physical boundaries to the motion of the 
truly internal system components, for the fact that something out-
side the metabolic system under study limits the availability of a 
nutrient, and so on. As noted by Bradley  (11) , in reality there are 
no external constraints because there are no real boundaries of the 
system: what constitutes the system is the investigator’s choice. 
It does not present any insurmountable logical or mathematical 
problem to delimit the system arbitrarily and take into account 
the external constraints on it that will correspond to the particular 
chosen division between the interior and exterior of the system. 
How useful or, alternatively, misleading, the use of external con-
straints will be, will, however, depend on such soft matter as how 
well circumscribed the system is in reality – which in the context of 
the natural-scientific investigation is unknown. If the system deals 
with reaction and diffusion of intracellular molecules, it is rela-
tively reasonable to impose boundary conditions on their fluxes to 
account for the bounding nature of the cell membrane (for exam-
ple, no-flux boundary conditions, to describe impenetrability). In 
contrast, if we concern ourselves with the molecular dynamics of 
components of a lipid raft within the cell membrane, it is com-
paratively difficult to constrain their motion in a way preserving 
much of the bottom-up predictive power of our model, because 
the lipid raft perhaps “imposes constraints” on the membrane it 
is in about equally with the membrane imposing constraints on 
it – as observed in his contemporary context by Bradley  (11) . Sys-
tem analyses that do not explicitly make reference to any exter-
nal constraints are methodologically suspect too, for they should 
appear to have taken the arbitrary delimitation of the system liter-
ally, as the system being isolated, which should usually be quite 
unrealistic in the biological context. Thus, the decision to invoke 
certain external constraints on the system in the explanation or 
modeling should strike a consciously determined balance between 
how “realistic” and how “bottom-up” the investigator wants his 
model or explanation to be. 

 There is no doubt at least that in reality, biomolecular com-
ponents of cells are under constraints of the cell structure. Harold 
 (12)  convincingly argues in the modern, molecular-centric con-
text that at least some of the basic structural features of cells, such 
as the cell boundary itself, are not in any useful sense fully deriva-
tive from the component molecules, even though they of course 
consist of them. Such basic structures are templates for their own 
propagation between cell generations, which they achieve by 
directing collective organization of their molecular components. 
This fact should favor the methodological choice of realistic over 
“bottom-up” system models in the above dilemma. The mod-
ern cell and systems biology is nonetheless faced with an enor-

3.2. External 
Constraints and 
Bottom-Up 
Explanation
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mous number of molecular species, which have been chemically 
identified and whose collective organization would need to be 
directed in this fashion by the cell structures. In comparison to 
this number, there are few cell structures, which have been iden-
tified by the more traditional cell biology, and which may act as 
the organizers. We should not compare apples to oranges; yet, 
logic notwithstanding, in the actual research practice, the sheer 
numerical discrepancy of our knowledge of the cell structures and 
of their molecular components appears to play a role in methodo-
logical decisions. This discrepancy seems to suggest that there is 
complexity in the cell, which stems from the number of chemi-
cally distinct molecular components, and which should give rise 
to cellular behavior that will become known to us when we derive 
it from the molecular interactions that must be taking place. It is 
far less often that the same discrepancy is seen as an indication that 
there may be relative simplicity in the cell and its behavior, which 
will become known to us better when we study them directly 
further. Whether one ascends from the molecular chaos and expects 
it to self-organize on the cellular level, or descends from the 
exquisitely structured organism body (multi or unicellular) and 
expects the functional structures to continue into the subcellular 
domain, depends on one’s scientific background. In leading edu-
cation systems today, future researchers majoring in nonbiological 
quantitative disciplines receive no exposure to organismal biology, 
while biology curricula lack both the quantitative component and 
a rigorous organism-level component. It should then come as 
no surprise, and be seen as a circumstance largely external to the 
 scientific development proper that in the realm of modern quantita-
tive biology research there is a severe imbalance of representation 
of the above two views on what we should be looking for on the 
subcellular level. Correcting this by broadening the curricula or by 
recognizing boundaries of individual expertise in interdisciplinary 
areas will be about equally difficult. 

 Bottom-up explanation may retain its desirability even in the 
face of the trade-off with the model realism, when the incorpora-
tion of the system environment and of the external constraints 
has been carefully considered. However, it has long been known 
that in the systems-biological context in particular, properties of 
the parts differ within the system from their properties in isola-
tion  (13) . Thus, even if we studiously avoid defining parts by 
their function in the system, any fully successful investigation still 
would not be able to proceed from the bottom up – by first stud-
ying the properties of the parts and then deducing from them the 
system behavior. The statement that the properties of parts in the 
system are different from their properties in isolation may sound 
like lazy logic, something coming from a lack of effort to prop-
erly define the parts, the properties, and the system. The author 
concedes that it may be possible to define these things so that this 
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dictum does not hold logically, and the properties of the parts 
are the same in the system as in isolation. This kind of logical 
dissection should be possible given a complete knowledge of the 
system. In a real study, the (complete) knowledge of the system 
is not available, and is exactly what we are after. Therefore, from 
the standpoint of the research practice in natural science, parts 
will indeed have different properties in the system than in isola-
tion and, as observed by Yates et al., this circumstance should be 
of special concern to the systems biologist  (13) . 

 Explanation from the bottom up is, nonetheless, central to 
our very notion of understanding a system. We must conclude 
that the way to explain (formulate and convey understanding) 
must, in systems biology in particular, be different from the way 
to study (obtain new understanding). All problems with the bot-
tom-up approach then seem to arise merely from substantiation 
of the explanatory deduction – a fallacy that is the mirror image 
of teleology. Designing the model and the entire study to explain 
cellular functions in the organism, selecting the system parts based 
explicitly on their function in the system and irrespective of their 
molecular or nonmolecular nature, and eventually presenting the 
obtained understanding of the system functions in the deductive 
manner may not have the straightforward appeal, yet applying 
the systems method consciously in this fashion should not suffer 
from the discussed difficulties.   

   

 We have discussed some general methodological choices per-
taining to the systems method. The most fundamental question, 
however, is whether to apply the systems method at all. The pur-
pose of this book is to help a biomedical investigator to give an 
affirmative answer to this question. Can, however, any lesson be 
derived from the fact that the answer has been, for great many, 
in the negative for a long time? One comparatively comfortable 
explanation of this fact posits that the reason why experimental-
ists rejected modeling in the past was the repulsive “spherical cells 
(cows)” that theorists of the time liked to play with. (The quip 
recurred at a seminal, historically recent meeting,  14).  Although 
the author has no first-hand knowledge of why most experi-
mentalists shunned biological theory, he can find no evidence 
in the literature of the prevalence of the “spherical” theories. In 
fact, theories characteristic of the 1960s and 1970s appear rather 
exquisite by our modern standards. 

 Theories of that era often were not theories of biological systems 
modeled as consisting of interacting molecules. Instead they might 

4. Outlook 
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deal with physiological processes such as material fluxes through 
the kidney  (13) , or the respiratory cycle and its modulation  (15) . 
Their conceptual depth and quantitative connection to the physi-
ological experiments did not suffer at all from the nonmolecular 
nature of both the theory and experiment. At the same time, theories 
that dealt with metabolite-mediated interactions of enzymes in 
the elaborate framework of classical biochemistry  (16)  were laying 
the foundation for much of today’s work, and the kinetic theory 
of the cytoskeletal structures  (17)  was taking essentially the form 
these models have now. 

 The new science of molecular cell biology took off on its 
own, leaving the rather exquisitely measured and modeled world 
of organismal physiology (and, arguably, of metabolism and self-
assembly) behind. Why did the system modelers not catch up? It 
should be only understandable if the detailed physiological and 
biochemical knowledge of the time looked far more attractive as 
an object to model. Qualitative and fragmentary to the extreme in 
the individual examples sought out to support the bold, system-
denying interpretation of the “one gene, one protein, one func-
tion” paradigm, the results of this new type of biological studies 
could not be expected to attract systems thinkers. A student of 
molecular biology in the 1990s will remember how exceptions 
to its intentionally fragmentary nature, such as the far earlier  lac  
operon study, stood out in the course material as if they were some 
alien science. Should we call this intervening period the Dark Ages 
for systems biology? After all, it did appear to be merely a lull fol-
lowing a period when the quantitative systems method enjoyed an 
appropriate place among the research tools of biology. 

 The natural shift of interest to the new, molecular cell biol-
ogy circa 1980 did not have to lead to the systems method being 
relegated to “crank science,” if remembered at all, by an entire 
scientific generation engaged in the most active subfield of biol-
ogy. It may be argued that this only happened because in this case 
the normal, productive shift of the mainstream interest coincided 
with what Wiley called destruction of “biodiversity” in biological 
research itself  (18) : A major, near-monopolist funding source 
on which much of biology had come to depend happened to be 
shrinking, and an understandable decision was to concentrate sup-
port on what was new and therefore most promising. In a science 
that benefits from its status of a popular occupation, such events 
and decisions may have a stronger effect than the natural evolu-
tion of scientific interests: They may rescue the science from stag-
nation, or they may nip development of a healthy methodology. 

 Is systems biology in its Renaissance? Molecular cell biology 
and molecular genetics can be said to have matured in the above 
sense, making some of the most active subfields in current biol-
ogy receptive as well as amenable to the systems method again. 
The new generation of systems biologists is determined to ask 
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truly systems-centric questions about biological objects and to 
conquer complexity through the use of computers and interdisci-
plinary collaboration. A wider attribution of these aspirations to 
our scientific predecessors  (1,   19)  will probably come. Which of 
their intellectual threads will be picked up, and especially whether 
the productive aspects of the “pre-molecular” worldview will be 
rediscovered by postgenomic biology, remains to be seen. It will 
also be a matter of individual decisions how much impact the fac-
tors external to science will have on the development of biologi-
cal methodology in our time. The subjective retrospection and 
methodological outlook that were given above together argue 
that it is imperative that the results of our current efforts become 
known to the enthusiastic systems biologists of 2050: Freed from 
dogmatic constraints, the systems approach does not promise a 
quick and sure solution to the currently recognized problems as 
much as it opens for exploration a particularly challenging face of 
a diversity of biological phenomena.      
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      Chapter 2

 Computational Modeling of Biochemical Networks 
Using COPASI       

     Pedro   Mendes  ,      Stefan   Hoops,       Sven   Sahle,       Ralph   Gauges,       
Joseph   Dada, and       Ursula   Kummer     

  Summary 

 Computational modeling and simulation of biochemical networks is at the core of systems biology and 
this includes many types of analyses that can aid understanding of how these systems work. COPASI is 
a generic software package for modeling and simulation of biochemical networks which provides many 
of these analyses in convenient ways that do not require the user to program or to have deep knowl-
edge of the numerical algorithms. Here we provide a description of how these modeling techniques 
can be applied to biochemical models using COPASI. The focus is both on practical aspects of software 
usage as well as on the utility of these analyses in aiding biological understanding. Practical examples 
are described for steady-state and time-course simulations, stoichiometric analyses, parameter scanning, 
sensitivity analysis (including metabolic control analysis), global optimization, parameter estimation, and 
stochastic simulation. The examples used are all published models that are available in the BioModels 
database in SBML format.  

  Key words:   Simulation ,  Modeling ,  Systems biology ,  Optimization ,  Stochastic simulation ,  Sensitivity 
analysis ,  Parameter estimation ,  SBML ,  Stoichiometric analysis .    

    

 Biochemical networks are intrinsically complex, not only because 
they encompass a large number of interacting components, but 
also because those interactions are nonlinear. Like many other 
nonlinear phenomena in nature, their behavior is often unintuitive 
and thus quantitative models are needed to describe and under-
stand their function. While the concept of biochemical networks 
arose from the reductionist process of biochemistry, where the 
focus was on studying isolated enzymatic reactions, it is now better 
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understood in the framework of  systems biology , where the focus is 
on the behavior of the whole system, or at least several reactions, 
and particularly on what results from the interactions of its parts. 
Computational modeling is thus a technique of systems biology 
as important as its experimental counterparts. This chapter covers 
the definition and analysis of computational models of biochemi-
cal networks using the popular software COPASI. It provides 
essentially a practical view of the utility of several computational 
analyses, using established models as examples. All software and 
models discussed here are freely available on the Internet. 

 From a modeling perspective, biochemical networks are 
a set of chemical species that can be converted into each other 
through chemical reactions. The focus of biochemical network 
models is usually on the levels of the chemical species and this 
usually requires explicit mathematical expressions for the velocity 
at which the reactions proceed. The most popular representation 
for these models uses ordinary differential equations (ODEs) to 
describe the change in the concentrations of the chemical spe-
cies. Another representation that is gaining popularity in systems 
biology uses probability distribution functions to estimate when 
single reaction events happen and therefore track the number 
of particles of the chemical species. As a general rule, the lat-
ter approach, known as stochastic simulation, is preferred where 
the numbers of particles of a chemical species is small; the ODE 
approach is required when the number of particles is large because 
the stochastic approach would be computationally intractable. 

    Each chemical species in the network is represented by an ODE 
that describes the rate of change of that species along time. The 
ODE is composed by an algebraic sum of terms that represent 
the rates of the reactions that affect the chemical species. For a 
chemical species  X : 

 all reactions

d

d
= ⋅∑ ,i i

i

X
s v

t  
(1)

 where  s   i   is a stoichiometry coefficient that is the number of mol-
ecules of  X  consumed or produced in one cycle of reaction  i , with 
a positive sign if it is produced or negative if consumed, and  v   i   
is the velocity of reaction  i . Obviously, for reactions that do not 
produce or consume  X  the corresponding  s   i   is zero. 

 The velocity of each reaction is described by a  rate law  that 
depends on the concentrations of the reaction substrates, prod-
ucts, and modifiers ( see   Note    1  ). Rate laws are the subject of 
chemical and enzyme kinetics and are generally nonlinear (except 
the case of first-order mass action kinetics). Often these rate laws 
are saturable functions, i.e., have finite limits for high concentrations 
of substrates, products, and also for many modifiers ( see   Note    2  ). 

1.1. ODE-Based 
Models
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An example of a rate law is depicted in  Eq. 2 , which represents a 
rate law of reaction with one substrate ( S ), one product ( P ), and 
a competitive inhibitor ( I )
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 In  Eq. 2 , the limiting rate of reaction (“ V  max ”) is directly 
represented as a product of the concentration of the enzyme and 
the turnover number ( E · k  cat ). It is usually good practice to make 
this product explicit, since it is then possible to have the enzyme 
concentration be a variable of the model too. This is important 
if the model includes protein synthesis, degradation, or protein–
protein interactions. 

 These ODE models can be used to simulate the dynamics of 
the concentrations of the chemical species along time given their 
initial values. This is achieved by numerical integration of the 
system of ODE which can be carried out with well-established 
algorithms (for example  (1,   2)  but  see   Note    3  ). It is also useful 
to find steady states of the system, which are conditions when 
the concentrations of the chemical species do not change. If the 
steady state is such that the fluxes are also zero, then the system 
is in chemical equilibrium, otherwise the fluxes are finite mean-
ing that the concentrations do not change because the rates of 
synthesis balance with the rates of degradation for every chemical 
species. Steady states can be found using the Newton–Raphson 
method which finds the roots of the right-hand side of the ODE 
(which must be zero by the definition of steady state). Alterna-
tively steady states can also be found by integration of the ODE. 
COPASI can use either one of these strategies or a combination 
of the two ( see   Note    4  ). 

 Other model analyses can be carried out but a description of 
their theory in any detail is beyond the scope of this article. Some 
of them are described at a high level in  Subheading    3  , whenever 
they are used.  

    When analyzing a biochemical system which contains small num-
bers of particles of each reactant, the assumption of continuous 
concentrations fails and consequently the underlying basis of the 
ODE representation also fails. Moreover, in such conditions, sto-
chastic effects become more pronounced and may lead to dynam-
ics that differ significantly from those that would result from the 
ODE approach. In the conditions described above, one should 
then use a stochastic discrete approach for the simulation of the 
system dynamics. 

1.2. Stochastic Models
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 Stochastic models represent the number of particles of each 
chemical species and use a reaction probability density function 
(PDF) to describe the timing of reaction events. Gillespie devel-
oped a Monte Carlo simulation algorithm, known as the stochastic 
simulation algorithm (SSA) first reaction method, that simulates 
the stochastic dynamics of the system by sampling this PDF 
 (3,   4) . The theoretical derivation of this method is too involved 
to be described here, and the reader is directed to the original 
publications  (3,   4)  or a recent review  (5) . It is important to stress 
that one simulation run according to this approach is only one 
realization of a probabilistic representation, and thus provides 
limited amount of information on its own. In the stochastic for-
malism, it is very important that simulations are repeated for a 
sufficient number of times in order to reveal the entire range of 
behavior presented by such a system (i.e., to estimate a distribu-
tion for each chemical species and its dynamic evolution).   

    

    The software COPASI  (6)  will be used throughout this chapter. 
COPASI is freely available for noncommercial use ( see   Note    5  ) and 
executable versions are provided for the most popular operating 
systems: Microsoft Windows, Apple Mac OS X, Linux, and Sun 
Solaris. The source code of COPASI is also available under an open 
source license and so it can be compiled for other architectures. 

 New versions of COPASI are released often and there is a dis-
tinction between  stable  and  development  versions. Development 
versions are those where new features are introduced; stable ver-
sions have no new features and differ from the previous devel-
opment release only by having bug fixes. While testing is more 
intense in stable releases, the reader is encouraged to download 
the latest development release. Irrespective of being stable or 
development releases, COPASI releases are labeled with a  build 
number , which is sequential ( see also   Note    6  ). 

    Instructions for installation of COPASI depend on the operat-
ing system version, but all start with downloading the appropri-
ate binary from the project’s Web page   http://www.copasi.org.     
Choose the  download non-commercial  option from the site’s menu 
and then select the appropriate version for your platform. Down-
load will proceed after selecting the nearest server and accepting 
the license terms. Once the file has finished downloading, the 
installation instructions are different for each platform. 

 For Microsoft Windows, the downloaded file, Copasi-XX-
WIN32.msi, is an installation program which you should run by 

2. Materials

2.1. Copasi

2.1.1. Installing COPASI
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double clicking it. For Apple OS X, the downloaded file, Copasi-
XX-Darwin.dmg, is a disk image containing a folder named 
“copasi.” You can either start COPASI directly from the disk 
image or drop the folder into your applications folder and start 
it from there. 

 Finally, for Linux or Solaris, you need to unpack the archive 
where you want to install it (it can be in a system-wide loca-
tion like /usr/local/copasi, or in a user home, such as  ~ /copasi). 
For optimal performance you should set the environment vari-
able COPASIDIR to /usr/local/copasi (or wherever you have 
installed it).   

    “BioModels” is a database that archives biochemical models 
that have previously been published in peer-reviewed journals 
 (7) . Some examples in this chapter use models that are available 
there and so to avoid entering those models manually it is best to 
download them from BioModels. 

 Models in this database are primarily distinguished by their 
identifier, which is in the form BIOMDxxxxxxxxxx where the x’s 
represent a number. To download a specific model, point your 
Web browser to   http://www.ebi.ac.uk/biomodels/,     select the 
 search  option, type the model ID in the search box, and then click 
on the link for that model’s page ( see   Note    7  ). Once in the mod-
el’s page you can examine the model’s characteristics, including 
the citation of the original publication, who was the author of the 
model, etc. To download the model in a format that COPASI (and 
most other systems biology software) can read select the link enti-
tled  SBML L2 V1  ( see   Note    8  ) at the very top of the page, and 
download it to your local computer ( see   Note    9  ). This will be a file 
entitled BIOMDxxxxxxxxxx.xml which COPASI can import.   

    

       The COPASI user interface is composed of two main areas: a 
hierarchical organization of functions on the left (a  tree ), and a 
larger area on the right which contains the controls related with 
the function selected on the tree. All features related with model 
specification reside on the first main entry of the tree, appropri-
ately named  Model.  When this entry is selected on the left, the 
right displays the basic information about the model, such as its 
name, the units used, and a large field for comments ( see   Note    10   
and   11  ). Expanding the  Model  subtree reveals two other entries: 
 Biochemical  and  Mathematical , these are different views of the 
model. Specification of a new model is done in the  Biochemical  
part as the other is only for examining equations and matrices. 

2.2. BioModels 
Database

3. Methods

3.1. Model 
Construction and 
Basic Simulation

3.1.1. Model Specification
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 The most practical way to enter a model is to start by adding 
its component reactions. Select  Reactions  and then double click 
the first empty row of the table on the right. This will change to 
display the detailed reaction window. Enter a name for the reac-
tion and type its chemical equation, for example “NAD + ethanol 
= acetaldehyde + NADH” ( see   Note    12  ). The equals sign has 
quite a specific meaning, not only does it separate substrates from 
products, but it also means the reaction is considered kinetically 
reversible. If you want the reaction to be irreversible then you 
should use instead the combination of characters “->” ( dash  and 
 right angle bracket ). 

 After entering the reaction equation, you should select 
the appropriate rate law for this reaction. COPASI only allows 
selecting rate laws that match the characteristics of the reaction 
entered: same number of substrates and products and reversibil-
ity. You can chose a rate law from the menu; if the appropriate 
one is not available, then you can add one yourself by pressing 
the  New Rate Law  button. Type the rate law in the box, for 
example:  V / K *( A * B − P * Q  )/( K  +  A  +  B  +  P  +  Q  ). Next select 
the appropriate type of each symbol in the equation ( see   Note  
  13  ). You should also mark the reaction as  reversible  or  irrevers-
ible  ( see   Note    14  ).  Figure    1   shows this window when entering 
the above rate law. When you finish press  Commit  and go back 
to  Model Reactions  where you can now select this rate law for the 
reaction (assuming it was reversible with two substrates and two 

  Fig. 1.    Definition of a kinetic rate law       .
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products). At that point you will be able to enter the values of the 
parameters (in this case  V  and  K ).  

 You can define more compartments and change their sizes (vol-
umes) on the entry named  Compartments.  By default there is always 
a compartment called simply “compartment” of unit volume. You 
can define any number of compartments of any positive size. 

 After entering all reactions you can examine the chemical 
species by selecting  Species  on the tree which will show a sum-
mary table with all species included in the reactions. You can 
change their initial concentrations, set their compartment and 
change their type. The species type determines how its concen-
tration (actually its particle number) is calculated in the models: 
it can be set by  reactions , which means that its concentration will 
be determined by the ODE generated from the reactions or by 
the SSA; it can be  fixed , meaning that it becomes a parameter of 
the model; set by  assignments , which are algebraic expressions 
(see below); or set by arbitrary  ODE  (i.e., entered directly by the 
user). You can add extra species directly at the end of the table. If 
you double click any row, you will then see a more detailed page 
for that species alone, which additionally lists all reactions where 
the species is involved in. 

 The entry marked  Global Quantities  in the tree is to add 
explicit mathematical expressions that are to be calculated in the 
model (unlike the ODE that are defined implicitly from the reac-
tion stoichiometry and rate laws). There are three types of global 
quantity (1)  fixed , which are arbitrary constants; (2)  assignment , 
which are new variables that have their value calculated by alge-
braic expressions; or (3)  ODEs , which are new variables that are 
determined by an explicit ODE. These global quantities are use-
ful to expand the model to include features that are not directly 
linked with the biochemistry. As an example, suppose you would 
want to calculate the ratio of NADH/(NAD + NADH) at all 
times in your model, either because you just want to monitor it, 
or maybe you want to make it affect something else. Then you 
should double click the list of global quantities to enter a detailed 
form. There you should enter its name, select the type as  assign-
ment , then enter the expression in the larger box. Note, however, 
that you are not allowed to type “NADH” or “NAD,” since these 
are variables of the model (species) and you will instead have to 
select them from a dialog box: press the small button that has 
the COPASI logo ( see   Note    15  ), then select  Species ,  Transient 
Concentrations , and select “[NADH](t)”; the division sign and 
the brackets are typed directly. ODEs are set the same way, except 
that the expression is now the right-hand side of the differential 
equation that will be integrated in the model simulations.  

    The popular SBML format is used as a means of sharing models
between systems biology software, so an important feature of 

3.1.2. Importing and 
Exporting SBML
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COPASI is that it can indeed read and write models in this format. 
However, it is important to realize that COPASI can represent a 
small number of features that are not possible to be specified in 
SBML and those will be lost on export to SBML. On the other 
hand there are features of SBML that are not yet implemented 
in COPASI – when loading files with such features a warning is 
produced such that you are aware of this fact. When importing 
SBML there are also often warnings about issues with the files 
that are either not like the specifications require, or because they 
follow bad practices. In any case, even with warnings, COPASI 
almost always succeeds in importing the model if not totally, at 
least partially.  

    Once a new model has been entered or loaded it is ready to be 
used for simulation. There are two basic types of simulation:  Time 
Course  and  Steady State  which are entries under the  Tasks  branch. 
Let us use model number 10 of BioModels, a MAP kinase model 
 (8) , to illustrate these basic tasks. 

 To run time course, select the appropriate entry on the tree on 
the left and the time-course control window will appear on the right. 
You have to decide for how long you want to run the time course 
(in model time, not real time) and enter that value in the box 
labeled  Duration  (enter 1,000 for this example); you also need 
to decide how many  Intervals  in the time course you will want to 
sample, or alternatively the  Interval size  (when you set one, the 
other one updates automatically). Below are several control vari-
ables of the numerical methods, which are outside the scope of this 
article. Simply press the  Run  button to carry out the simulation, 
which will take place very fast. Expand the  Time Course  entry on 
the tree to reveal  Results  and select it. This displays a table with 
the numerical values of the time series, which can be saved to a file 
(button  Save data to file ). 

 It is also very useful to visualize the results of a time series 
simulation in a plot. To create it press the button  Output Assist-
ant  (located at the level of  Time Course ) and select the first line 
entitled “Concentrations, Volumes, and Global Quantity Values,” 
then press the button  Create! . This creates a plot definition that 
will plot all variables, however, the plot is constructed while the 
simulation runs, and thus you must run it again to make the plot 
appear. The legend of the plot is composed of buttons, one for 
each curve, and by pressing them you select/deselect that curve 
from being displayed.  

    Another important task is the calculation of a steady state of the 
model. Select the  Steady State  entry under  Tasks.  The control 
variables of the steady state deserve some attention, mainly the 
 Steady-state resolution , which is the smallest value of a change 
in species concentration that is the smallest distinguishable from 

3.1.3. Time Course

3.1.4. Steady-State 
Simulations
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zero. This value will be used to decide when to stop iterations, but 
also to recognize a steady state. Smaller values of this parameter 
lead to more accurate solutions. Another important set of control 
variables are named  Use Newton, Use Integration, Use Back Inte-
gration , which are related to the strategy used to find the steady 
state. These variables take the values 1 or 0 meaning to use them 
or not, respectively. The Newton method is a solver for nonlin-
ear algebraic equations which is very fast. However, the Newton 
method is not guaranteed to converge, therefore the integration 
method can be used to help. Integration is the method used to 
calculate a time course – this method attempts to find a steady 
state as it goes along a time course. The back-integration method 
is a fail safe device that is used when the other two cannot con-
verge and may be able to find an  unstable  steady state. Pressing 
the  Run  button will trigger all calculations. The results are also in 
a branch of the tree, below the  Steady state  and can also be saved 
to a file like the time course results.  

    One of the most frequent aims of using models to study bio-
chemical networks is to find out how certain parameters affect 
several aspects of the system. Thus it is likely that one needs to 
carry out several steady-state and/or time-course simulations at 
different values of the parameters of interest. COPASI supports 
this activity by providing a flexible scheme for changing parame-
ter values with associated simulations, which is termed  Parameter 
Scan  and is under the tree branch  Multiple Task  ( see   Note    16  ). 
The  Parameter scan  window ( Fig.    2  ) is an interface that allows 
us to specify a series of hierarchical changes in model parameters 
which culminate with the execution of a task (e.g., time-course or 
a steady-state simulation).  

 We will use here the model of the branch point of threonine/
methionine biosynthesis of Curien et al.  (9) , which is number 68 
in BioModels. This is a very simple model of the branch point 
with only one variable chemical species that has one input and 
two output fluxes. Curien et al. study the effect of the Cysteine 
(Cys) and S-Adenosylmethionine (AdoMet) on the partition of 
the output fluxes. One issue that you may wonder about is that 
while AdoMet is a chemical species, the authors of the SBML 
file decided to represent it as a constant in the kinetic rate law of 
the enzyme threonine synthase (TS). While this is not incorrect, 
it would have been clearer to define it as a chemical species with 
fixed concentration. 

 We will first investigate the effect of AdoMet on the partition 
of fluxes. In order to be able to visualize the results, we must first 
define a plot where the flux of the TS and CGS are plotted as a 
function of AdoMet. Plots are defined under the main hierarchy 
 Output  and then under  Plots . A list of plots is displayed (cur-
rently empty) and there you should double click the last empty 

3.1.5. Scanning and 
Sampling Parameters
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row which will generate the plot definition window. There you 
should define the name of the plot (“AdoMet effect on Fluxes” 
is suggested) and then create a new curve (press  New curve ) 
where you select the parameter AdoMet in the  X -axis (under 
 Reactions-Reaction Parameters-Threonine synthase-AdoMet ) and 
flux(Cystathionine gamma-synthase) for  Y -axis (under  Reac-
tions-Concentration fluxes-flux ( Cystathionine gamma-synthase )). 
Because you want to plot both fluxes in the same plot, you should 
then create a new curve again and select the same item for the 
 X -axis, but then flux (Threonine Synthase) for the  Y -axis. At this 
point each curve in the plot is represented under a different tab 
which have long titles; it is advisable to make the titles of each 
curve smaller strings for esthetic reasons, rename the first one to 
J(CGS) and the second to J(TS). The plot definition is ready; you 
can go back to  Parameter Scan.  

 The task to be carried out in this case is  Steady state  and 
we want to scan the parameter AdoMet, so in  New scan item  at 
the top select  Parameter scan  and then press… Create!  A new 
entry will appear in the stack above the steady-state task. There 
you need to select the parameter to change, press the button 

  Fig. 2.    Parameter scan window. The structure on the center right is a stack of operations that are carried out in order. 
Thus the example shown is for changing the initial concentration of Cysteine between 0.3 and 300 in five intervals 
spaced logarithmically, then for each of those change the parameter AdoMet between 0 and 100 in 50 equally spaced 
intervals, and finally to run a steady-state calculation for each value of the above       .
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marked “…” and select  Reactions, Reaction Parameters, Threo-
nine synthase, AdoMet.  The minimum and maximum values that 
this parameter will be changed also have to be entered, for exam-
ple 0 and 100 (as in  Fig.    2   of  ref.   9) , and finally the number 
of intervals desired, a value of 50 will produce a smooth curve. 
At the bottom of the stack, in the Tasks slot ( see   Fig.    2  ), you 
should disable the check  output from subtask  since we only want 
the final estimate of the steady-state calculation ( see   Note    17  ). At 
this point you can press  Run  and see the result appear as a plot 
in a new window ( Fig.    3  ). The results plotted can be saved by 
selecting the menu entry  Save data . You can also switch on or off 
each of the curves, simply by pressing its entry in the legend. This 
plot shows that increasing values of AdoMet push the flux toward 
the CGS reaction, as shown in the original  (9) .  

 Let us now ask whether the behavior changes with differ-
ent values of Cys. To do this we simply add this model entity 
to the scan and therefore perform a two-dimensional scan. In 
the  Parameter Scan  window, add another scan item by press-
ing … Create!  once again. A new slot appears where you need to 
select  Species, Initial concentrations, [Cysteine](t = 0) . Set it to 
vary between 0.3 and 300 with five intervals and tick  logarithmic 
scan  ( see   Note    18  ). You can also move this slot to the top by 
pressing the up arrow on the left ( see   Note    19  ). Press  Run  again, 
and now you will see several curves for each of the fluxes plotted. 
Each of them is for different values of Cys. As you can see, Cys 
acts by affecting the initial flux partition and also by moving the 
value of AdoMet where both fluxes are equal. 

  Fig. 3.    Results of a two-dimensional parameter scan       .
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 Finally, we will see how to do a random sample, rather than a 
scan. We shall probe 10,000 random values of the two parameters 
in the same range. For this remove the two slots of AdoMet and 
Cys by pressing the button marked X. Now select  Repeat  in the 
 New scan item  at the top and create a new slot; set the number of 
iterations to 10,000. Next select  Random distribution  in the  New 
scan item  and select the parameter AdoMet as above, and set it to 
the same limits as above. Repeat the same for Cys, also with the 
same limits. You can have both sampled from a uniform distribu-
tion. Note that the stack of operations should be read from the 
top and it means: repeat 10,000 times a random value of AdoMet 
and a random value of Cys and calculate the steady state. To visu-
alize these results it is best to just plot symbols and not connect 
them with lines, so you have to go back to the plot definition and 
change  Type  to  symbols  for each of the curves (it was  lines ). Go 
back to  Parameter Scan  and press  Run . The run now takes some 
more time (there are 10,000 simulations, after all) and finally you 
should obtain a plot as in  Fig.    4  . Each point plotted represents the 
steady-state flux for a pair of values of AdoMet and Cys. It is very 
easy to add more parameters to this sampling, by adding more 
slots associated with those parameters and moving it below the 
 Repeat  slot. It is even possible to combine a sequence of repeats 
below scans below other repeats, etc. This feature of COPASI is a 
very powerful means to program complex simulations.    

  Fig. 4.    Results of a two-dimensional parameter random sampling       .
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    While the analysis of the dynamics of biochemical models is seen 
as the ultimate goal of these models, some properties of the model 
reveal themselves even without considering the kinetics of the reac-
tions involved. These properties are sometimes known as  struc-
tural properties  because they depend only on the structure of the 
network, or as  stoichiometric properties  because they depend only 
on the stoichiometric coefficients of  Eq.  1. COPASI provides two 
 stoichiometric analyses (1) identification of elementary flux modes 
 (10,   11)  and (2) identification of mass conservation relations  (12) . 

    Elementary flux modes are the minimal subsets of reactions that 
would still be able to maintain a steady state if isolated from the 
rest of the network  (10) . They are the basic components of flux 
and any observable flux is a linear combination of these. They can 
also be seen as “functions” that the network fulfills because they 
represent parts of the network that could still operate even when 
the rest of the network had been removed. They can be useful 
to identify what functions would be lost by removing a specific 
reaction from the network (e.g., by a gene knockout) and also 
to calculate maximal yields of a certain end product that can be 
obtained from some substrate  (11) . 

 Let us use a model of erythrocyte metabolism by Holzhütter
 (13) , which is model 70 in the BioModels database. Download 
the corresponding SBML file and import it into COPASI as 
described before. You can examine the model by inspecting the 
various categories under the  Model  section, where you will find 
that it is composed of 38 reactions. The  Elementary Modes  task 
is under  Tasks-Stoichiometry . To run this task simply press  Run  
button on the bottom left of the right pane as there are no other 
choices to make. The table on the right pane should now be 
filled and at the top there is an indication that the model can be 
decomposed into 105 elementary modes. The table, depicted in 
 Fig.    5  , lists each of the modes in detail. The first column indi-
cates whether the mode is reversible or irreversible ( see   Note    20  ); 
the second column lists the reactions that compose the mode and 
the third column lists the actual reaction equations. Note that 
in the second column, the name of the reaction is preceded by a 
number which is a multiplier for that flux, and if the number is 
negative then the flux of that reaction goes in the reverse direc-
tion in this elementary mode. In the mode depicted in  Fig.    5  , 
Glucose transport operates in the reverse direction (glucose is 
exported) while Bisphosphoglycerate mutase operates in the 
forward direction threefold faster than Glucose transport.  

 Elementary flux modes can either link a source to a sink 
(external substrates and products of the model) or be cyclic. 
The overall chemical reaction of the mode depicted in  Fig.    5   
is 2*External Lactate + PRPP = 2*External Pyruvate + 3 Exter-
nal Phosphate + Glucose outside ( see   Note    21  ). This erythrocyte 

3.2. Stoichiometric 
Analyses

3.2.1. Elementary Flux 
Modes
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model also contains cyclic flux modes. In the list of 105 there is, 
for example, a reversible mode composed of Phosphoglycerate 
kinase, Bisphosphoglycerate mutase, Bisphosphoglycerate phos-
phatase, and ATPase. Cyclic modes have no net production or 
consumption of any metabolite (thus they are sometimes called 
 futile cycles ). 

 To save the results of the elementary mode analysis you first 
need to set a report file: press the button labeled  Report  on the 
bottom right, then press  Browse  and enter a filename for your 
report in the desired folder. You will then have to press the  Run  
button again in order to create the report. The report is a tab-
delimited text file that contains a table with the same information 
as displayed in the front-end. You can read this file with a plain 
ASCII text editor, such as “wordpad” in Windows; you can also 
import this file into a spreadsheet program like “Excel.”  

    Mass conservation relations are algebraic sums of amounts of 
chemical species that are constant in any state of the model. These 
algebraic sums imply that the amounts of some chemical species 
are constrained, such that one of them can be directly calculated 
from the others using the algebraic expression. A special case of 
mass conservation relations is when there is conservation of a 
chemical moiety ( see   Note    22  ). 

 Let us continue with the erythrocyte model, and examine 
the mass conservation relations that it contains. The  Mass Con-
servation  task is also under  Tasks-Stoichiometry  and is also run by 
pressing the  Run  button on the bottom left of the right pane. 

3.2.2. Mass Conservation 
Relations

  Fig. 5.    Elementary flux modes       .
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The results of this analysis will appear in a new entry marked 
 Results  that appears below  Mass Conservation  (in the tree on the 
left), which you have to select to inspect the results. 

 The erythrocyte model has seven mass conservation relations 
as shown in  Fig.    6  . The results are listed in a table where the first 
column identifies the chemical species that COPASI will calculate 
from the mass conservation (the  dependent  species,  see also   Note  
  23  ). The second column lists the total number of particles of 
this conservation relation. The third column contains a button 
labeled “…” which creates a new global quantity that mirrors the 
total number of particles. Finally, the fourth column contains the 
actual expression which is constant. In the erythrocyte model, 
the first of these relations reads: “Protein2 bound NADPH” 
+ NADPH + NADP − Protein1 + “Protein2 bound NADP” = 
1.6862 × 10 19 . That means that adding the number of particles 
of all the species with a positive sign and subtracting those with 
a negative sign adds up to 1.6862 × 10 19  particles. This algebraic 
expression is constant throughout any condition of this system, 
except when the initial amounts of any of the chemical species 
involved change (in which case the total would be different). In 
particular, this expression is always true during any time course 
and thus does not depend on the dynamics of the system. The 
reader may recognize the second relation in  Fig.    6   to be the con-
servation of the Adenine moiety, the third is conservation of Mg, 
the fifth is conservation of Protein 1, the sixth is conservation of 
the NAD moiety, and the seventh conservation of the glutath-
ione moiety. Together, relations 1 and 4 represent the conserva-
tion of the Protein 2 moiety (when summing the two, NADP, 
NADPH, and Protein 1 cancel out, leaving just the Protein 2 
forms). Together, relations 1, 4, and 5 represent the conservation 
of the NADP moiety and also that its total is inversely related 
with the total of the free protein forms (expressed by the result of 
computing relation 1 − relation 4 + relation 5). This last complex 

  Fig. 6.    Mass conservation relations       .
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relation appears due to the fact that whenever the free forms of 
the proteins react they always do it with NADPH or NADP – the 
three moieties (NAD, Protein 1, and Protein 2) are intertwined.  

 Note that there are other results of this task, which can be 
inspected by selecting the tabs  Stiochiometry ,  Link Matrix , and 
 Reduced Stoichiometry . These are the matrices that are used to 
calculate these conservation relations and are described in the 
theoretical derivations of Reder  (12) . To save all of the results of 
this task, just press the  Save data  button on the top right corner, 
which creates a tab-delimited ASCII file.   

    As discussed in the context of parameter scans, it is frequently 
desirable to investigate the behavior of a model systematically. In 
addition, every model contains a number of parameters (kinetic 
constants, initial concentrations, and so on) whose values are not 
all known exactly. Changing the values of the parameters will of 
course change the behavior of the model, so it is interesting to 
find how much the model depends on parameters. Sensitivity 
analysis describes how much does a specific parameter change the 
behavior of the model. This is useful for several reasons:
  •  In many cases the value of a parameter is unknown. For exam-

ple, while  K   m   values of enzymes can be measured relatively 
easily in vitro, often the enzyme concentrations in vivo are not 
well known. In this situation, sensitivity analysis can tell us if it 
is important to know a specific parameter value. If a parameter 
is found not to affect the system very much, a rough guess for 
its value may be sufficient. If, on the other hand, a parameter 
influences the behavior of the model significantly, steps must 
be taken to find out its value more accurately, either by execut-
ing more experiments or by literature searches.  

 •  Sometimes the aim of research is to change the behavior of 
the system. Perhaps we want to increase the yield of some 
biotechnological production process, or to find a drug that 
inhibits a metabolic pathway. Sensitivity analysis can give hints 
about which parameters should be changed to achieve a spe-
cific effect.  

 •  Robustness with respect to external influences is an important 
property of biological systems. Living organisms need to be 
able to function under a wide range of environmental condi-
tions. This means some biological processes need to be rather 
insensitive to parameter changes. On the other hand an organ-
ism needs to react to its environment, so other processes need 
to be very sensitive to external influences. Therefore robust-
ness (or the lack of robustness) is an interesting property of 
biological systems, and sensitivity analysis is a way to deter-
mine this.    

3.3. Sensitivity 
Analyses
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 One should note that sensitivities as they will be described 
below are only able to provide a local description of robustness. 
This means that its results are only valid for a given parameter 
set (set of environmental conditions). If several parameters were 
to change at the same time then the individual sensitivity coef-
ficients would also be expected to change. COPASI contains two 
frameworks for doing sensitivity analysis: metabolic control anal-
ysis (MCA) and generic sensitivities. 

    MCA is a concept developed by Kacser and Burns  (14)  and Hein-
rich and Rapoport  (15) . Its most practical formulation deals only 
with steady states ( see   Note    24  ) and provides means to quan-
tify how much the rates of the various reactions of a network 
affect the concentrations and fluxes at the steady state. A deeper 
description of the theory does not fit this text and the reader is 
directed to specialized reviews and books  (16–  19) . 

 As an example we use a model of sucrose accumulation in 
sugar cane  (20) , model 23 in BioModels. After importing the 
SBML file into COPASI select  Tasks  and  Metabolic Control Anal-
ysis  in the tree on the left ( see   Note    25  ). Then simply click the 
 Run  button on the right. The  Results  window then presents a 
screen with three tabs labeled  Elasticities  ( Fig.    7  ),  Flux Control 
Coefficients  ( Fig.    8  ), and  Concentration Control Coefficients .   

 The  elasticity coefficients  (or simply elasticities) quantify the 
amount of change of a reaction rate with the change in concentration 

3.3.1. Metabolic Control 
Analysis

    Fig. 7.   Display of elasticity coefficients. Note that the cells of the matrix are colored according to the magnitude of the 
values, green for positive values and red for negative (colors not shown in this figure).       
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of a certain chemical species. The elasticities of all the reactions 
with respect to all the species in the model are calculated by 
COPASI and displayed in a table where the columns correspond 
to the species and the rows to the reactions. Consider the line 
labeled “(v8)” ( Fig.    7  ): the numbers in this line describe how 
the flux of reaction  v8  (HexP + Fru = Suc + UDP) changes with 
changes of the concentrations of the different species. Notice pos-
itive values for “HexP” and “Fru,” which are the substrates of the 
reaction. This means an increase of 1% in Fructose concentration 
would increase the speed of the reaction by 0.61% ( see   Note    26  ). 
Correspondingly the elasticity with respect to the product ( Suc ) 
is negative – an increase in product concentration would lead to a 
lower flux. Another case, in line “(v4)” the negative value for  Glc  
indicates that glucose is an inhibitor for this reaction. An elastic-
ity equal to zero means that the metabolite concentration has no 
influence on the reaction rate ( see   Note    27  ). 

 The elasticities are properties strictly of a single reaction and 
are independent of the rest of the system (the elasticity of reac-
tion A toward species B does not depend on reactions C, D, etc.). 
The calculation of elasticities is carried out only from the kinetic 
rate law of the respective reaction. Likewise, in an experiment the 
elasticity could be measured in vitro using the purified enzyme, 
so long as the concentrations of its substrates and products are set 
to their physiological value (and the enzyme properties remain 
the same after purification). 

 Note that in COPASI all sensitivities (i.e., MCA and generic 
sensitivities) can be displayed with either scaled or unscaled 
values. The scaled values describe relative changes, e.g., a scaled 
sensitivity of 0.5 means that if the parameter is increased by 10% 
the target value will increase by 5% (0.5 times 10%). The unscaled 
sensitivities describe absolute changes, e.g., an unscaled elasticity 
of 0.5 could mean that increasing the substrate concentration by 

  Fig. 8.    Display of flux control coefficients       .
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1  m M will result in an increase of the reaction flux by 0.5  m M/s 
(if those are the units that are used in the model). The scaled 
sensitivities are the ones most discussed in literature, particularly 
for MCA (but  see   ref.  12) . 

 The next tab shows the  Flux Control Coefficients  ( Fig.    8  ). 
Unlike the elasticities, control coefficients are global properties 
that depend on the whole system. They quantify the extent of 
change of the steady-state flux of one reaction when another 
reaction is made slower or faster. For the MCA formalism it 
does not matter  how  the reaction is made faster or slower, but in 
practice changing the enzyme concentration is the most practi-
cal solution. Imagine a system in a steady state in which at some 
point we increase the concentration of one of the enzymes by 1%. 
After some time a new steady state will be reached, potentially 
all the concentrations and fluxes in the system will have changed 
slightly. The relative change of one of the reaction fluxes is the 
flux control coefficient of this reaction with respect to the reac-
tion with the changed enzyme concentration. Like in the case of 
the elasticities, all combinations of flux control coefficients are 
calculated by COPASI and displayed in a table where the column 
indicate the rate of reaction that is changed and the row indicates 
the flux of the reaction that has been affected. The fact that the 
table contains almost no zeros already indicates that these are 
global properties of system: a change in one reaction changes the 
steady-state fluxes of all reactions. 

 In the example of the sucrose accumulation model, one thing 
that stands out immediately is that two lines (“(v6)” and “(v7)”) 
are identical. This is very common in flux control coefficients 
and comes from the fact that the two reactions (HexP®UDP + 
Suc6P and Suc6P®Suc + P) form a chain without any branches 
in between, so that their steady-state flux is always the same. 
The original publication of the model discusses the accumula-
tion of sucrose in sugar cane (reaction  v11 ) vs. the hydrolysis of 
sucrose (reaction  v9 ), arguing that the sucrose accumulation is 
most effective when the flux of  v11  is large and that of  v9  is small. 
Inspection of the last row of the table calculated in COPASI indi-
cates the control that each reaction has over the flux of  v11  and 
it is interesting that the largest coefficient (0.464) corresponds 
to  v3 . This means that with an overexpression of hexokinase (the 
enzyme that catalyzes  v3 ) by 10% we expect an increase in the 
rate of sucrose accumulation of about 4.6%. However, reaction 
 v3  also has a high control over the flux of  v9 , in fact much larger: 
1.558; thus  v3  is not a good candidate for manipulation because 
while it would stimulate sucrose accumulation it would lead to a 
much larger increase in the hydrolysis of sucrose actually decreas-
ing the overall efficiency. Rohwer et al. argue that the fructose/
glucose transporters ( v1  and  v2 , the first two columns) are better 
candidates for this purpose since increasing their rates causes a 
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simultaneous increase in sucrose accumulation and decrease in 
hydrolysis (as indicated by a negative control coefficient). 

 From this example of a relatively simple model with only five 
variables, it becomes evident that there is no intuitive way to rea-
son about the response of the system to perturbations from the 
network structure alone. In even moderately complicated models 
it is impossible to predict which enzymes control the fluxes with-
out performing actual sensitivity analysis calculations. 

 Another issue that may be obvious to some readers from  Fig.    
8   is that the values of each row in the table sum up to 1. This is 
a reflection of the flux control summation theorem  (14) , which 
allows us to reason about the system. For example, if the value of 
a flux control coefficient is known to be 0.3 then one can be sure 
that also other reactions will control that specific flux (since the 
coefficients have to add up to 1). 

 The third tab of the results window contains the  concentra-
tion control coefficients . These are similar to their flux counter-
parts, and describe how the steady-state concentrations change 
depending on the changes in specific reaction rates. The main 
difference between these and the flux control coefficients is that 
they add up to 0 rather than 1. 

 An important thing to keep in mind about both the  elasticities  
and the  control coefficients  is that they provide information only 
about small changes to the model. So while you can in many cases 
reliably predict from the control coefficients what the effect of a 
5% increase in the expression of one enzyme will be, it is not pos-
sible to predict the effect of a tenfold increase or decrease. This 
type of information, however, could be obtained from parameter 
scans, i.e., by direct numerical simulation, however, that would 
be for a single parameter at a time ( see   Note    28  ). 

 MCA is a powerful concept, and the way it is implemented in 
COPASI is numerically robust  (12) . Basically whenever COPASI 
is able to find a steady state, the MCA calculations will also pro-
vide reliable results.  

    Control coefficients are concepts geared toward an interpretation 
that is dominated by changes in enzyme concentrations (derived 
from gene expression), as they only measure the effects of chang-
ing the overall rate of reactions. It is also interesting to study how 
other parameters, such as  K   m  , affect the model behavior. In MCA, 
these generic sensitivities are known as  response coefficients  and 
measure the change in a system property effected by any system 
parameter ( see   Note    29  ), however, these have no known special 
summation theorems. COPASI can also calculate these generic 
sensitivities and to access this feature we select  Multiple Task and 
Sensitivities  in the tree on the left; the corresponding sensitivities 
window is depicted in  Fig.    9  . Basically these generic sensitivities 
(response coefficients in the vocabulary of MCA) are for arbitrary 

3.3.2. Generic Sensitivities
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values in the model ( Functions  in  Fig.    9  ) with respect to arbitrary 
parameters ( Variables  in  Fig.    9  ) and are calculated numerically 
using finite differences (i.e., not using a matrix method from elas-
ticities,  see   Note    30  ).  

 Generic sensitivities can also be calculated for time courses, 
but we will start with a steady-state example. Make sure that  Sub-
task method  is set to Steady State. In the  Function  select  Concen-
tration Fluxes of Reactions , meaning that we want to calculate how 
the steady-state reactions fluxes (measured in concentration units) 
are affected by parameter changes. Next the parameters of inter-
est need to be selected in  Variables . For this example, select  All 
Parameter Values  that will calculate the sensitivities with respect to 
all kinetic parameters in the model. After pressing the  Run  button 
results will appear in its window, and we shall discuss the  Scaled  
tab ( Fig.    10  ). Once again, the rows correspond to the reactions 
(as in the flux control coefficients table) and the columns cor-
respond to the kinetic parameters of the model. Since there are 
usually several parameters for each reaction, this table does not fit 
entirely on the screen and the scroll bar needs to be used.  

 A comparison of this table with that of  Fig.    8   reveals that col-
umns 3 and 6 here are identical to columns 1 and 2 of  Fig.    8  . This 
is expected because the sensitivities of fluxes toward  v  max  param-
eters can be shown to be the same as flux the control coefficients 
(unless there are enzyme–enzyme interactions). However, we can 
see from the sensitivities that some of the inhibition constants 
(e.g., column 1) also strongly affect the fluxes. 

  Fig. 9.    Generic sensitivities window       .
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 The generic sensitivities feature allows the calculation of many 
other kinds of sensitivities as well. For example, the sensitivity of a 
simulation result with respect to the initial concentrations could 
also be calculated. It is also possible to calculate second-order 
sensitivities ( sensitivities of sensitivities, see   ref.   21)  which can help 
determining whether sensitivity analysis results are valid over a 
larger parameter range.   

    Optimization is the search for maximum or minimum values of 
some function (the  objective function; see   Note    31  ). In biochem-
ical modeling, optimization can be used to find conditions in 
which the model behaves in some desired way  (13,   22) . Because 
biochemical models are composed of nonlinear functions, their 
variables may have several minima or maxima, thus the problem 
is usually of  global optimization  where one wants to find the larg-
est of all maxima or the smallest of all minima. Global optimi-
zation problems are hard to solve and it is well known that no 
single algorithm is best for all problems  (23) . Thus COPASI is 
equipped with a diversity of optimization algorithms that follow 
very different strategies ( see   Table    1  ), and in general one should 
search the best solution with more than one algorithm (and at 
least one should be a global optimizer).  

 To demonstrate an application of optimization we will con-
tinue analyzing the model of sucrose accumulation in sugar cane 
 (20) , which is model 23 in BioModels. Remember that accu-
mulation of sucrose is measured by the steady-state flux of reac-
tion  v11  but there is also a certain amount of sucrose hydrolysis, 
reaction  v9 , that decreases the efficiency of accumulation. So one 
important question is what conditions lead to a low proportion 
of sucrose hydrolysis relative to accumulation. This can be seen as 
a typical optimization problem, where we are interested in mini-
mizing the ratio of fluxes  J   v9  / J   v11   – our objective function. In all 

3.4. Tuning Models 
with Optimization 
Methods

  Fig. 10.    Results of generic sensitivity analysis       .
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optimization problems, it must also be specified which param-
eters of the model are allowed to change in order to meet the 
objective. In this particular example, let us imagine that we could 
manipulate the steady-state level of the enzymes of reactions  v1 , 
 v2 ,  v3 ,  v4 , and  v5  (e.g., by overexpression or by interfering with 
the upstream regulatory sequences of their genes). The question 
then becomes what would be the best combination of the levels 
of these enzymes to achieve the lowest possible ratio  J   v9   / J   v11  . The 
parameters that are allowed to change are then the  Vmax  of the 
five reactions. 

 In COPASI, the optimization task is found under  Multiple Tasks  
and then  Optimization  in the tree on the left. The application of 

  Table 1 
  Optimization algorithms available in COPASI Version 4.4 (Build 26)    

 Algorithm  Strategy  Type  References 

 Evolutionary
 programming 

 Evolutionary algorithm with adaptive mutation rate 
without recombination 

 Global   (24)  

 Evolution strategy 
(SRES) 

 Evolutionary algorithm with numerical 
recombination, selection by stochastic ranking 

 Global   (25)  

 Genetic algorithm  Evolutionary algorithm with floating-point encoding 
and tournament selection 

 Global   (26)  

 Genetic algorithm 
SR 

 Variant of Genetic algorithm where selection is by 
stochastic ranking 

 Global   (25,   26  )

 Hooke and Jeeves  Direct search algorithm based on pattern search  Local   (27)  

 Levenberg–
Marquardt 

 Gradient-based, adaptive combination of steepest 
descent and Newton method 

 Local   (28–  30)  

 Nelder–Mead  Direct search method based on geometric heuristics  Local   (31)  

 Particle swarm  Inspired on social insect search strategies; works with 
population of candidate solutions like evolutionary 
algorithms 

 Global   (32)  

 Praxis  Direct search method based on the alternate direction 
(minimize one dimension at each time) 

 Local   (33)  

 Random search  Random search with uniform distribution (a shotgun 
approach) 

 Global 

 Simulated 
annealing 

 Monte Carlo method that mimics the process of 
crystal formation (biased random search with 
Boltzmann distribution) 

 Global   (34)  

 Steepest descent  Gradient method based on first derivatives (estimated 
by finite differences) 

 Local 

 Truncated Newton  Based on Newton method (uses second derivatives)  Local   (35)  
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optimization to biochemical modeling consists typically of three 
parts (1) the objective function, (2) the adjustable parameters, 
and (3) the search algorithm. This is mirrored in COPASI’s inter-
face as seen on  Fig.    11  . First, the objective function must be set 
by entering the mathematical expression  J   v9  / J   v11  , this is done by 
selecting the required model entities from a menu that is acti-
vated by pressing the small button with the COPASI icon (at the 
right) ( see   Note    15  ).  J   v9   appears as <(v9).Flux>, then you have 
to enter the division sign from the keyboard, and finally select 
 J   v9   which appears as <(v11).Flux> ( see   Note    32  ). If you wanted 
to instead maximize this expression you should precede it by a 
minus sign (so that you minimize its symmetric).  

 Next you need to select the adjustable parameters, i.e., 
those that are allowed to change. To add one parameter to the 
list press the  New  button (the one with a blank page) and then 
the button with the COPASI icon to select the actual parameter. 
COPASI provides a shortcut to add all parameters: select the first 

  Fig. 11.    Optimization window, with an objective function definition at the top, a list of adjustable parameters at the center, 
and an optimization algorithm at the bottom       .
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one by expanding  Reactions , then  Reaction parameters  and then 
 v1  where you select  Vmax1 ; but then rather than just accepting 
that, expand the other reactions of interest one by one, and while 
pressing the CTRL key (or the APPLE key on Macs) also select 
also  Vmax2, Vmax3 ,  Vmax4 , and  Vmax5.  When you finish, all 
five parameters will be listed. You will realize that they are listed 
inside the interval between −infinity and +infinity, which is quite 
large indeed, but in general we want tighter limits. Let us say 
that it is feasible to downregulate the enzyme concentrations to 
50% and to overexpress it by 400% in this example. To change all 
of the boundaries together select all five rows, then remove the 
check on  − inf and type  − 50% on the box; similarly, remove the 
check on +inf and type  + 400% on the box below, after changing 
the cursor to another field, the limits of each parameter will have 
changed to the appropriate values ( see   Note    33  ). The start values 
are by default those that are specified in the model section but 
they could be changed; yet we shall leave them as they are now 
( see   Note    34  ). Please note that if the start value of a parameter 
is outside the boundaries specified, COPASI will force it to the 
nearest boundary during the optimization. 

 Finally, one needs to select the method of optimization 
desired. For our first attempt let us use the  Truncated Newton  
method and press  Run  which will quickly finish. Then move on 
to the  Results  section (on the left tree, below Optimization). 
This will show that the objective function value obtained was 
0.000593843 ( see   Note    35  ), and below you will see listed the 
values of  Vmax  for each of the reactions. You will realize that 
 Vmax1  and  Vmax2  are close to the upper limit specified (indeed 
as argued in  ref.  20) , and  Vmax3 ,  Vmax4 , and  Vmax5  are near 
the minimum specified. This means that we would need to over-
express the first two enzymes and downregulate the remaining 
three. The reader may wonder about this solution, particularly if 
compared with the network diagram in  Fig.    1   of  ref.   20 , one clue 
is given by the concentrations achieved in this solution, which 
you can inspect if you switch to the tab named  Species  (at the top 
of the right pane). Both Fructose and Glucose are very highly 
concentrated (almost 1 molar for Fructose) – it seems that the 
best way to minimize hydrolysis of sucrose and maximize its stor-
age is to maintain a very high concentration of the products of 
the hydrolysis. However, this solution may not be achievable in 
practice due to the high concentrations of the intermediates. 

 After considering the results of the previous analysis, it 
becomes interesting to ask the same question but now not allow-
ing the concentrations of Glucose and Fructose go above 100 
mM. This is a new set of requirements of the method named  con-
straints  as they attempt to force the solution to a more restricted 
domain. To enter constraints, return to the  Optimization  page, 
and select the tab named  Constraints  in the center of the page. 
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Then let us add the constraints like we added the adjustable 
parameters, pressing  New  and then the COPASI icon, and then 
expand  Species  and  Transient concentrations  and select  Fru  and 
 Glc . Set the lower limit to 0 and the upper to 100. Now press 
 Run  again and inspect the result, which is now a ratio of fluxes of 
0.0679853 (about 100× higher than the previous solution), and 
the concentration of Fru is 89 and Glc is 99. 

 Now select a different method of optimization, for exam-
ple  Particle swarm  and set the  Iteration Limit  to 50 (the default 
of 2,000 is way too long for this problem) and run again. This 
method takes longer, and you will see a window appear with a 
progress dialog, which shows the number of function evaluations 
and the current value of the objective function. At the end it is 
possible that a window appear with several warnings, if so please 
 see   Note    36  . In the end, it will show an objective function value of 
0.0584978 or somewhere close to that. Run this a few times and 
note that the result differs each time; this is because the algorithm 
is stochastic and it does not always necessarily converge to the 
same value ( see   Note    37  ). Note that now the concentrations of 
Fru and Glc are within 0.1% of the upper limit of 100. This shows 
the great utility of optimization methods in biochemical mod-
eling, and the MCA/sensitivity approach would never be able to 
answer this constrained problem. With optimization we can solve 
practical problems with realistic constraints (not just calculations 
based on infinitesimal changes). It is also very reassuring to realize 
that the modeler is entirely driving the process  by the definition of 
objective functions and constrains , which are a means of directing 
the computations to solve specific problems. Optimization is an 
excellent way to explore the space of behavior of complex multidi-
mensional models, such as those of biological systems.  

    Biochemical models depend on many parameters, but quite fre-
quently the values of these parameters are unknown and have to 
be estimated from some data. Parameter estimation is a special case 
of an optimization problem, in which one attempts to find values 
for a set of model parameters that minimize the distance between 
the model behavior (simulation results) and the data. COPASI 
provides specific parameter estimation functionality that is based 
on the optimization methods described in  Subheading    3.4  . 

 COPASI measures the distance between model and data 
using an expression that is derived from a least-squares approach 
 (36) . The objective function used is:

 ( )−∑ ∑ ∑
2

( ) Y ( ) ,k,i k,i, j k,i, ji j k
O p = Xw p

   
(3)     

 where  X   i,j,k   is the experimental value of variable  i  at measurement 
 j  within experiment  k  and the corresponding simulated data 
point is given by  Y   k,i,j  ( p ) where  p  is the vector of parameter values

3.5. Parameter 
Estimation
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used for the simulation. It is important that the data for the dif-
ferent variables be of comparable magnitudes so each group of 
values for each variable in each experiment is multiplied by a 
weight   w    k,i   ( see   Note    38  ). 

    To illustrate parameter estimation we shall use the MAP kinase 
cascade model of Kholodenko  (8)  which is model 10 in BioMod-
els. You will also need some experimental data, and a file (MAPK-
data.txt) is provided at   http://www.comp-sys-bio.org/tiki-index.
php?page=CopasiModels.     You must download this file and store 
it in the same folder where you have put the SBML file with the 
model that was downloaded from BioModels. The data contained 
in this file are for “measurements” of the single-phosphorylated 
form of MAPK and of the phosphorylated MAPKK at various 
time points ( see   Note    39  ). The problem then consists of adjust-
ing the  V  max  parameters of a few reactions in order for the model 
to be as close to the data as possible.  

    As implied in the objective function above ( Eq.  3), COPASI 
allows fitting the model to multiple experiments simultaneously. 
The software also allows using steady-state and time-course data, 
which can even be used together (i.e., some experiments be time 
courses while others are steady-state observations). The experi-
mental data must be provided in ASCII data files with columns of 
data delimited by tabs or commas; each column will be mapped 
to a model entity. Since COPASI knows nothing about your data 
files, there is a necessary step of creating a mapping between the 
data columns and model entities. To make this mapping easier we 
suggest that the data file should include a row of column head-
ings. Additionally, if there are several experiments in a single file, 
these experiments should be separated by an empty line (allowing 
COPASI to detect the beginning and end of each experiment’s 
data automatically). Each column of an experiment data file must 
be classified as one of the types listed in  Table    2  . Even if some 
columns are not needed, they must be classified as  ignored . It is 
important that all columns of type  independent  and  dependent  are 
actually mapped to the actual model entities they correspond to .   

 At this point it is best to proceed with the MAPK example and 
you should examine the structure of the data file with a plain text 
editor, for example Notepad on Windows (a spreadsheet will also 
work, as long as you do not overwrite the file). Then import the 
SBML file in COPASI and select  Multiple Tasks  and  Parameter 
Estimation . The complete specification of the data file format is 
done in a dialog box ( Fig.    12  ) that is invoked with the  Experimen-
tal Data  button. To add the data file press the  New  button (blank 
page) that is above the box named  File . Select the MAPKdata.txt 
file that you have previously downloaded, and then COPASI will 
automatically recognize that there is one experiment in this file 

3.5.1. Example

3.5.2. Experimental Data
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that it names  Experiment  (you can change this if you like) and that 
it goes from line 1 to line 11, including the header in line 1. You 
must indicate that these data are from a time course, so select the 
appropriate check box on the  Experiment Type . The table at the 
bottom of this dialog box indicates the columns found in the data 
file for the current experiment, and under the heading  Column 
Name  it reproduces the titles in the header (line 1 of the file). 
The first column has been identified as type  Time  because of its 
title, the remaining two are set to the default type  ignored.  Since 
these columns contain the measurements of the concentrations of 
MAPKKK-P and MAPK-P you have to set their type to  dependent.  
When you do that, a new dialog appears for you to point to the 
actual model entity that this column represents, select  Species  and 
then  Transient Concentrations  and chose the appropriate one ( see  
 Note    40  ). Repeat the process with the other column; when you 
finish the dialog box should look the same as  Fig.    12  .  

 Note that COPASI has already determined values for the 
weights (  w    k   , i   in  Eq. ); the brackets indicate that they were calcu-
lated rather than set by you. However, you are free to change any 
weight by editing them and removing the brackets (but note that 
they should always be positive numbers smaller or equal to 1). 

  Table 2 
  Classification of data types for mapping experimental data to the model entities    

 Data type  Meaning 

  Independent   Independent model items are those which need to be set before the experiment 
takes place. Possible model elements are initial concentrations but could also 
be kinetic parameters. Note that in time-course experiments only the first row 
of independent data columns is used (since it refers to the initial state of the 
system). Columns of this type must be associated with elements of the model 

  Time   This column type is only available for time-course experiments and is a special case 
of an independent model item. Obviously one and only one column of this type 
may exist in each time course experiment. COPASI will attempt to automatically 
identify this column if there are column headers but it may fail and in such a 
case you must set this type for the appropriate column 

  Dependent   The dependent data are those that were measured in the experiment and are enti-
ties in the model that are variables (i.e., determined from the solution of equa-
tions rather than set by the modeler). These are the target data that COPASI 
attempts to match, and are the data specified in the objective function ( Eq.  3). 
Columns of this type must be associated with the actual model elements that 
they correspond to 

  Ignored   These are columns of data that the user does not want to include in the problem. 
Columns marked in this way are not taken into account in the parameter fitting 
task. This is useful to ignore potential irrelevant columns of data files. This set-
ting is also useful to “switch-off” using one data column when desired 
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It is important to realize that changing the weights affects the 
ability of the software to perform the fit, and particularly bad 
choices might entirely prevent success of the fit. COPASI con-
tains three different methods to calculate these weights ( mean , 
 mean square , and  standard deviation , respectively), as depicted 
in  Eqs. 4–6 :

 
w 1 / ,j,k j,k= X

  (4) 

 
w 21 / ,j,k j,k= X

   
(5)

  

 ( )−21 / ,j,k j,k j,k j,k= X X Xw
  . 

(6)   

 The  mean  and  mean square  methods ( Eqs. 4  and  5 ) assure 
that data columns with small values contribute in the same order 
of magnitude to the objective function as columns containing 
large values. The  standard deviation  method ( Eq. 6 ) sets larger 
weight to columns that have little fluctuations.  

    Obviously the exercise of parameter estimation requires one to 
select the parameters that are to be estimated. Typically these are 
initial values (concentrations, volumes, etc.) or parameters of the 
kinetic functions of the reactions (or arbitrary ODE if there are 
any in the model). The selection of these parameters and their 
boundaries is specified in exactly the same way as for optimization 
( see   Subheading    3.5.2  ). 

3.5.3. Estimated 
Parameters and 
Constraints

  Fig. 12.    Experimental data definition window       .
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 Sometimes it is necessary to estimate a parameter differently 
for each experiment, meaning that the software should estimate 
one value per experiment rather than a single value that best fits 
 all  experiments (which is the default). For example this is needed 
when one has executed replicate experiments but where one is 
not confident that the initial concentration of a chemical species 
is the same in all experiments. COPASI is able to deal with this, 
allowing the user to restrict the effect of a parameter to a subset 
of the experiments listed (obviously this only matters when there 
are several experiments, but this not the case in the present exam-
ple). The button labeled  Duplicate for each experiment  is there for 
this purpose and will multiply the parameters selected when it is 
pressed to as many new parameters as there are experiments. 

 It is also possible to define constraints, just like in the opti-
mization task. But beware that adding any arbitrary constraints 
may well render a problem unsolvable if the constraints cannot 
be fulfilled. Remember that the main constraints you want for the 
model is that it fits the data, so the use of constraints in parameter 
estimation should be taken with care or avoided if possible. 

 For the present example of the MAPK model, select the reac-
tion limiting rates  V1 ,  V2 ,  V5 ,  V6 ,  V9 , and  V10  and set their 
limits to be  − 90% and +90% of their original values, in the same 
way as in the optimization example above.  

    At this point the parameter estimation problem has been com-
pletely specified and the actual fitting task can proceed using 
any of the optimization methods available ( see   Table    1  ). Before 
running the task it is advisable to define a plot to monitor the 
progress of the fit and another one to examine results. It is also 
important to save the file in COPASI format (in case you want 
to come back to it later, since the SBML file does not contain 
instructions for the parameter estimation). To create the plots 
mentioned press the button  Output Assistant  which lists a series 
of plots and reports that are commonly useful. You can select the 
plot named  Progress of Fit  and press  Create , which will generate a 
plot of the values of  Eq.  3 vs. the number of function evaluations 
( see   Note    41  ). The second plot of interest is called  Parameter 
Estimation Results per Experiment  and it consists of the experi-
mental values of the variables (i.e., contained in the data file) 
plotted against the values of their corresponding simulated value. 
The plot also contains the weighted residuals of each data point 
(i.e., the terms calculated inside the summation in  Eq. 3 ). 

 After defining the plots, save the file, select an optimization 
method, and press  Run . For this example select the Levenberg–
Marquardt method and run it with the default values. After a short 
while the method will have finished and you will have plots like 
those of  Fig.    13  . You should also examine the results by selecting 
the  Results  page (below  Parameter Estimation  on the left). There 
you will see the statistics for the sum of squares, though be aware 

3.5.4. Fitting the Data
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that these are problem dependent and you should not compare 
sums of squares between different problems (not even the same 
problem with different data sets). More useful are the statistics 
for the estimated parameters on the second tab, where you will 
likely see that the coefficients of variation of the estimated param-
eter values are smaller than 35%, which is very good given the 
presence of noise in the data. You can also examine the parameter 
correlation matrix that provides information about dependencies 
between parameter estimates.    

    Along with the traditional ODE approach, COPASI is also equipped 
to carry out stochastic simulations based on the theoretical frame-
work derived by Gillespie  (4) . The  Time Course  task can easily be 
executed with the algorithm of Gibson and Bruck  (37)  ( see   Note  
  42  ) and this is as simple as selecting the Gibson–Bruck method 
from a pull-down menu ( Fig.    14  ). This is particularly appealing to 
those who normally carry out simulations with the ODE approach 
but sometimes have a need to switch to the stochastic approach. Of 
course, this also means that COPASI is equally useful for modelers 
who mostly use the stochastic approach.  

3.6. Stochastic 
Simulation

  Fig. 13.    Results of fitting model parameters to a data set. The plot on the top overlays the experimental data ( crosses ) 
over the model behavior after fitting ( lines ). The plot at the bottom displays the progress of the sum of squares ( Eq. 3 ) as 
the optimization algorithm progressed (note the logarithmic scale of the  Y -axis)       .
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 Let us consider an example using a model of calcium oscillations 
by Goldbeter  (38) , which is model 98 in BioModels. After import-
ing the SBML, go to the  Time Course  task. It is useful to define a 
trajectory plot of the number of particles against time, which can 
be done via the  Output Assistant : chose either the second option 
( Particle Numbers, Volumes, and Global Quantity Values ) which will 
have a scale of numbers of particles, or the first option which will 
output the corresponding concentrations to the computed particle 
numbers in the course of the simulation.  Figure    15   shows the out-
come of a stochastic simulation for the calcium model.  

 There are several issues that have to be considered to carry out 
successful stochastic simulations. The first consideration is that in 
this approach reversible reactions must be handled as two sepa-
rate irreversible reactions (the forward and reverse directions). In 
ODE-based simulations, the forward and backward reaction rates 
are usually aggregated and thus can cancel each other out (result-
ing in a null rate); in stochastic simulations each single reaction 
event has to be considered separately and even if there is no net 
rate, the actual cycling rate will be explicitly represented. In order 
to facilitate the conversion of ODE-based models to the stochastic
representation, COPASI provides a feature that, at the modeler’s 
request, converts all reversible reactions to the corresponding 
individual forward and backward reactions ( Fig.    16  ). This useful 
tool adjusts the model automatically – the reaction scheme and the 
kinetics – and is able to work for a wide range of kinetic rate laws, 
such as mass action and standard enzymatic kinetics. Nevertheless, 
there are certain cases when it is not able to dissect rate laws into 
two separate irreversible kinetic functions. These cases can be very 

  Fig. 14.    Switching to a stochastic simulation approach in the  Time Course  window       .
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complex rate laws or rate laws that are actually not appropriate 
(e.g., an expression that is never negative, thus that is not really 
reversible). When COPASI cannot automatically convert all reac-
tions, the user will have to adjust the model her/himself.  

  Fig. 15.    Trajectory of calcium oscillations using the stochastic simulation algorithm       .

  Fig. 16.    Menu option to convert a model to be composed only of irreversible reactions       .
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 Often, models are specified without considering the specific 
volume of the compartment. But for stochastic simulations the 
volume of the systems is crucial: the volume should not be too 
big so that the computed particle numbers are not too high and 
within numerical possibilities of a computer ( see   Note    43  ). This 
should pose no problem, since it is the purpose of these stochastic 
simulations to deal with systems that have relatively low particle 
number. Thus, it is important that the volume of the system be 
defined in the compartment description in such a way that the 
particle numbers are not too high. 

 Another consideration is whether or not the assumptions 
implied in the rate law of a specific reaction still holds in the pres-
ence of low particle numbers. Thus, when stochastically simulating 
a reaction network which has been described by a set of ODEs 
all reaction rates have to be converted to a corresponding reaction 
probability. This is rather simple and straightforward in the case of 
mass action kinetics  (3) . However, enzyme kinetic rate laws repre-
sent the overall rate of a series of elementary mass action reactions 
(binding of substrate to enzyme, isomerizations, etc.). An important 
question is then whether it is justifiable to use such a rate expression 
in stochastic simulations. Several authors  (39,   40)  have shown that 
as long as the initial assumptions for the assumed kinetics hold (e.g., 
excess substrate, fast reversible enzyme–substrate complex forma-
tion, etc.), it is indeed justifiable to assume the enzymatic reaction 
to constitute one single step with a corresponding rate law. The 
modeler must then ensure that the initial assumptions still hold. 

 Stochastic simulations are computationally expensive. If a large 
system is considered which contains some species with high particle 
numbers and some others with low particle numbers then the use 
of a hybrid method should be taken into consideration. In COPASI 
there are currently (version 4.4 Build 26) two hybrid methods 
implemented. These methods dynamically divide the system into 
two subsystems: one of them contains reactions with participants 
that occur in large quantities and is simulated by numeric integra-
tions of ODE; the other one contains reactions that have no par-
ticipants in large quantities and is stochastically simulated ( see   Note  
  44  ). In many cases, this approach will speed up the simulation. The 
two hybrid methods differ only in their numerical integration 
algorithm – one uses Runge–Kutta, the other uses LSODA. 

 Since repeated runs of the stochastic simulation will differ 
considerably, as long as the stochastic influence is noticeable, it 
is advisable to execute many runs in order to sample a distribu-
tion. This can be easily done by using the  Repeat  function of 
the  Parameter scan  task in COPASI already discussed in a previ-
ous section ( Fig.    17  ). If a plot of particle numbers over time 
has been defined, this repeated run will result in multiple time 
courses being overlaid in a single plot. However, this is not very 
useful when the dynamics is complex as in the example of calcium 
oscillations. In these cases, it is best to define a histogram ( Fig.    18  ) 
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  Fig. 17.    Using the  Parameter scan  window to repeat the same stochastic trajectory several times       .

  Fig. 18.    Defining a histogram plot of a species concentration       .
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to display the cumulative concentration distribution, which is a 
better way to summarize stochastic simulations ( Fig.    19  ).      

    

    1.    A modifier is a chemical species that affects the rate of reaction 
but which, unlike substrates or products, is not transformed 
by the reaction itself. A special case of modifier is the enzyme 
that catalyzes the reaction, but this class also includes inhibi-
tors and activators.  

   2.    But often not for enzymes, for which the rates usually depend 
linearly on their concentration – the exception is when there 
are enzyme–enzyme interactions.  

   3.    It is well known that these equations are often stiff, meaning 
that they contain very fast and very slow components and this 
poses a significant numerical problem. Beware of software that 
does not include ODE integrators (or solvers) that are able 
to cope with stiff ODEs. Methods such as forward Euler or 
Runge–Kutta are  not  appropriate when stiffness is present in 
the equations and can lead to completely spurious solutions 
because they accumulate truncation error. COPASI uses the 
LSODA method which is adaptive and is stable under stiff 
conditions.  

4. Notes

  Fig. 19.    Histogram of calcium concentration for ten runs of the stochastic simulation algorithm       .
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   4.    COPASI can use any of the following three strategies: Newton 
method, ODE integration forward in time or integration 
backward in time. If all three are chosen, it first tries the 
Newton method and if this does not converge, it then inte-
grates in time for a while and then tries the Newton method 
again – this is repeated ten times, each time integrating even 
further ahead (10× what was done earlier). If at the end a 
steady state is not found it will then go back to the original 
starting point and apply the same strategy but now integrat-
ing backward in time. Backward integration, if successful, 
will find an unstable steady state. The user has control over 
this strategy by selecting the parameters “Use Newton,” 
“Use Integration,” and “Use Back Integration.”  

   5.    A commercial license is also available for purchase allow-
ing use of COPASI for applications that are for commercial 
profit. Go to   http://www.copasi.org/commercial     for further 
details.  

   6.    Distribution filenames are in the format: Copasi-XX-YYYYYY.
ZZZ where XX is the build number, YYYYYY is a reference 
to the operating system ( WIN32  for Windows,  Darwin  for 
OS X,  Linux ,  SunOS  for Solaris, and src for the source code), 
and ZZZ is the appropriate extension for the type of file, 
which depends on the operating system.  

   7.    Alternatively you can  browse  the database and find the model 
that way. However, such a method will become essentially 
unworkable as the database grows.  

   8.    This means the model is in SBML level 2 version 1; in the 
future the BioModels database may supply the model in 
another level/version of SBML so the title of this link may 
become something like SBML Lx Vy for level x and version y.  

   9.    To download this file you should right click the link and 
then select an option that allows saving the link to disk (like 
 save link as … in Firefox). If you simply click the link your 
browser will likely show a blank page with some sentences 
and then a (long) list of parameter names. This is actually 
part of the model and appears because the browser is trying 
to interpret the XML encoding as if it was HTML.  

   10.    Additionally there is also an initial value for time, this is only 
important in the case when some rate equations reference time 
explicitly (nonautonomous models). In that case, the value of 
time at the start of the simulation is important and the mod-
eler may need it to be some value different from zero.  

   11.    There is also a selection for the interpretation of rate equa-
tions, as there are differences between the ODE and the sto-
chastic approaches. Note that this selection only indicates 
whether the kinetics used are  meant  for one or the other 
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approach, not that the approach will be used. In fact, this 
feature exists so that COPASI can automatically adapt the 
rate equations to the required approach.  

   12.    There must be one space between each chemical species 
name, otherwise COPASI will interpret the whole string as 
one species name. This is because the character “+” is allowed 
in species names, thus the space is needed to delimit species 
names from symbols that are not part of the species name.  

   13.     Substrate  and  product  are obvious;  modifier  is any chemical 
species that is not transformed by the reaction (inhibitors, 
activators, and the enzyme if represented explicitly);  volume  
is the volume of any compartment;  time  is obvious; and 
 parameter  is anything else that does not fit any of the other 
categories.  

   14.    You should not mark as reversible a rate law that can only 
produce positive values; to be reversible a rate law must be 
able to take negative values (i.e., flux in the opposite direc-
tion). Conversely, an irreversible rate law should not be able 
to produce negative values.  

   15.    In COPASI, the buttons that are marked with the program’s 
icon are always used to select model entities.  

   16.     Multiple task  groups a set of computational analyses that 
require running multiple simulations at each time.  

   17.    This  output from subtask  button would need to be checked 
if the task was a time course and we wanted the whole time 
course to be plotted rather than just the final value (although 
there are also circumstances where that could be desirable 
thus the choice given to the user).  

   18.    It is best to scan in logarithmic space when the parameter 
varies by more than one order of magnitude, otherwise most 
of the samples will lie in the upper order of magnitude.  

   19.    The order of the scan items in the stack is important for the 
way in which the plot is constructed, but otherwise produces 
the same results since it generates a regular grid and executes 
the task at each grid position. The order of the stacks only 
affects the order in which the grid positions are visited.  

   20.    Obviously a flux mode can only be reversible if  all  reactions 
that compose it are also reversible.  

   21.    An astute biochemist will realize that there is a carbon and 
two oxygens missing on the substrate side of this equation, 
and obviously there should be a CO 2  in that side of the equa-
tion. This is missing because the modeler made the decision 
of not including CO 2  in the model (it should be in the Phos-
phogluconate dehydrogenase reaction). Since the eryth-
rocyte is not known for fixating CO 2  then the mode must 
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operate in the reverse direction, i.e., production of PRPP 
from glucose. In this case, since the mode is reversible it 
means that one would not know this fact from the stoichi-
ometry alone.  

   22.    A chemical moiety is a set of atoms bound in a fixed struc-
ture which are part of molecules, which in a chemical context 
are referred to as “chemical groups.”  

   23.    This means that the dependent species is not calculated from 
a differential equation, but rather from this mass conserva-
tion relation. Thus each mass conservation relation reduces 
the number of ODE by one.  

   24.    Formalisms of MCA have also been derived for time-depend-
ent states  (41,   42)  but they are rather complicated and some 
of the coefficients therein are hard to conceptualize, so it is 
not usually applied.  

   25.    Since COPASI only uses the MCA steady-state formalism, 
the software first needs to find a steady state before doing 
the MCA calculations. It is a good idea to investigate the 
steady state(s) of a model before running MCA, especially 
regarding the stability of a steady state. While it is technically 
possible to calculate the MCA for an unstable steady state it 
is of little practical value.  

   26.    The value of 1% change is here used only for illustration as a 
“small” change, the coefficients are actually defined only for 
infinitesimal changes and all the theory is based on that.  

   27.    Since the framework of MCA is based on linearizations and 
reaction kinetics are generally nonlinear, the values of the 
elasticities depend on the actual concentrations of the chemical 
species, so they have to be calculated for specific cases.  

   28.    While it is possible in theory to carry out a large multidimen-
sional scan, the computational time of that exercise would be 
prohibitive and is beyond simple improvements in computer 
efficiency (it is an  NP- complete problem) and thus is essen-
tially impossible for models larger than four or five variables.  

   29.    Control coefficients are actually a special case of response 
coefficients that have unit elasticity.  

   30.    This in practice consists of finding the steady state, then 
changing one of the parameter values slightly, and then 
calculating the new steady state and using ratios to estimate 
the differentials (the change applied is very small).  

   31.    Maximizing a function is the same as minimizing the sym-
metric function.  

   32.    There are two types of fluxes in COPASI which only differ 
by scale: “concentration flux” is expressed in concentration 
per unit time, while “particle flux” is expressed in numbers 
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of particles per unit time. In this case you should select “con-
centration flux.” However, what is important is that both be 
of the same type, since this is a ratio.  

   33.    It is also possible to chose another parameter for the upper 
or lower bounds, in which case we just need to specify which 
one with the usual button with the COPASI icon (to the left 
of the text field). In fact, it is even possible to choose another 
 estimated  parameter (i.e., one on the list to adjust) as long as 
that parameter appears in the list before it is used as a bound-
ary value.  

   34.    You may manually override the initial value by highlighting 
the parameter and then entering a number in the box labeled 
Start Value or use the tool button labeled as “…” to chose 
other options, such as random values within the interval.  

   35.    Your numbers may be slightly different due to different pre-
cision of different computer architectures, but it should be a 
number in this range.  

   36.    Possibly there were several warnings of the type “CTrajecto-
ryMethod  (12) : Internal step limit exceeded,” which mean 
that for some parameter values COPASI could have failed to 
find a steady state through integration of the ODEs (due to 
the equations being too stiff). This is not a problem since it 
may have solved the steady state with the Newton–Raphson 
method. Even if it indeed failed completely to find a steady 
state for some parameter combinations, the method will 
have still converged, as you can judge by the final result. 
This is one advantage of population-based algorithms: they 
still work even when the objective function is not continuous 
(which is what it would look like if the numerical solution 
could not be obtained).  

   37.    The likelihood that it gets to the same result increases with 
the length that the algorithm is left running; if you run it 
with the default 2,000 iterations, it will likely always con-
verge to the same value, but it will run for a much longer 
time of course.  

   38.    These weights are scaling factors; they are not dependent on 
the quality of the experimental measurement like a standard 
deviation.  

   39.    These data were actually created with a slightly modified ver-
sion of the model where some parameters were changed, a 
time course was simulated and then noise was added to the 
values of MAPK-P and MAPKKK-P.  

   40.    This is why it is useful to have column headers because 
COPASI displays them and you can remember what this col-
umn is. This is particularly important if you have a data file 
with many columns.  
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   41.    A function evaluation is the complete calculation needed 
to simulate the data that needs to match the experimental 
data. Therefore it consists of calculating all time courses and 
steady states corresponding to each experiment.  

   42.    Gibson and Bruck’s next reaction method  (37)  is a more effi-
cient version of the original Gillespie first reaction method. 
It achieves better performance by an intelligent use of data 
structures. For example it stores dependencies between the 
reactions in dependency graphs and this avoids redundant 
recalculations of the reaction propensities.  

   43.    Stochastic simulations determine the time interval between 
reactions, and this time is dependent on the number of parti-
cles. If there are too many particles the interval between any 
two reactions is extremely small, meaning that it would just 
take too long to simulate any time interval of interest (i.e., at 
least milliseconds).  

   44.    The division between the subsystems is done with respect 
to the participating particle numbers and there is a control 
variable that corresponds to this threshold value which can 
be adjusted by the user.          
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      Chapter 3

 Flux Balance Analysis: Interrogating Genome-Scale 
Metabolic Networks       

     Matthew A.   Oberhardt,       Arvind K.   Chavali,       and Jason A.   Papin      

  Summary 

 Flux balance analysis (FBA) is a computational method to analyze reconstructions of biochemical net-
works. FBA requires the formulation of a biochemical network in a precise mathematical framework 
called a stoichiometric matrix. An objective function is defined (e.g., growth rate) toward which the 
system is assumed to be optimized. In this chapter, we present the methodology, theory, and common 
pitfalls of the application of FBA.  

  Key words:   Systems biology ,  Metabolic reconstruction ,  Flux balance analysis ,  Metabolomics ,  
Constraint-based modeling ,  Genome-scale network.     

    

 The availability of sequenced and annotated genomes, coupled 
with a tremendous knowledge base in scientific literature, has 
facilitated the construction of genome-scale models of metabo-
lism for a wide variety of organisms  (1–  5) . Metabolic network 
reconstructions include stoichiometric detail for the set of known 
reactions enzymatically catalyzed in a particular organism. These 
metabolic reconstructions can be built from the bottom-up, i.e. 
from the level of the gene to whole pathways acting in concert, 
and can include thousands of reactions and genes. Because of 
their enormous size, computational methods are required to 
quantitatively analyze large-scale biochemical networks. Although 
traditional ordinary differential equation (ODE)-based models of 
metabolism allow for characterization of dynamic cell states, full-
scale dynamic modeling is often difficult for networks consisting 

1. Introduction
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of thousands of reactions because of a paucity of necessary param-
eter values  (6) . Therefore, methods are needed in which kinetic 
parameters are less critical for prediction of cell phenotype. Flux 
balance analysis (FBA) is one such technique for analysis of large-
scale biochemical systems under conditions where kinetic param-
eters do not need to be defined: namely, at steady state ( see   ref.   7  
for historical perspective on FBA). 

 In this chapter, we discuss how to perform FBA and provide 
details for troubleshooting mistakes. FBA is a constraint-based 
method; first a space of possible phenotypes is defined by impos-
ing constraints on a biochemical system, and finally an objective 
function is optimized within that space to determine the system’s 
most likely phenotypic state. The state space of an FBA problem 
consists of steady-state (i.e., constant growth rate/exponential 
phase) fluxes through all reactions in the biochemical network. 
Predictions of values for these fluxes are obtained by optimizing 
for an objective (e.g., maximizing growth rate, minimizing energy 
use, maximizing end-product production), while simultaneously 
satisfying constraint specifications  (8) . The set of constraints can 
be grouped into any one of four categories: (a) physicochemical 
(e.g., conservation of mass), (b) topological (e.g., compartmenta-
tion and spatial restrictions associated with metabolites/enzymes), 
(c) environmental (e.g., media composition, pH, temperature), 
and (d) thermodynamic (e.g., reaction reversibility)  (8,   9) . 

FBA employs a mathematical formalism derived from the 
mass action expression:

d
d
C

Sv
t

=

 in which  C , and  v  are vectors of metabolite concentrations and 
reaction fluxes, respectively, and  t  is time.  S  is a stoichiometric 
matrix composed of rows corresponding to metabolites and 
columns corresponding to reactions for a given metabolic net-
work ( see   Subheading    3   for more details). FBA is performed on 
metabolic networks at steady-state since intracellular metabolic 
kinetics are much faster than changes in cellular phenotype (e.g. 
growth rate of a cell), and therefore the phenotype of a metabolic 
network quickly stabilizes to a steady solution  (8) . 

By definition, the change in concentration of metabolites 
over time is equal to zero when a system is at steady-state:

d
0

d
C
t

=

Therefore, the set of possible steady-state flux distributions 
through the metabolic network can be represented as the vector 
 v  in the equation:

Sv = 0



 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 63

 This equation constitutes the main constraint set representing
a biochemical network in FBA, as elaborated in  Subheading    3.2   
and  Fig.    1A   –C .  

Numerous extensions to FBA have been recently developed. 
Following is a brief overview of some of these extensions:
 •   DFBA : An abbreviation for dynamic flux balance analysis. 

Two independent approaches were proposed to address 
diauxic growth (changes in growth rate as one carbon source 
is depleted and the cell switches to utilizing another carbon 
source) in  Escherichia coli , namely dynamic optimization 
(DOA) and static optimization (SOA)  (10) . DOA considers 
the full time course of bacterial growth via the formulation 
of a nonlinear programming (NLP) problem ( see   ref.   8  for 
differences in mathematical programming strategies), while 
SOA entails solving multiple linear programming (LP) 
problems over several discretized time steps  (10) . The SOA 
was similar to a previous method  (11)  except for the inclu-
sion of constraints regarding the rate-of-change of metabo-
lite fluxes in DFBA. For large-scale biochemical networks, 
SOA would be more applicable due to the computational 
limitations of the NLP aspect of DOA  (10) .  

 •   EBA : A more rigorous addition of thermodynamic constraints 
to FBA via energy balance analysis was proposed  (12) . Using 
this method, the flux space calculated by FBA is further con-
strained and flux distributions that are thermodynamically 
infeasible are removed. The  E. coli  metabolic network was 
simulated under glucose-minimal medium, and in addition 
to the flux distribution, chemical potentials and conduct-
ances were also predicted for every reaction in the network. 
Information on reaction conductance was used to characterize 
enzyme regulation in the switch between aerobic and anaero-
bic conditions. Furthermore, some gene knockouts predicted 
incorrectly by FBA were correctly predicted using EBA  (12) .  

 •   rFBA : Regulated FBA considers the effects of transcriptional 
regulation on metabolism. The FBA flux space is further con-
strained by accounting for regulatory elements (e.g., if a par-
ticular transcription factor is present, then a given reaction 
does not occur). By incorporating Boolean rules, defining 
enzymatic regulation at discretized time steps and iteratively 
simulating the fluxes and concentrations in the network, rFBA 
was applied to a prototypic network  (13) . The use of rFBA 
on a large-scale integrated metabolic and regulatory network 
of  Saccharomyces cerevisiae  consisting of 805 genes and 775 
regulatory interactions has also been demonstrated  (14) . Gene 
expression profiles were simulated under genetic and environ-
mental perturbations, and growth phenotypes were character-
ized for various transcription factor knockout strains (subject 
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  Fig. 1.    The formulation of an FBA problem is demonstrated. ( A ) A simple prototypic metabolic network is converted into an 
 S  matrix. Different shades of elements in the  S  matrix represent the location of the corresponding reaction/metabolite in 
the system.  R  B  represents the objective reaction. ( B ) The mathematical formalism of FBA where “ S ” is the stoichiometric 
matrix composed of rows corresponding to metabolites and columns corresponding to reactions, “ v ” is the vector of 
fluxes through the associated reactions, “ lb ” and “ ub ” are the lower and upper bounds on the fluxes, “ v  Biomass ” (or  v  B ) is 
the objective flux and “ v  carbonsource ” is the uptake flux. The abbreviation s.t. stands for “subject to.” ( C ) The mathematical 
formalism is illustrated in matrix format. ( D ) Genes encoding proteins that catalyze reactions in the prototypic system 
are shown on the left. This gene–protein-reaction (GPR) network is then modeled with Boolean logic, as shown on the 
right. ( E ) The solution to the FBA problem introduced in panel ( B ) is presented in flux vector  v * . ( F ) The solution to an FBA 
performed after knocking out  gene5  is similarly presented in  v *        .



 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 65

to different carbon source requirements) of  S. cerevisiae   (14) . 
The recent development of the R-matrix formalism for tran-
scriptional regulatory systems also facilitates the integration of 
metabolism and regulation and serves to increase the applica-
bility of rFBA  (15) .  
 Further extensions to FBA are continually being developed. 

For example, efforts are currently underway to implement an 
integrated, dynamic FBA (idFBA) on a whole-cell model of 
metabolism, signaling and regulation  (17) . An approach called 
minimization of metabolic adjustment (MOMA) was developed 
to analyze the effect of gene knockouts on metabolic network 
phenotype. In MOMA, the suboptimal solution of a mutant 
strain (following a gene knockout) is generated, which represents 
the smallest Euclidean distance to the optimal FBA solution of a 
wild-type strain  (18) . 

 In this chapter, we highlight available resources to recon-
struct the metabolic network of a particular organism and present 
computational tools that are available to perform FBA. In addi-
tion, with the help of a prototypic metabolic network, the process 
of setting up an FBA problem is described in detail. The steps 
involved in formulating GPR relationships, defining an objective 
function and troubleshooting problems that commonly occur 
during FBA simulations are also presented. FBA is a powerful 
tool to quantitatively analyze metabolic networks and has been 
extensively applied to genome-scale models of  E. coli   (5) ,  Saccha-
romyces cerevisiae   (3) , and many other organisms  (2,   4,   19–  22) .  

    

    Metabolic network reconstructions, representing species-specific 
large-scale models of metabolism, are commonly built using infor-
mation from biological databases and literature sources. A variety 
of online public resources are available to aid in generating a 
metabolic network reconstruction, including: 

 Genomic resources: 
 GeneDB (  http://www.genedb.org/    ) and  TIGR  (  http://www.

tigr.org/    ) provide genomic information and functional annota-
tions for a wide variety of organisms. 

 Enzyme resources: 
 ENZYME (  http://ca.expasy.org/enzyme/    ) is an enzyme 

nomenclature database.  BRENDA  (  http://www.brenda-enzymes.
info/    ) provides enzyme, associated reaction, and pathway infor-
mation.  BRENDA  also includes organism-specific information 
on localization and links to experimental literature references. 

2. Materials

2.1. Tools for 
Metabolic 
Reconstruction
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 Species or organism-specific resources: 
 There are several resources dedicated to particular organ-

isms or species. Examples include Pseudomonas Genome Data-
base (  http://www.pseudomonas.com/    ), EcoCyc (  http://ecocyc.
org/    ), and Xenbase (  http://www.xenbase.org/common/    ). 

 Other resources: 
 KEGG (  http://www.genome.jp/kegg/    ),  MetaCyc  (  http://

metacyc.org/    ), and  NCBI  (  http://www.ncbi.nlm.nih.gov/    ) include 
gene, protein, and reaction information for several organisms. 
 KEGG  also contains a pathway module with detailed maps that 
are useful when reconstructing a metabolic network. In addition 
to gene and molecular databases,  NCBI  also includes literature 
databases providing expansive collection of prior research relating 
to the organism of interest. 

 The resources highlighted above are only a sampling of all 
the databases that are available for metabolic network reconstruc-
tions. The above list is certainly not comprehensive; therefore, 
the reader is directed to reviews that list other publicly and com-
mercially available online databases  (23,   24) .  

    Performing FBA does not require the use of specialized computing 
hardware. It can be executed on a standard desktop platform, using 
one of a variety of software tools. Generally, FBA is performed 
using an optimization package such as LINDO (Lindo Systems 
Inc., Chicago, IL) or GAMS (GAMS Development Corporation, 
Washington, DC), using MATLAB (The MathWorks Inc., Natick, 
MA), or using any other software package that allows for fast and 
efficient LP computation. Specifically in MATLAB, FBA can be 
carried out using the Optimization Toolbox. Via the Optimization 
Toolbox, the  linprog  function can be used for LP calculations ( see   
Subheading    3.6  ). Several dedicated tools have also been created 
that perform FBA and other systems-biology related tasks in MAT-
LAB. A few of these tools are highlighted below:
  •  The COBRA Toolbox  (25)  can execute FBA and many other 

systems biology applications. The COBRA Toolbox performs 
operations on models presented in systems biology markup 
language (SBML). Therefore, the SBML Toolbox must be 
installed in MATLAB for the COBRA Toolbox to function. 
For LP optimization, the COBRA Toolbox supports at least 
five LP solvers that are all available online: lp_solve (free), glpk 
(free), LINDO, CPLEX, and Mosek.  

 •  FluxAnalyser  (26)  is a tool that provides a graphical user inter-
face in MATLAB through which FBA and other systems biol-
ogy related analyses can be performed.  

 •  Metabologic  (27)  is a tool that executes FBA and is designed 
to aid in setting up optimal  13C- NMR experiments to deter-
mine the proper flux distribution through a system.    

2.2. Software 
Packages
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 A toolbox called SNA also exists for performing FBA and 
other network-related analyses in the Mathematica platform  (28) . 
In addition, several other standalone tools capable of performing 
FBA are available. MetaFluxNet  (29)  is one such standalone soft-
ware package that performs FBA and other analysis techniques. 
It also uses lp_solve as the default LP solver, but can support oth-
ers, including CPLEX, LINDO, GAMS, AMPL, and MATLAB 
LP. Commercial software packages have also been developed 
for large-scale FBA and systems analyses of metabolic networks, 
including Simpheny (Genomatica Inc., San Diego, CA) and Dis-
covery (INSILICO Inc., Stuttgart, Germany).   

    

    To perform FBA, components of a biochemical network must 
be defined and represented in precise, mathematical forms. Since 
FBA is geared toward analysis of networks at steady state (i.e., 
nonvarying fluxes over a defined time window), kinetic param-
eters are not required. However, FBA requires a stoichiometric 
matrix, known bounds on reaction fluxes and an objective func-
tion. To illustrate the steps in formulating an FBA problem, a 
prototypic system is presented in  Fig.    1A   and the associated rig-
orous mathematical formalism in  Fig.    1B  . This prototypic meta-
bolic system will be referenced throughout this section. 

 Note: For FBA of large-scale metabolic networks, the bio-
mass reaction is often – but not necessarily – chosen as the objective 
function. In the following sections, the flux of the objective func-
tion is referred to as  v  B  (when in reference to the prototypic net-
work presented in  Fig.    1  ),  v  Biomass  (when describing typical FBA of 
large-scale networks where the objective is the biomass function), 
or  v  obj  (when the objective function is left unspecified). Flux val-
ues denoted with an asterisk (e.g.,  v  biomass *) denote the optimal 
value as determined by FBA.  

       1.     S  -matrix : The stoichiometric matrix, or  S , is a matrix com-
posed of the stoichiometric coefficients for all reactions in a 
biochemical network. By convention, columns in  S  represent 
reactions, and rows represent species (e.g., metabolites) par-
ticipating in the reactions. Each substrate and product of a 
reaction must be assigned a stoichiometric coefficient,   si,j   , 
dictating how many moles of that compound are consumed 
or produced in the reaction. Metabolites not participating in 
a reaction gain a coefficient of zero for that particular reac-
tion.  Figure    1A   shows the conversion of a sample metabolic 
network into an  S  matrix. Note that substrate coefficients are 

3. Methods

3.1. Prerequisites

3.2. Building the 
Matrices
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represented by negative numbers, while product coefficients 
are represented by positive numbers. Therefore,  R  1  [(1)  A  
→ (2)  B ] becomes the first column of  S  in  Fig.    1A  , with a 
“−1” coefficient denoting the “loss” of 1 units of metabolite 
 A  [c]  and a “+2” coefficient denoting the “gain” of 2 units of 
metabolite  B  [c]  (where [c] represents an intracellular cytosolic 
metabolite).  

   2.     Exchange reactions : Exchange reactions involve metabolites in 
the surrounding environment that are allowed to enter and/
or leave the system. The constraints on the exchange reactions 
will dictate what resources are available in the in silico cell 
culture. Exchange reactions are represented in the  S  matrix as 
column vectors with a +1 coefficient for the metabolite being 
exchanged, but zeros for all other metabolites ( see  columns 
Ex A  and Ex C  in the  S  matrix in  Fig.    1A  ).  

   3.     Lower and upper bounds : The standard constraint set for FBA 
includes a lower bound (lb) and an upper bound (ub) for every 
reaction in the system. These bounds are represented by col-
umn vectors, with coefficients representing minimum and max-
imum fluxes for the corresponding reaction ( see   Figs.   1B, C ). 
In effect, reaction reversibility rules are formulated. As an 
example, for an irreversible reaction, the lower bound would 
be set to  0 . Lower and upper bounds for the prototypic system 
are shown in  Fig.    1C   as column vectors  lb  and  ub . Bounds 
for exchange reactions represent flow of nutrients into and 
out of the biochemical system, while bounds for transport 
reactions (occurring across cell and subcellular compartment 
membranes) and intracellular reactions (occurring within 
the confines of the cell membrane) represent physicochemical 
constraints on reaction rates, due to thermodynamics or maxi-
mal uptake rates.  

   4.     Additional components : The mathematical formulation of a 
FBA problem is shown in  Fig.    1C  . The objective of the FBA 
problem in the top of  Fig.    1C   is the dot product     c ◊ v, where 
 c  is a vector containing objective coefficients for each reac-
tion in the system, and  v  is the vector of reaction fluxes in 
the system. Since a typical FBA problem involves the optimi-
zation of only one reaction,  c  will typically contain all zeros 
except for a “1” corresponding to the reaction flux being 
optimized. In the prototypic network presented in  Fig.    1A  , 
reaction  R  B  is the objective reaction, and the corresponding 
flux is denoted as  v  B , an abbreviation for  v  Biomass  ( see   Figs.   1B, 
C ). The  cv  expression is a more formal way of representing 
the objective rather than as flux  v  B . A zero vector represent-
ing the right side of the steady-state expression S ◊ v = 0 is 
also required.      
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     1.    Typically, the number of metabolites in a biochemical system 
is less than the number of fluxes, and thus an  S  matrix rep-
resents an under-determined system for which there exists a 
range of possible solutions at steady state  (8) . To choose the 
solution  v*  that is most optimal for a given objective, FBA 
employs a standard optimization technique called Linear 
Programming (LP), denoting an optimization wherein the 
constraints and the objective function are all linear with respect 
to the instrument variables (the fluxes,  v ). The LP formalism 
for the prototypic system is shown in  Fig.    1C  . A typical math-
ematical expression for the standard FBA optimization is also 
provided. The fluxes in vector  v  are constrained between their 
lower and upper bounds, and the expression   c ◊ v   is maximized 
as explained in  Subheading    3.2.4.    

   2.    An uptake constraint ( v  carbonsource  = uptake ) simulating a controlled 
and steady flux of carbon source into the growth medium can 
also be included within the optimization problem, as indicated 
in the mathematical setup in  Fig.    1B  . This constraint aids in nor-
malizing the fluxes in the system to a particular chosen value. As 
an example, in determining growth yield of a bacterium grow-
ing on glucose as a sole carbon source, vEx GLUCOSE

 and   vBiomass serve 
as the uptake and objective fluxes, respectively. These are similar 
to  v  ExA  and  v  B  in the prototypic network. Maximizing biomass is 
a common objective function in large-scale metabolic networks 
( see   Subheading    3.7  ). By ensuring that 1 unit of biomass drains 
exactly 1.0 g of metabolite mass (e.g., the total amount of pro-
tein, DNA, RNA, carbohydrate, lipid, and other components in 
biomass –  see   Subheading    3.7  ) from the system, the resulting 
biomass flux will equal the growth rate (in units of hour −1 ), and 
the yield can be calculated as:     

 3.3. Setting up the 
Optimization Problem 

Note: The units of flux for all intracellular reactions are mmol 
metabolite/gram dry weight/h. The only exception is the biomass 
reaction with units of flux equal to 1/h (assuming the biomass 
drain is scaled to 1.0 g as described below). 

 When exact experimental measurements are not available in 
the literature, but relative amounts are known (as is usually the 
case), the biomass drain should be set to 1.0 g of metabolite 
mass by scaling the biomass reaction coefficients (keeping their 
ratios constant with respect to each other) to satisfy the equation: 
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∈

= =∑biomass ,biomassMass · 1 ,D
i i
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s M g  where  M   i   is the mass of metabo-

lite  i  and D is the set of biomass components drained from the 
system. Note that the uptake constraint is implicitly expressed in 
 Fig.    1C   as the constraints on  v  ExA  and  v  ExC .  

     1.    The results of the FBA problem for the prototypic system are 
shown in  Fig.    1E  . Fluxes are denoted by arrows on the network 
map, and the optimal flux vector  v*  is shown in the inset panel. 
The  v*  vector can be interpreted as a set of fluxes through all 
of the reactions in the metabolic network that will lead to an 
optimal value of  v  B  (the objective flux), which in this case has 
a value of 3 ( see   Fig.    1E  ). Note, the  v*  vector obtained is not 
necessarily  the only  solution that will result in the optimal value 
of the objective function; it is merely  an  optimal solution. Flux 
variability analysis can help identify the range of possible  v*  
solutions for a particular FBA problem  (30) .  

   2.    A flux in  v*  is interpreted with the reaction column in the 
 S  matrix to which it corresponds. For instance, suppose that 
the  R  1  column in  Fig.    1C   were modified to:

new
1 1

10
20
010·
0
0

R R
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⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
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⎢ ⎥⎣ ⎦

         

 The resulting flux through  R  1
new  would be v1

new*= 0.1      as opposed 
to v1*= 1.0    , but otherwise the FBA problem would be unchanged. 
Importantly, the same amount of mass would be passed through 
 R  1  per unit time per gram of cellular dry weight, as determined by 
the equation: (v1

new*) (R1
new)= (v1*)(R1) Therefore, the flux  v  1 * is 

scaled according to the stoichiometric coefficients of metabolites 
participating in reaction  R  1 .  

  The inclusion of the GPR relationships facilitates the charac-
terization of the genotype to phenotype relationship. Reactions 
in the  S  matrix are linked to genes that encode the associated 
enzymes. This association allows for the analysis of the effects of 
gene knockouts and transcriptional regulation of metabolism. A 
sample set of GPR rules are provided for the prototypic metabolic 
network ( see   Fig.    1D  ). GPR relationships can be expressed with 
Boolean logic (e.g., AND/OR associations). Isozymes (enzymes 
E 2 1 and E 2 2 in the prototypic network in  Fig.    1D  ) have an OR 
relationship as they can independently catalyze  R  2 . Subunits of a 
protein complex (enzymes E 3a  and E 3b ) can be associated with an 
AND relationship as both subunits are required to catalyze  R  3 . 

 3.4. Interpreting 
Results 

 3.5. Formulating GPR 
Relationships 
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The Boolean logic for GPRs is indicated in the table on the right 
of  Fig.    1D  . 

 Performing an in silico gene knockout experiment involves 
identifying the target gene in the reconstruction and removing 
the associated reaction(s) from the metabolic network, according 
to the GPR Boolean logic. Mathematically, this is achieved by 
constraining the upper and lower bounds on the corresponding 
reaction fluxes to zero. An example gene knockout simulation 
is presented in  Fig.    1F  . Here,  gene5  is “knocked out.” Accord-
ing to the GPR Boolean logic in  Fig.    1D  ,  gene5  codes for E 3b , a 
subunit protein required for  R  3 . Therefore, a  gene5  knockout will 
eliminate the activity of  R  3 . Without an active  R  3 , the resulting 
flux of the objective function is reduced from 3 to 1 ( see   Fig.   1E, 
F , respectively).  

  Sample MATLAB code performing FBA on the metabolic network 
presented in  Fig.    1A   is provided in  Fig.    2  . This code utilizes 
the  linprog  function in MATLAB, which is available through the 
Optimization Toolbox.   

 3.6. Sample MATLAB 
Code 

  Fig. 2 .   Sample MATLAB code for performing FBA illustrated in  Fig.    1e, f  . The stoichiometric matrix of the prototypic 
network is presented along with the additional matrices introduced in  Fig.    1  . The  linprog  command (via the Optimization 
Toolbox) is implemented to solve the FBA problem       .



72 Oberhardt, Chavali, and Papin

  A common objective function that is maximized when analyzing a 
metabolic network is the cellular growth rate. To simulate growth, 
a biomass demand reaction is formulated wherein all essential 
metabolites are drained in the ratio required for the subsequent 
production of cellular components. To generate a biomass reac-
tion, the dry weight cellular composition of the organism of 
interest needs to be obtained from experimental literature or 
estimated using data from highly related organisms. The cellular 
composition describes the percentage of proteins, RNA, DNA, 
carbohydrate, lipid, polyamines, and other constituents of a given 
cell. Below, each of the various cellular components is analyzed 
in further detail.
   1.     Analyzing protein content : The percent prevalence of each of 

the 20 amino acids in protein needs to be calculated. If data 
are unavailable in existing literature, this percent prevalence can 
be determined by downloading the amino acid sequence cor-
responding to every ORF in the genome of the organism of 
interest and implementing a character count. Using molecular 
weight information from online databases (e.g., KEGG), the 
percentage by weight of the 20 amino acids can be calculated. 
As an example, suppose that the percent dry weight composi-
tion of protein in a cell is 50% and the percent by weight of 
alanine is 10%. To calculate the coefficient for alanine in the 
biomass reaction in units of mmol per gram of dry cell weight:     
{Alanine mmol/gDW}=

0.1gm of Alanine 0.5gms of protein 1 mol Alanine

1gm of protein 1gDW 89.05gm of Alanine

1000 mmol
0.5615

1 mol

× ×

× =

      Similar calculations are carried out for all 20 amino acids.
   2.     Analyzing RNA and DNA content : The same method applied 

to protein content is applicable to analyzing RNA and DNA 
content in biomass. For RNA monomers, the percent preva-
lence of A, C, G, and U needs to be determined from the 
genome. For DNA content, the G + C statistic can be used. 
Subsequently, the percent by weight calculations of nucleotides 
(ATP, CTP, GTP, and UTP) and deoxynucleotides (dATP, 
dCTP, dGTP, and dTTP) can be carried out by obtaining 
relevant molecular weight information. Using the percent dry 
weights of RNA and DNA in a cell, the coefficients of nucle-
otides and deoxynucleotides in biomass can be calculated as 
illustrated above for the amino acid alanine.  

   3.     Analyzing carbohydrate and lipid content : Percentage by weight 
data for carbohydrate and lipid (neutral and polar) contents 
needs to be obtained from the literature. For determining the 

 3.7. Defining 
the Biomass Reaction 
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molecular weight of lipids, information on the fatty acid compo-
sition in the organism of interest is also required. Using the fatty 
acid composition, the molecular weight of an average length 
fatty acid chain can be computed. This calculation will aid in the 
molecular weight calculations of neutral and polar lipids.  

   4.     Other components : Depending on the organism, other compo-
nents such as polyamines and cofactors can also be included in 
the biomass reaction. Also, growth and non-growth associated 
ATP demands will need to be determined from experimental 
anaerobic chemostat cultivation.     

 Published metabolic reconstructions have previously described in 
detail the calculations involved in formulating a biomass reaction 
 (21,   31) .   

 

   Suppose that a FBA problem is set up as described in  Subhead-
ing    3   but the linear optimization yields  v  Biomass  * =  0  or an all-zero 
 v*  vector. Suppose further that these results were obtained under 
environmental conditions where experimental literature indicates 
the organism is able to grow. This type of error, which is quite 
common during the model-building process, can be trouble-
shooted in several ways as described below:
   1.    Check the exchange reactions that allow metabolites to be 

exchanged into or out of the metabolic network. A lack of 
some essential exchange reactions or the existence of exchange 
reactions with incorrect directionality (i.e., exchange reactions 
that output an essential metabolite rather than inputting it 
from the surrounding medium) can result in the organism 
not growing in silico. To evaluate these scenarios, ensure that 
every extracellular metabolite (as per the surrounding medium 
specifications) has an exchange reaction. All of the extracel-
lular metabolites can also be allowed to exchange freely in a 
reversible manner by relaxing the upper and lower bounds for 
their corresponding exchange reactions to allow a nonzero 
flux in either direction (e.g., by setting ub = 100 and lb = - 100 
for each exchange reaction).
   a.    If  v  Biomass  *  is still equal to  0 , the error might be internal to 

the network ( see   Subheading    4.2  ).  
   b.    If a nonzero flux for  v  Biomass  *  is obtained, the source of the 

error can be narrowed down to inaccuracies with exchange 
fluxes. The lower and upper bounds on all the exchange 
fluxes should be reset to their original values one-by-one, 
and the value of  v  Biomass  *  should be reassessed as each bound 

 4. Troubleshooting 
and Special Cases  

 4.1. Troubleshooting 
an FBA Problem: 
In Silico Organism 
Does not “Grow” 
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is reset. The constraints for exchange fluxes are determined 
by the surrounding medium specifications (e.g., if FBA 
is performed on  E. coli  metabolic network growing in a 
glucose minimal medium, the exchange reaction for glu-
cose will be constrained for input; however, the exchange 
reactions for all other carbon sources will be fixed to allow 
output only). If adjusting the lower or upper bounds on 
a particular exchange reaction reduces  v  Biomass  *  to  0 , 
an error might be present in the intracellular metabolic 
pathway associated with that exchange reaction.  

   c.    If the model grows with all exchanges unconstrained but 
not with the specific exchange reaction bounds that are 
relevant to the in silico medium of interest, there may be 
gaps present in the associated pathways that are preventing 
certain essential metabolites from being produced for bio-
mass ( see   Subheading    4.2  ). In FBA of genome-scale mod-
els of metabolism, sources of hydrogen, oxygen, nitrogen, 
sulfur, and sometimes other elements (e.g., phosphorus) 
must be allowed to exchange into the system in addition 
to the carbon source(s) the system grows on. Further, cer-
tain organisms cannot synthesize all 20 amino acids that 
are included in the biomass reaction. Exchanges should be 
provided for those amino acids that the organism uptakes 
from the surrounding medium.      

   2.    If optimizing for the biomass reaction fails under experimen-
tally observed growth conditions, performing FBA optimi-
zations for each component of biomass individually helps to 
identify a particular component that cannot be produced by 
the metabolic network. First, a demand reaction should be 
created for each biomass component. A demand reaction is 
defined purely for modeling purposes to produce a drain on 
the essential metabolite of interest. After creating demand 
reactions for every biomass component, each biomass-compo-
nent-demand reaction should be optimized in turn. Demand 
reactions yielding no flux indicate that the associated biomass 
metabolite cannot be produced. Subsequently, the pathways 
where the  particular component is participating need to be 
investigated for the presence of gaps, incorrect reaction ther-
modynamics, etc. For cofactors in the biomass reaction,  see 
  Subheading    4.3  .  

   3.    Shadow prices, solutions to the dual problem in the LP opti-
mization, provide additional insight for troubleshooting 
the application of FBA. Most LP solvers allow a user to view 
the dual variables, of which there exists one per constraint 
in the optimization. These shadow prices or dual variables 
 represent the quantity by which the optimal value of the 
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objective function would improve (i.e., increase in the case of 
 maximization) if the corresponding constraint were relaxed 
by one unit. Shadow prices (represented by the variable “ u ”) 
exist for every metabolite in the network since each metabo-
lite represents a separate constraint in the expression S ◊ v = 0. 
The concept of the dual variable is illustrated in  Fig.    3  . The 
objective function in this figure is represented by the grayscale 
gradient from  v   1   to  v   2  , which indicates how altering  v   1   and  v   2   
will affect the optimal value of the objective flux,  v  obj . In this 
example, increasing the upper bound of  v   2   ( ub   2  ) by 1 increases 
 v  obj * by 1, whereas increasing the upper bound of  v   1   ( ub   1  ) by 
1 increases  v  obj * by 2. Therefore, the dual variable associated 
with the  ub   2   constraint is uub2  =  1, and the dual variable asso-
ciated with the  ub   1   constraint uub1  =  2  . Hence, the dual vari-
ables give insight into which reactions are most limiting on 
the objective flux, as high values of dual variables indicate that 
the associated upper bound, lower bound, or metabolite in 
the  S  matrix is strongly limiting to the objective. For instance, 
if the shadow price associated with a certain metabolite in the 

  Fig. 3.    Dual variables in FBA are demonstrated. Two flux values (v1 and v2) are plotted on 
the  x  and  y  axes along with their upper bound ( ub ) constraints. The shaded gradient on 
the plot represents values of the objective function,  v  obj . The optimal solution  v  obj * occurs 
at the intersection of  ub   1   and  ub   2  , and is denoted with a diamond ( � ). A circle ( � ) rep-
resents  v  obj * after relaxing the  ub   2   constraint by 1 flux unit, and a square ( � ) represents 
 v  obj * after relaxing the  ub   1   constraint by 1 flux unit. Therefore, the dual variables for  ub   1   
and  ub   2   are 2 and 1, respectively, as shown at the bottom of the figure       .
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 S  matrix has a higher value than any other shadow price in the 
system, this could indicate that there is a gap in consumption 
or production of that metabolite. In this way, dual variables of 
FBA can aid in building and troubleshooting problems in the 
metabolic network during reconstruction.       

  If certain pathways in the intracellular metabolic network are 
incomplete and as a result the model cannot grow, gap analysis 
can be used to identify portions of the network that need to be 
further reconstructed. A gap occurs when a metabolite in the 
model is either consumed only or produced only. Different types 
of gaps exist in a metabolic network as illustrated by dotted reac-
tions in  Fig.    4  . Here, four different types of gaps are shown, 
namely: (1) a direct gap in the pathway, (2, 3) gaps in cofactor 

 4.2. Gap Analysis 

  Fig. 4 .   Different types of network gaps are illustrated. Four network gaps are shown 
in a metabolic pathway: (1) a direct gap in the pathway, (2) a cofactor cycling gap, (3) a 
cofactor cycling gap where cofactors are both consumed and produced, and (4) a gap in 
the processing of a secondary byproduct of the pathway       .
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cycles necessary to the pathway, and (4) a gap in a peripheral 
pathway crucial for processing a byproduct of the main pathway. 
Gaps (2) and (3) differ in that while (2) is a true gap wherein 
ATP is consumed only and ADP is produced only, (3) is not a 
true gap, since both NADH and NAD +  can be produced and 
consumed within the network by other reactions, as illustrated in 
 Fig.    4  . Gap (3) represents a gap in the cofactor cycle of NADH 
but not in the synthesis pathway of NADH. Such gaps can be 
difficult to identify but are sometimes responsible for no-growth 
results in FBA.   

     1.    Cofactors differ from other metabolites in that they are not 
generally produced from basic building blocks in the formation 
of biomass or some other cellular product. A sample cofactor 
cycle is shown in  Fig.    5  , wherein ATP is hydrolyzed to ADP 
by one of the many metabolic reactions that use ATP, and 
then ADP is energy-charged back to the ATP form by the 
addition of a phosphate (Pi). Note that ATP is neither consumed 
nor produced during one full cycle of this process. Therefore, 
it is not necessary to synthesize from basic building blocks 
cofactors that are cycled in FBA (unless cofactor synthesis 
is accounted for in the reconstruction as well, in which case 
some portion of cofactors will be synthesized and some will be 
cycled, as explained in  Subheading    4.3.3  ).   

   2.    A common problem in the application of FBA to metabolic 
networks is the production of “free” energy through cofac-
tor cycles, which are allowed to run backwards and violate 
thermodynamics ( see   Fig.    5   illustrating the ATP cofactor 
cycle). To check for free energy loops, all exchange fluxes 
in the system need to be closed. Subsequently, FBA needs 

 4.3. Dealing with 
Cofactors 

  Fig. 5.    The process of cofactor cycling is presented. ATP is cycled between hydrolyzing 
reactions and ATP charging reactions, with a net ATP production and consumption of 
zero. This illustrates how cofactors can be cycled but not be consumed or produced 
during FBA       .
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to be performed wherein the ATP cycling demand reaction 
(ATP + H2O ® ADP + Pi + H+) is maximized. If  v  ATP cycling * is 
nonzero when metabolites are not allowed to enter or leave 
the system, some combination of reactions with nonzero flux 
must be participating in a free energy loop and erroneously 
fueling the production of ATP ( see  also  ref.  32) .  

   3.    Of special note for the biomass reaction: cofactors can be both 
consumed and cycled in the biomass reaction. For instance, 
some ATP will be consumed for an ATP synthesis demand, 
while a portion of ATP will be cycled in an ATP energy 
demand in the same biomass reaction  (2,   33) .       

 

 In this chapter, we have provided an overview of the theory and 
details for the application of FBA. We presented an overview 
of some recent extensions to this method. We also highlighted 
resources that are available to reconstruct a metabolic network 
and perform analysis using FBA. In addition to detailing the steps 
involved in setting up an FBA problem, we described the methods 
involved in formulating GPR relationships and defining an objective 
function (biomass reaction). Finally, we detailed techniques in 
troubleshooting problems that commonly occur in FBA analysis 
of metabolic networks. FBA is increasingly applied to the analysis 
of biochemical systems, driving experimental design, and providing 
insight into fundamental biology.      

The authors wish to thank the National Science Foundation 
CAREER program (grant# 0643548 to JP) for financial support. 
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   Chapter 4   

 Modeling Molecular Regulatory Networks 
with JigCell and PET       

     Clifford A.   Shaffer   ,    Jason   W.   Zwolak   ,    Ranjit   Randhawa   , and    John   J.   Tyson            

  Summary 

 We demonstrate how to model macromolecular regulatory networks with JigCell and the Parameter 
Estimation Toolkit (PET). These software tools are designed specifically to support the process typically 
used by systems biologists to model complex regulatory circuits. A detailed example illustrates how a 
model of the cell cycle in frog eggs is created and then refined through comparison of simulation output 
with experimental data. We show how parameter estimation tools automatically generate rate constants 
that fit a model to experimental data.  

  Key words :  Systems biology ,  Parameter estimation ,  Model validation .   

    

 Mathematical models of gene-protein regulatory networks play 
key roles in archiving and advancing our understanding of the 
molecular basis of cell physiology. Models provide rigorous 
connections between the physiological properties of a cell and 
the molecular wiring diagrams of its control systems. A  simple 
example is the set of reactions controlling the activity of MPF 
(mitosis promoting factor) in  Xenopus  oocytes  (1) , which we 
refer to herein as the frog egg model. In the diagram of this 
network ( Fig.   1 ), vertices represent substrates and products 
(collectively referred to as species), solid directed edges repre-
sent biochemical reactions, and dashed directed edges represent 
regulatory signals.  

1. Introduction
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 Collectively, these biochemical reactions cause the concentra-
tions of the chemical species (  Si   ) to change in time according to 
a set of differential equations (one for each species)

   =

= = …∑
1

, 1, , ,
R

i
ij j

j
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b v i N

dt     

 where  R  is the number of reactions,  N  is the number of species, 
  vj    is the velocity of the   jth    reaction in the network, and   bij   is the 
stoichiometric coefficient of species  i  in reaction  j  (  bij  < 0   for 
substrates,   bij > 0   for products,   bij = 0   if species  i  takes no part in 
reaction  j ).  Fig.   1  shows differential equations derived from the 
reactions in the network diagram. The set of rate equations and 

  Fig. 1 .   Network diagram, mapping of species names, and the corresponding set of ordi-
nary differential equations for a model of the mitotic regulatory system in frog eggs. The 
regulation of MPF (mitosis promoting factor) by Wee1 (kinase) and Cdc25 (phosphatase) 
controls when the cell enters mitosis. Notice the two positive feedback loops whereby 
MPF activates Cdc25 (MPF’s activator) and inactivates Wee1 (MPF’s inactivator). The 
active forms (  M a   ,   Ca   , and   Wa   ) have associated differential equations. The total amounts 
of MPF (  MT   ), Wee1 (  WT   ), and Cdc25 (  CT  ) are conserved (i.e., remain constant throughout 
the process).   Mi + Ma = MT   ,   Wi + Wa = WT   , and   Ci + Ci = CT   . Therefore, the inactive forms 
(  Mi  ,   Ci  , and   Wi  ) do not have differential equations because they can be calculated from 
these conservation relationships.       

Species Description Phosphorylated

Ma Active MPF no
Mi Inactive MPF yes
Ca Active Cdc25 yes
Ci Inactive Cdc25 no
Wa Active Wee1 no
Wi Inactive Wee1 yes
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associated parameter values is a mathematical representation of 
the temporal behavior of the regulatory network. 

 Since the purpose of these models is to codify a systems-level 
understanding of the control of some aspect of cell physiology, it 
is necessary to validate a proposed model against observed behav-
ior of the reference system. In most cases, it is essential to model 
the behavior not only of the wild-type form of the organism, but 
also of many mutant forms (where each mutant form typically 
represents one or two variations in the genetic specification of the 
control system). For example, if we are modeling the cell cycle of 
an organism, then we would wish to know features such as the cell 
size at division, the time required for various phases of the cell cycle 
(G1, S, G2, M), and the viability or point of failure for each muta-
tion. Measurements of the amounts for various control species 
within the cell over time would also be valuable information. In 
the case of a thoroughly studied organism such as  Saccharomyces 
cerevisiae  (budding yeast), a model can be compared against many 
dozens of mutants defective in the regulatory network. 

 A realistic model of the budding yeast cell cycle consists of 
over 30 differential equations and 100 rate constants and is tested 
against the phenotypes of over 150 mutants  (2) . A model of this 
complexity represents the upper limit of what a dedicated modeler 
can produce “by hand” with nothing but a good numerical integra-
tor like LSODE  (3) . Beyond this size, we begin to lose our ability 
even to meaningfully display the wiring diagram that represents the 
model, let alone comprehend the information it contains, or deter-
mine suitable rate constants in the corresponding high-dimensional 
space. To adequately describe fundamental physiological processes 
(such as the control of cell division) in mammalian cells will require 
models of 100-1000 equations. To handle this next generation of 
dynamical models will require sophisticated software to automate 
the modeling process: network specification, equation generation, 
simulation and data management, and parameter estimation. 

 There are a number of distinct approaches to simulation. 
Deterministic models usually represent the system of chemical 
reactions with ordinary differential equations  (4-  6) . In some 
cases, partial differential equations are used to account for spatial 
effects  (7) . Stochastic modeling is in its infancy, and most often 
is done by some variation of Gillespie’s algorithm  (8-  10) . For the 
remainder of our discussion, we will consider only deterministic 
simulation by ordinary differential equations (ODEs). 

 Creating a model that mimics the observed behavior of a living 
organism is a difficult task. This process involves a combination of 
biological insight, persistence, and support by good model ing tools. 
In the following sections, we will describe the model development 
process that we employ and the software tools that we have developed 
to construct and test models. We then provide a detailed example of 
how the tools can be used to create a simple model of the frog egg 
cell cycle and to estimate the associated rate constants.  
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 Successful modeling of macromolecular regulatory networks can 
be aided by software tools based on a well-defined modeling proc-
ess. Such tools should support the line of thought followed by 
modelers as they approach a problem. Mid-sized models of mac-
romolecular regulatory networks track reactions among tens of 
species and are tested against hundreds of experimental observa-
tions. Thus, modelers need tools that help to organize the rel-
evant information and automate as many steps of the process as 
possible.  Figure   2  shows our conception of the modeling process. 
The modeler starts with an idea about an organism and a regulatory 
system to model. Next, the modeler gathers information (from the 
literature and from their own experiments) related to the regulatory 
system of the organism. During the literature search, the modeler 
builds a hypothesis from information already published, continu-
ously checking the hypothesis against the existing literature. Once 
the modeler has a testable hypothesis about the regulatory system, 
the hypothesis can be codified into four types of technical information:

 2. The Modeling 
 Process

  Fig. 2 .   The modeling process. Once the modeler has generated a testable hypothesis 
about the organism, he or she must assemble the four necessary collections of infor-
mation (experimental data, simulation runs, reaction network, and rate constants). This 
defines both the mathematical model and the behavior that the model must reproduce. 
The modeler then will repeatedly simulate and update the model, perhaps with the aid of 
automated analysis tools, until an acceptable result is obtained       .
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  •  Experimental data: The information that will be used to vali-
date the model. This information might come as time series 
data of the concentrations of certain regulatory chemical spe-
cies, as other observables such as the average size of cells at 
division, or as qualitative properties such as the viability or 
inviability of a mutant.  

 •  Simulation runs: Specifications for the simulations that will be 
made to model the experimental data. For example, each simu-
lation might relate to a specific mutation of the organism. The 
specification will define the distinct conditions necessary to sim-
ulate that mutation, such as differences in rate constants from 
the wild-type values.  

 •  Reaction network: The chemical equations that describe the 
regulatory processes.  

 •  Rate constants: The parameters that govern the reaction 
rates.     

 Typically, the experimental data and simulation run descrip-
tions are part of the problem definition and are not subject to 
frequent modifications. Nor are they considered to be “right” 
or “wrong” in the same way as the reaction network and rate 
constant values typically will be. The network and rate constants 
together define the mathematical model that will be simulated, 
compared with experimental observations, and judged “accept-
able” or “unacceptable.” 

 One simulation run of an ODE model takes only a fraction 
of a second on a typical desktop computer in 2007. As described 
above, a complete model actually involves a large collection of 
simulations, to be compared against a collection of experimental 
results. This entire set of runs might take a second or so for a 
smaller model such as our frog egg example on a desktop computer 
for one choice of rate constants, and about a minute or two for a 
larger model needed to describe the budding yeast cell cycle. 

 Once an initial specification of these four types of informa-
tion has been made, the next phase of the process begins. This 
is a simulation-compare-update loop, whereby simulation results 
are compared with the experimental data. In some way, either a 
human or a computer will make a judgment as to the quality of 
the relationship between the two. At that point, since the model is 
typically judged unsatisfactory, the modeler will make adjustments 
and repeat the cycle. We prefer to view this as a double loop, in that 
changes to rate constant values are made much more frequently 
than changes to the reaction network. That is, the modeler will 
typically “twiddle” the rate constants so long as progress is being 
made in matching simulation output to experimental data. When 
changes to the rate constants appear no longer to improve the 
match, then the modeler will attempt to improve the model by 
changing the reaction network, which in turn will trigger another 
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round of changes to the rate constants. The process is continued 
until the model is judged satisfactory or totally hopeless. 

 Modelers often try to assign values to rate constants by a 
time-consuming process of “parameter twiddling” and visual 
comparison of simulation results to experimental data. A better 
approach is automated parameter estimation (once the modeler 
is confident that the basic structure of the reaction network is 
sound enough). To fit a model to experimental data by auto-
mated optimization algorithms requires thousands to millions of 
repetitions of the full calculations. 

 The process of comparing real-world observation ( experimental 
data) with the mathematical model (time-series output from a simu-
lation) is called model validation. Model validation is closely related 
to automated (or manual) parameter estimation, because both 
require that some measure of the quality of the model can be made. 
In the case of automated parameter estimation, we need a way to 
take the experimental data and the output from a simulation run, 
and create a single number as a measure of the quality of the fit. 

 This can be extremely difficult. First, the simulation data 
(usually in the form of time series plots) might not be similar to 
the form of the experimental data (often qualitative information 
such as whether a cell is viable or not). In general, some complex 
computation must be done to relate the two. The function that 
does this computation is called a  transform  and is discussed fur-
ther in   Subheading 3.3.1  . Second, although it might be a simple 
judgment to measure the goodness of fit between one simulation 
and one experiment, it is often difficult to judge the goodness of 
fit of an entire ensemble of runs, where improvements in match-
ing some experiments might come at the cost of worse fits for 
others. The function that balances these fits is called the objective 
function and is discussed in   Subheading 3.3.2  .  

    

 Before the current generation of modeling tools for systems  biology 
was developed, many stages in the modeling cycle described in 
  Subheading 2   were done by hand. This presents two problems. 
First, it takes a great deal of time and effort to convert the original 
intuitive concept of a model into a suitable set of reaction equations 
and simulations. Second, there are many opportunities for errors, 
especially at the (essentially mechanical) step of converting a reac-
tion mechanism into differential equations. 

 A wiring diagram, like  Fig.   1 , nicely represents the topology 
of a reaction network (reactants, products, enzymes). But it is 
not a good representation for specifying the kinetics of the net-
work (the reaction rate laws,   vj  ). A large reaction network can 

3. Software Tools
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become so complex that even its topological features are obscured 
by a large number of intersecting lines. Obscurity is increased 
by the fact that there is no standard format for drawing such 
graphs. Without precise notational conventions, it is impossible to 
convert a wiring diagram unambiguously into a model, either by 
hand or by machine. 

 Another approach for deriving a model is to explicitly write 
out the chemical reactions. This loses some of the intuitive appeal 
of the diagrammatic approach, but allows for a more compact 
definition of a reaction network. Normally, the modeler has 
already made a hand or CAD-drawn version of the network in 
graphical form, showing the interactions in a qualitative sense but 
without the quantitative information of the rate equations or the 
rate constant values. 

 Models often include concepts not captured by the differen-
tial equations alone. Conservation relations are defined by linear 
combinations of species concentrations that remain constant
throughout a simulation:   
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actions that trigger in the model under given conditions. For 
example, cellular division could be represented by a halving of 
cell mass, and might occur when a given function involving some 
number of chemical species reaches a threshold during a simulation. 

 The key to successfully creating and managing such complex 
models is to use software tools that organize the information in 
a coherent way and catch inconsistencies and errors early in the 
process. In this section, we will describe the JigCell Model Builder 
 (11,  12) , which is used to define the reaction equations and rate 
constants of the model. We then present the JigCell Run Manager 
 (13) , which is used to define a series of simulation runs that will 
generate output to validate the model. Finally, we describe the 
parameter estimation tool (PET)  (14) , which supports exploration 
of the parameter space and automated parameter estimation with 
the goal of selecting rate constant values that best fit the simulation 
output to the experimental data. 

 Underlying any such software tool is a representation scheme 
for describing a model, that is, a language for expressing the 
model in a complete and formal sense. The systems biology markup 
language (SBML)  (15,  16)  has now become the standard reference 
language for reaction network modeling. SBML describes all neces-
sary features pertaining to the reaction network, conservation 
relations, events, and rate constants. SBML does not describe all 
data necessary for modeling, including information describing the 
simulation runs and experimental data from  Fig.   2 , which must 
be stored in separate files. SBML also is not a suitable language 
for human comprehension. Thus, software tools are needed to 
provide an interface between the user and SBML. 



88 Shaffer et al.

  The JigCell Model Builder (referred to herein as the “Model 
Builder”) is used to define the components that make up an SBML 
model. The Model Builder uses a spreadsheet interface, allowing a 
large amount of data to be displayed in an organized manner. 

 The Model Builder provides functionalities for both first-
time users and expert modelers. The Model Builder supports the 
definition of events and user-defined units. An event, such as cell 
division, can be defined by specifying a condition that must be 
met to trigger the event, and the changes that result due to the 
event. A major goal of the Model Builder is to minimize the time 
and errors associated with translating a regulatory network to a 
set of equations. As the user enters reaction equations, rate laws, 
and functions into their cells in the main spreadsheet, several 
other spreadsheets are updated to track the various entities that 
make up a model. After the user has finished defining a model 
using the Model Builder, this model can be used with other 
SBML-compliant software to simulate the response of the model 
to given conditions. 

 The Model Builder’s interface is broken into 10 spreadsheets, 
all accessible by clicking on the appropriate tab.  Figure   3  shows 
the “Reactions” spreadsheet. There is a spreadsheet for each of the 
eight SBML components in a model (reactions, functions, rules, 
compartments, species, parameters, units and events). There is 
one spreadsheet for conservation relations and one spreadsheet 
for the equations (including both ODEs and rule equations).  

 The “Reactions” spreadsheet is the primary tool used to 
create the reaction network of a model. The other spreadsheets 
are either partially or completely filled by the Model Builder from 
the “Reactions” spreadsheet. A reaction represents any chemical 
transformation, transport, or binding process that can change the 
amount of one or more species. Each row defines a single  chemical 
reaction.  Figure   3  shows the “Reactions” spreadsheet loaded with 
the frog egg model. The three main columns in this spreadsheet 
are: “Reaction,” “Type,” and “Equation.”

 3.1. The JigCell Model 
Builder 

  Fig. 3 .   The “Reactions” spreadsheet       .
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   1.    The “Reaction” column defines the species (reactants and 
 products) and their stoichiometries. A list of substrates separated 
by “+” signs is entered first. An arrow (  →  ) is then entered, and 
is followed by a list of products, also separated by ‘+’ signs. 
Substrate and product names can contain any combination of 
letters, numbers, underscores, and apostrophes. There is no 
limit to the number of species that can be entered as substrates 
or products. The stoichiometry of a reaction is defined by placing 
a number and an ‘*’ character in front of the species (e.g.,   3 * Ma   ).  

   2.    By picking a rate law from a drop down list in the “Type” 
column, the user can specify the kinetics of the reaction being 
defined. The Model Builder provides three built-in rate laws 
(mass action, Michaelis Menten, local) and also allows users 
to define their own rate laws in the “Functions” spreadsheet. 
For all rate laws other than local, the Model Builder will enter 
the associated rate law in the “Equation” field. The local type 
allows the user to define the reaction rate of a single reac-
tion without creating a new rate law. If the user selects local, 
the equation field will remain empty until the user defines the 
equation for the reaction rate. Local rate laws may contain 
algebraic expressions with parameters and species.  

   3.    The “Equation” column specifies the equation for the rate of 
the reaction. If the reaction type is not Local, the “Equation” 
column displays the unsubstituted equation of the selected rate 
law until the user edits the rate law equation by clicking on 
the cells in this column. Clicking on one of these cells displays 
the “Parameters/Modifiers” Editor ( Fig.   4 ), where the user 
assigns “interpretations” to the rate constants and modifiers. 
The “interpretations” can be numeric constants, expressions, 
species, or species-related expressions. The Model Builder par-
tially fills the “Parameters/Modifiers” Editor when built-in 
rate laws are used (e.g., S1 becomes Ci in  Fig.   4  automatically 
because the user defined the reaction   Ci → Ca  ). The Model 

  Fig. 4 .   The “Parameters/Modifiers” Editor.       
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Builder will substitute the user’s interpretations (entered via 
the “Parameters/Modifiers” Editor) into the equation field of 
the “Reactions” spreadsheet so that the user can see the final 
rate law used to govern the reaction. Expressions are evaluated 
to numerical values when the model is simulated.      
 The “Functions” spreadsheet ( Fig.   5 ) is used to create and 

edit function definitions. A function definition is a named mathe-
matical function that may be used throughout the rest of a model. 
For example, user-defined rate laws are created as function defi-
nitions. Checking the box in the “Rate Law” column causes the 
newly created rate law to be included in the drop-down list of 
rate laws in the “Type” column of the “Reactions” spreadsheet. 
Functions are defined with place holders for arguments of the 
form   A#  , where # is some number. The function   My_rate_law   in 
( Fig.   5 ) contains five arguments   A1–A5  . These arguments can be 
assigned in the “Parameters/Modifiers” Editor ( Fig.   4 ) when the 
function is selected as the rate law for a reaction. Otherwise, to 
use this function it may be called like this:   My_rate_law(vwp, Wi, 
vwpp, Wa, Ma)  . Any of the function arguments can be a parameter, 
species, or algebraic expression.  

 The “Rules” spreadsheet ( Fig.   6 ) serves two purposes. First, 
it displays algebraic rules, which are the conservation relations in 

  Fig. 5 .   The “Functions” spreadsheet       .

  Fig. 6 .   The Model Builder “Rules” spreadsheet. The algebraic rules are automatically created by the Model Builder from 
the conservation relations. The lines for kw and kc define the rates for the reactions of L2 and L, respectively. CaScaled 
and WaScaled scale the concentrations of Ca and Wa to 1 after they have been diluted by Dilution. See  Subheading 4.1  
for more about dilution       .
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the model. The program deduces these relations from the stoi-
chiometric matrix of the model and displays each conservation 
relation in the form   (a1S1 + a2S2 + ...) – T = 0  , where   T    is the 
conserved quantity and   a1, a2, ...   are constants calculated from 
the stoichiometry matrix. The user cannot edit an algebraic rule 
on this spreadsheet but may specify how the Model Builder uses 
the rule on the “Conservation Relation” spreadsheet. The second 
purpose of the “Rules” spreadsheet is to create and edit assign-
ment rules. Assignment rules are used to express equations that 
set the value of variables. The “Variable” field in the assignment 
rule can be a species, parameter or compartment. In the case of 
species the “Equation” field sets the quantity to be determined 
(either concentration or substance amount), in the case of com-
partments the “Equation” field sets the compartment’s size, and 
in the case of parameters the “Equation” field sets the param-
eter’s value. The value calculated by the assignment rule’s “Equa-
tion” field overrides the value assigned in the “Compartments,” 
“Species,” or “Parameters” spreadsheet.  

 The next three tabs are used to define compartments, species, 
and parameters. A compartment represents a bounded space in 
which species can be located. Spatial relationships between dif-
ferent compartments can be specified. Modelers are not required 
to enter compartment information when defining a model, as a 
single compartment called “cell” is created by default. The “Spe-
cies” spreadsheet ( Fig.   7 ) provides a list of all species that are 
part of a chemical reaction or defined in a Rule. The list of species 
is generated automatically by the Model Builder, though a user 
can add, delete, and modify species. There are several editable 
attributes associated with each species. The “Parameter” spread-
sheet ( Fig.   8 ) is used by the Model Builder to manage all param-
eters and their values associated with a model. A parameter is used 
to declare a value for use in mathematical formulae. The Model 
Builder recognizes as a parameter any name on the “Reactions” 
spreadsheet that is not defined as a species.   

  Fig. 7 .   The Model Builder “Species” spreadsheet       .
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  Fig. 8 .   The “Parameter” spreadsheet       .

  Fig. 9 .   The “Events” spreadsheet. The symbol “@time” represents time in the system of differential equations. This event 
sets “RecordTimelag” to the value of time when the “Trigger” becomes true and is used to get the time for active MPF 
(Ma) to reach half the total MPF concentration (MT). This is provided as an example of how events are defined, but it is 
not used in the later modeling example.       

 The “Events” spreadsheet ( Fig.   9 ) allows the user to define 
actions associated with a model. For example, when modeling the 
cell cycle, some trigger for cell division must be defined and the 
consequences of that division must be specified. The “Name” col-
umn provides an (optional) identifier for an event. The “Trigger” 
column defines the conditions under which the event takes place. 
The format of this entry allows the user to specify an equality 
relationship. Whenever the relationship entered in the “Trigger” 
column is satisfied, the actions specified in the “Assignments” 
column will occur. The “Event Assignment Editor” lets the user 
define the changes that will occur when an event is executed.  

 The “Units” Spreadsheet lists all unit types used in the model, 
along with their definitions. A unit definition provides a name for a 
unit that can then be used when expressing quantities in a model. 
The Model Builder has a number of basic units and 5 built-
in unit definitions (area, length, time, substance, and volume). 
Complex unit definitions such as   meter/second2   can be created. 
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 The “Conservation Relations” spreadsheet ( Fig.   10 ) is used 
to view a list of all conservation relationships that exist between 
species in the model. The list of conservation equations is gener-
ated automatically, using Reder’s method  (17) .  

 The “Equations” spreadsheet ( Fig.   11 ) allows the modeler 
to see a list of the different types of equations that define the 
model. The user does not edit equations here, as they are cre-
ated automatically from data entered on other spreadsheets. The 
“Equation” column displays differential equations, assignment 
rule equations, conservation relation equations, or the condition 
set on the species when no equation exists.   

  The JigCell Run Manager (referred to herein as the “Run Man-
ager”) lets users define specifications for an ensemble of simula-
tion runs. Hierarchies of simulations can be built up, whereby a 
given simulation inherits parameter changes from a “basal” run 
definition. This hierarchical organization of simulations is useful 
because models are often validated against a collection of experi-
mental proto cols, each one of which requires only slightly different 

 3.2. The JigCell Run 
Manager 

  Fig. 10 .   The “Conservation Relations” spreadsheet       .

  Fig. 11 .   The “Equations” spreadsheet       .
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simulation conditions. For example, the budding yeast cell cycle 
model must capture the differences among many dozens of muta-
tions of the wild type organism. If the “basal” run represents the 
wild-type organism, then the hierarchy can define unambiguously 
and compactly the deviations from wild-type that are necessary to 
specify each mutant type. 

 Users input the description of ensembles using five spread-
sheets: Runs, Basal Parameters, Basal Initial Conditions, Simulator 
Settings, and Plotter Settings. The “Runs” spreadsheet ( Fig.   12 )
specifies how to simulate a certain experiment. The name  column 
can (optionally) be used to identify the experiment being simul-
ated. The parents column lists all runs from which the row inherits 
changes. The changes column lists additional changes to param-
eters, initial conditions, simulator settings, and plotter settings 
that are needed for this run. These changes are specified using 
the “Changes” editor ( Fig.   13 ), which opens when clicking on 
the changes cell for a particular run. The changes for a particular 
run override the changes inherited from any parents, and these 
changes propagate to its children. Color is used to reflect where 
the changes are made: Blue is used to indicate changes made in 
the current run (locally) and green to indicate changes inherited 
from a parent run (or some previous ancestor). This information 
is also indicated in the “Parents” column of  Fig.   13 , which indi-
cates either the name of the ancestor that caused that parameter’s 
setting to change, or states “local” if the change was explicitly 
made by the user for this run.  Figure   12  shows a “Runs” spread-
sheet for simulating some experiments done on frog egg extracts 
to characterize the activation of MPF.   

  Fig. 12 .   The “Runs” spreadsheet       .
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 Each row corresponds to a separate experiment. The run 
named “Interphase” (on row 1) describes changes to the initial 
model to simulate an extract starting in interphase. This run is 
then set as a parent to the run named “Kumagai and Dunphy 
1995 Fig.  3C  Interphase” on row 6. The run on row 6 inherits 
all its parent’s changes and represents an experiment to measure 
the phosphorylation of MPF by Wee1 during interphase. The 
“Changes” column displays changes made by the current run but 
not changes inherited from the parents. 

 The Run Manager provides a “Plot” button on the “Runs” 
spreadsheet that generates an immediate simulation for a speci-
fied row and then plots the results. 

 The “Simulator Settings” spreadsheet ( Fig.   14 ) specifies the 
simulator to be used and appropriate values for the simulator’s 
configuration parameters, such as total time of integration, toler-
ances, output interval, etc. In this case, the simulator chosen is 
XPP  (18) . Other simulators are also provided, such as StochKit 
 (19)  (for stochastic simulation) and Oscill8  (20) .  

 The “Plotter Settings” spreadsheet ( Fig.   15 ) enables the user 
to specify the variables to be plotted from a simulation run’s output. 
The “Plotter Settings” spreadsheet also contains options to custom-
ize the plot by selecting colors, mark styles, whether to connect 
points, etc.   

  Fig. 13 .   The “Changes” Editor for a particular run. In the “Setting” column of MT the 
cell would be colored blue to represent a local change. In the “Setting” column for CT, 
WT, and Dilution, the cell would be colored green to represent changes inherited from 
a parent run.       
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  The Parameter Estimation Toolkit (PET) is designed to help 
users explore parameter space and fit simulation output (e.g., 
time course simulations) to experimental data. Typical use of 
PET follows the modeling process discussed in   Subheading 2  :
   1.    The user imports an SBML file created by the Model Builder 

or some other SBML editor.  
   2.    A basal parameter set is created directly from the SBML file or 

imported from the Run Manager’s basal file.  
   3.    Simulation runs are defined in PET or imported from a run 

file created by the Run Manager.  
   4.    At this point the user may simulate the model, even though 

experimental data have not yet been defined.  
   5.    Experimental data are defined and transforms set up for the 

simulation runs.  

 3.3.  (PET) Parameter 
Estimation Toolkit :

  Fig. 15 .   The “Plotter Settings” spreadsheet       .

  Fig. 14 .   The “Simulator Settings” spreadsheet       .
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   6.    Experimental data and model output are compared by the user 
(Human Analysis) or by the parameter estimator (Automated 
Analysis). Parameters are adjusted to seek a better fit of the model 
to the data.     

 PET supports cut and paste of experimental data into and from 
applications, such as Microsoft Excel, copying of plots into pres-
entations or other documents, and generation of PDF files con-
taining plots. PET supports undo and redo of most operations 
(including all delete operations), semantic checks of user input, 
and color coding (e.g., of parameters changed by the user in the 
“Edit Basals” spreadsheet). 

 The following subsections detail some general features 
of PET. Specific examples of these features are provided in   
Subheading 4  . 

  Users enter experimental data and define what transforms to use 
on the model output in the “Edit Data” screen ( Fig.   16 ). Transforms 

 3.3.1. Experimental Data 
and Transforms 

  Fig. 16 .   The “Edit Data” screen shows experimental data and the set up for transforms. This figure shows a list of numbers 
for the time series concentration of L2. The “Time Series” transform is selected for the type of experimental data       .
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convert the time series data generated by a simulation into a form 
comparable to the experimental data. For example, experimen-
tal data might measure the time it takes for a specific event to 
happen (timelag) or how much of a species must be added to a 
system to change a steady state (threshold), or the viability of a 
mutant. In these cases, the computer simulation must produce 
a number comparable to the experimental datum (i.e., measuring 
the same observable). Automated parameter estimation routines 
then take the difference between the experimental observation 
and the transformed output of the model, and attempt to minimize 
this difference by adjusting parameter values. A transform might 
be quite sophisticated. For example, it might need to anal yze the 
time series output for some measurement (such as cell size) to 
deduce that an oscillation is taking place, and its period. Trans-
forms are implemented as FORTRAN functions.  

 The name of every simulation run defined in the “Edit Simula-
tions” screen ( Fig.   17 ) appears in the “Edit Data” screen ( Fig.   16 ). 

  Fig. 17 .   The “Edit Simulations” screen showing parameter and initial condition values. PET highlights inherited changes 
in gray. When a parent is selected in the “Inherits” list, the changes inherited from that parent are highlighted in a pastel 
purple (also shown in  gray  in this figure)       .
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In the “Edit Data” screen, the user can select the name of a simu-
lation run and define experimental data and a transform. Note 
that some run specifications might not define either experimental 
data or a transform. These specifications might be inherited by 
other runs (e.g., the “M-phase” and “Interphase” runs in the 
example in   Subheading 4  ), or the modeler might wish to store 
these specifications for another purpose.   

  A user can explore parameter space by setting parameter values 
( Fig.   18 ), clicking the “Simulate” button, and view the results 
( Fig.   19 ). This will generate time course plots of selected spe-
cies ( Fig.   19 ). Changes in basal parameters and initial conditions 
can be made in the “Edit Basals” screen. The user might wish to 
keep track of multiple basal sets, which are all displayed in the 
“Edit Basals” screen. When the user clicks the “Simulate” button 
a simulation is run for each basal set checked in the “Edit Basals” 

 3.3.2. Parameter 
Exploration and Estimation 

  Fig. 18 .   The “Edit Basals” screen lets users define basal sets of initial conditions and parameters. Changes made 
to parameters and initial conditions are highlighted in green (parameters vwp and vwpp in this figure). The “Com-
mit Changes” button saves changes and removes the highlight colors. Alternatively, the “Discard Changes” button will 
restore all changed values to the last commit or the original basal set, whichever is more recent       .
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screen, paired with each simulation checked in the “Edit Simula-
tions” screen. For the example, in  Figs.   17  and  18 , sixteen simula-
tions are performed: the eight simulations checked in  Fig.   17  are 
run for each of the two basal parameter sets checked in  Fig.   18 . 
Every simulation performed generates a plot and the appro-
priate experimental data from the “Edit Data” screen is plotted 
with the model simulation points. This allows the user to quickly 
compare model simulations with experimental data.   

  Fig. 19 .   The PET report window shows the plots using the basal set named “ Marlovits  (1998)” ( left column ) side-by-side 
with plots using the basal set shown in Fig.  18  ( right column ). Each simulation run takes a row in the grid of plots. The 
simulation run “Kumagai and Dunphy 1995 Figure  3C  Interphase” is on the first row, “Kumagai and Dunphy 1995 Figure 
 3C  M-phase” is on the second row, and so forth. As many simulation runs and basal sets will be simulated as the user 
checks in the “Edit Simulations” (Fig.  17 ) and “Edit Basals” (Fig.  18 ) screens in PET. This feature of PET allows the user 
to quickly compare multiple basal sets to experiments and assess which basal set best fits experimental data.       
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 By manually changing parameters, running simulations, and 
viewing plots, a user might discover parameter values that bring 
the simulations into acceptable agreement with the experimental 
data. But this manual process is time consuming. PET also provides 
automated parameter estimation, which searches for parameter val-
ues that best fit a model to experiments. Automated parameter 
estimation can be configured through the “Estimator Settings” 
screen ( Fig.   20 ) and then run with the “Estimate” button.  

 Two algorithms are currently available in PET for auto-
mated parameter estimation: ODRPACK95  (21,   22)  and VTDi-
rect  (23) . Both minimize an objective function defined as the 
weighted sum of squares of the differences between the model 
and experimental data: 
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 where   b   is the parameter vector (referred to as a parameter set 
in this chapter), each   fi   is a function of the model (e.g., a time 
course simulation) and could be different for each  i ,   xi    is the 

  Fig. 20 .   The “Estimator Settings” screen shows the parameters to be estimated and ranges on those parameters ( left ), 
experimental data weights ( center ), and algorithm settings ( right  )       .
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  i th   independent experimental datum (e.g., time),   yi    is the   i th   
dependent experimental datum (e.g., species concentration),   d   
and   e   are the respective errors attributed to the independent and 
dependent experimental data, and   wd   and   we   are the weights for   d   
and   e   supplied by the user (PET automatically calculates default 
values for these). The algorithms search for a   d   and   b   to minimize 
 Eq. 1  (note that   e   can be calculated from  Eq. 2  once   d   and   b   
are chosen). Zwolak et al.  (21)  and Boggs et al.  (24,   22)  explain 
this objective function in more detail. ODRPACK95 is a local 
optimization algorithm based on Levenberg-Marquardt. VTDi-
rect is a global optimization algorithm based on the “DIViding 
RECTangles” algorithm of Jones  (23) . 

 When estimating parameters automatically, the user can select 
which experiments are to be fit by checking them in the “Edit 
Simulations” screen ( Fig.   17 ). For a particular “estimation,” the 
user might allow only certain parameters to be varied by PET. 
The fixed parameters might be part of a conserved quantity, have 
a known value, or are not well constrained by the current data. 
Such parameters are selected as “fixed” by checking the box in the 
“Fixed” column of the “Estimator Settings” screen ( Fig.   20 ). 

 Ranges on each parameter can also be defined (and  must  be 
defined for global optimization with VTDirect).  Figure   20  shows 
the “Estimator Settings” screen in PET where the ranges can be 
edited. When the parameter range extends over multiple orders of 
magnitude, then the user may wish to use a logarithmic scale by 
checking the box in the “Log” column. This feature is only avail-
able for global estimation and affects the way VTDirect searches 
parameter space. For example, for a linear scale with a range of 
0.01–1000 for some parameter   p1  , VTDirect might select values 
of approximately 200, 400, 600, and 800. If a logarithmic scale 
is selected, the equivalent points selected by VTDirect would be 
0.1, 1, 10, and 100. In the linear case, small values of   p1   are never 
explored, which might not be desirable. 

 Weights can be assigned to the experimental data to reflect 
relative confidence in the data in the “Estimator Settings” screen 
( Fig.   20 ). These are the weights appearing in  Eq. 1 . PET assigns 
default values for the weights of

   2 2

1 1
, .

1 1i i
i i

w w
x yd e= =

+ +     

 These weights can reflect error bounds on the data determined 
by repeats of the experiment, if available. Larger values for the 
weight can be assigned for data with small error bounds. Simi-
larly, smaller values for the weight can be assigned for data with 
large error bounds.    
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 We now provide a detailed example of how our tools are used 
to build a model, based on the modeling process described in 
  Subheading 2  . The model used here was derived from Marlovits 
et al.  (1)  and Zwolak et al.  (25,   26)  and can be seen in  Fig.   1 . It 
models the regulation of entry into mitosis in frog egg extracts 
by MPF, Cdc25, and Wee1. Experimental data from Kumagai 
and Dunphy  (27,   28)  and Tang et al.  (29)  are fit using local and 
global optimization. We discuss an alternative model motivated 
by the parameter set returned from the global optimizer. Readers 
interested in pursuing the example further might consider imple-
menting this alternative model as an exercise. 

  We begin by entering the molecular network from  Fig.   1  into 
the Model Builder. Each reaction appears as a line in the reaction 
spreadsheet ( Fig.   3 ). Michaelis-Menten kinetics are used for the 
forward and reverse reactions of Cdc25 and Wee1. A user defined 
rate law (My_rate_law) is used to define MPF phosphorylation 
and dephosphorylation by the active forms of Cdc25 (  Ca   ) and 
Wee1 (  Wa   ) as well as a small residual activity of the inactive forms 
of Cdc25 (  Ci   ) and Wee1 (  Wi   ). Two species, L and L2, are added 
to the model for comparison to measurements of labeled MPF. 
L is used to measure the rate at which Cdc25 removes the phos-
phate group from MPF (Kumagai and Dunphy  (28)  Figure  3C ). 
L2 is used to measure the rate at which Wee1 adds the phosphate 
group to MPF (Kumagai and Dunphy  (28)  Figure  4B ). The map 
of names used in the model to the biological names can be seen 
in  Fig.   1 . 

 The Marlovits  (1)  parameter set (  bMarlovits   in Table  1      ) is entered 
into the Model Builder via the “Parameters” spreadsheet, and 
exported to a basal file for later use with the Run Manager and PET. 
Initial conditions for the species are defined in the “Species” spread-
sheet for interphase (Table  2      ). Interphase is defined as a state of low 
MPF and Cdc25 activity and high Wee1 activity. 

 In some experiments, a buffer is added to an extract, thereby 
diluting the endogenous concentrations of proteins in the extract. 
The dilution factor is set to 1 for the experiments from Kumagai 
and Dunphy Figures  3C  and  4 B  (28) . For the other experiments 
we use a dilution factor (“Dilution”) relative to the Kumagai and 
Dunphy  (28)  experiments. The dilution of species in the model 
is handled in the Run Manager, as discussed in   Subheading 4.2  . 
For Wee1 and Cdc25 we would like the total concentration to 
be scaled to 1, even after they have been diluted, and this can 
be specified in the “Rules” spreadsheet of the Model Builder. In 
the “Species” spreadsheet we create two new species and assign 

 4. A Modeling 
 Example

 4.1. Entering 
the Molecular Network 
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 Table 2 
  Initial conditions  

 Species  M-phase  Interphase 

 Ma  MT  0 

 Mi  0  MT 

 Ca  CT  0 

 Ci  0  CT 

 Wa  0  WT 

 Wi  WT  0 

For example, in Interphase the initial 
value of inactive MPF (Mi) is set to the 
total amount of MPF (MT) while the ini-
tial value of active MPF (Ma) is set to 0.
Initial conditions of the species to model 
extracts starting in M-phase or Interphase.

 Table 1 
Parameter sets

 Parameter    b Marlovits      blocal      bglobal   

   vw    2  1.7  3.0 

   t
wv     0.01  2.4e-4  3.5e-6 

     h
wv  1  1.4  2.4 

   m
wv     0.05  0.027  0.014 

   vc    2  3.0  120 

   t
cv     0.017  0.015  0.015 

   n
cv     0.17  0.18  0.18 

   m
cv     0.05  0.017  0.0027 

   Kmw    0.1  0.01  0.099 

   Kmwr    1  0.01  0.01 

  Kmc    0.1  0.14  20 

   Kmcr    1  0.14  3.4 

   E      0.018  0.059 

 The weighted sum of squares (the value of the objective function 
  E   ) for each estimated set is shown in the last row.  Parameter sets 
bMarlovits from Marlovits et al. (1), blocal from the local parameter 
estimator, and bglobal from the global parameter estimator.



 Modeling Molecular Regulatory Network with JigCell and PET 105

them values in the “Rules” spreadsheet with the rules   CaScaled = 
Ca/ Dilution   and    WaScaled = Wa/ Dilution  .  

  In this section, we define simulation runs in the Run Manager. 
Each experiment has a line in the Run Manager and all the values 
set for the runs can be seen in  Fig.   12 . The Run Manager reads in 
the SBML file containing our model and the file containing basal 
parameter values and initial conditions. One way to specify these 
files is through the “File” menu. 

 Experiments from Kumagai and Dunphy Figures  3C  and 
 4 B  (28) , Kumagai and Dunphy Figure  10A   (29) , and Tang 
et al. Figure  2   (29)  specify what state the extract was in when the 
experiment began, either interphase or M-phase. Initial condi-
tions for the model are created to mimic these extract states, and 
the values of these initial conditions can be seen in Table  2 . 

 For the initial conditions for M-phase and interphase, we cre-
ate two runs in the Run Manager called “M-phase” and “Inter-
phase,” respectively ( Fig.   12 ). All runs starting in M-phase will 
inherit from the M-phase basal run. Similarly, all runs starting in 
interphase will inherit from the Interphase run. 

 Experiments in Kumagai and Dunphy Figure  10A   (27)  and 
Tang et al. Figure  2   (29)  add a buffer that dilutes the extracts by a 
factor of 0.83 and 0.67, respectively. We handle this by creating a 
simulation run for each case, called “Dilution = 0.83” and “Dilu-
tion = 0.67”. These runs set the parameter Dilution to the cor-
rect value. Then we create a simulation run “Dilute” that applies 
the parameter Dilution to all species that are diluted (e.g.,   CT = 
CT · Dilution  ,   WT = WT · Dilution  , etc.). The initial conditions 
for the species are diluted by their assignments (Table  2 ). None 
of these runs are intended to be simulated. They exist just to be 
inherited by runs that use diluted species.  

 4.2. Defining 
Simulation Runs 

  Table 3 
  Experimental data    

 Experiment  Species  Time  Concentration 

 Kumagai and Dunphy Figure  3C   (28)  Interphase  L2  2  1 
     4  1 
     16  1 

 Kumagai and Dunphy Figure 3C  (28)  M-phase  L2  4  0 
     16  0 

(continued)
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 Experiment  Species  Time  Concentration 

 Kumagai and Dunphy Figure  4B  (28) Interphase  L  2  1 
     4  1 
     8  0.85 

 Kumagai and Dunphy Figure  4B  (28) M-phase  L  2  0.75 
     4  0.51 
     8  0.21 

 Kumagai and Dunphy Figure  10A   (27)  Interphase  Ca  5  0.75 
     10  0.5 
     20  0.1 
     40  0 

 Kumagai and Dunphy Figure  10A   (27)  M-phase  Ca  1.25  0.8 
     2.5  0.9 
     5  1 
     10  1 

 Tang et al. Figure  2   (29)  Interphase  Wa  7.5  0.5 
     15  1 

 Tang et al. Figure 2  (29)  M-phase  Wa  2  0.5 
     5  0 
     7  0 
     10  0 

Table 3 
(continued)

  With this model we will attempt to reproduce the experimental 
data from Kumagai and Dunphy  (27,   28)  and Tang et al.  (29) . 
The data from these papers (images of gels, the points on plots, 
etc.) are quantified in Table  3  . These data are entered into PET 
via the “Edit Data” screen ( Fig.   16 ). A basal set is defined in 
the “Edit Basals” screen from the basal file containing the 
Marlovits parameters. For each experiment, the “time series” 
transform is selected in the “Edit Data” screen, the measured 
species is selected, and the experimental data are entered so that 
the optimization code will be able to compare simulation output 
to the experimental data. Now a set of simulations can be run and 
we can see how well the Marlovits parameters fit the experimental 
data ( Fig.   21 ).   

 4.3. Entering 
the Experimental Data 
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  Fig. 21 .   The parameter set “Marlovits (1998)” (  b Marlovits   ), “Beta Local” (  b Local   ), and “Beta Global” (  bGlobal   ) are plotted along 
with the experimental data for comparison       .



108 Shaffer et al.

  We choose the Marlovits parameters as an initial guess to be used 
by the local optimization algorithm ODRPACK95 and set some 
reasonable lower bounds on the parameters (Table  4  ). Only the 
simulation runs that we wish to fit to data are checked in the 
“Simulations” screen of PET, and only the parameters we wish 
to be estimated are checked in the “Estimator Settings” screen. 
We use the default settings for ODRPACK95, which, in practice, 
are usually adequate. As the initial guess we select the “Marlovits 
(1998)” basal set. The optimizer returns the parameters   blocal   in 
Table  1 , and we can compare the results to the Marlovits set by 
running simulations on the basal set and on the fitted parameter 
values. (Running the simulation would actually show a window 
similar to  Fig.   19 , but here we show the plots more compactly in 
 Fig.   21 ). We see from  Fig.   21  that the parameter estimator does 
return parameters that fit the data better. We can also see that 
the parameter values are close to the starting value of Marlovits 
(Table  1 ).  

  In some cases, the user may not have a good starting point for the 
parameters, or the user might wish to explore parameter space in 
search of other good parameter sets. PET supports these cases 

 4.4. Performing Local 
Parameter Estimation 

 4.5. Global Parameter 
Estimation 

  Table 4 
  Lower and upper bounds for the parameters    

 Parameter  Lower (VTDirect)  Lower (ODRPACK95)  Upper 

   nw    1e-6  0  1e4 

   nwp    1e-6  0  1e4 

   nwpp    1e-6  0  1e4 

   nwppp    1e-3  0  100 

   nc    1e-6  0  1e4 

   ncp    1e-6  0  1e4 

   ncpp    1e-6  0  1e4 

   ncppp    1e-3  0  100 

   Kmw    0.01  0.01  100 

   Kmwr    0.01  0.01  100 

   Kmc    0.01  0.01  100 

   Kmcr    0.01  0.01  100 

   VTDirect will only explore parameter space within these bounds. We use 
different lower bounds for VTDirect and ODRPACK95, as explained in 
the text  
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by providing a global parameter estimation algorithm, VTDirect. 
VTDirect requires upper and lower bounds on the parameter val-
ues. In our example, we assume that we know little about the 
true values of the parameters. We give bounds that span several 
orders of magnitude, and we use a logarithmic scale to distribute 
the search evenly across these orders of magnitude. Since we use 
a logarithmic scale, we must set non-zero lower bounds. We set 
most lower bounds to   10–6  , which allows these parameters to get 
sufficiently close to zero to have a negligible quantitative effect on 
the model. The bounds are recorded in Table  4 . VTDirect is run 
with the settings from Table  5     , and the resulting parameter set is 
passed to ODRPACK95 for refinement. We reset the parameter 
bounds for the ODRPACK95 run to those of Table  4 . ODR-
PACK95 does not use the logarithmic scale setting and there-
fore can have lower bounds of 0 for this run. The global refined 
parameter set is called   bglobal    in Table  1 .  

  Visually, the parameters generated by the global and local opti-
mization runs both fit the experimental data ( Fig.   21 ). The 
parameter sets (  blocal   and   bglobal   in Table  1 ) are similar, except for 
the values of   nc   ,   ncppp  , and   Kmc  . For   Kmc = 20   and   CT = 1  , the 
Michaelis-Menten rate law for reaction   Ci→Ca   in  Fig.   1  should 
be replaced by a mass action rate law,   (nc /Kmc·Ma·Ci)  . This change 
to the model is addressed in Zwolak et al.  (26) , and we will not 
go through the analysis here. 

 Next, we can create another variation of the model by add-
ing experimental data for timelags and thresholds, as discussed 
in Zwolak et al.  (25) . Automated parameter estimation can be 
run to find parameter values that fit these new experiments, as 
well as the experiments discussed in this section. The model can 
continue to be refined and expanded in this way to test further 
hypotheses and achieve new goals. 

 The files for the modeling example and its variations are dis-
tributed with JigCell and PET and can be found at   http://mpf.
biol.vt.edu/MMRN_chapter/.       

 4.6. Next Steps 

  Table 5 
  Settings used by VTDirect   

 Settings  Value 

   EPS    1.0 

   Sum of Squares Tolerance    1.0e-10 

   Maximum Iterations    1.0e4 

   Maximum Evaluationsr    1.0e5
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 We have demonstrated how a modeler would enter all of the 
necessary information needed to define, simulate, and validate a 
model of a molecular regulatory network. Advanced support tools 
like the JigCell Model Builder make it easy to check the syntactic 
consistency and completeness of the model. This makes it pos-
sible to construct larger models than can be done “by hand” and 
thus opens the possibility of constructing more complex models 
than previously possible. The JigCell Run Manager provides a 
way to organize and manage the information needed to define 
the ensemble of simulation runs for validating the model against 
a specific set of experiments. PET provides a tool to help the user 
compare simulation output to experimental data. PET also pro-
vides automated tools for finding “best fitting” values of the rate 
constants in a model. Our example walks the reader through a 
complete cycle of entering the model, testing it for initial validity, 
and using parameter estimation to improve the model. 

 While tools such as JigCell and PET allow modelers to build 
and test larger models than were possible before, there is still a 
long way to go before it will be possible to build models that 
 capture the complex regulatory systems within mammalian cells. 
Current models are defined as a single monolithic block of reac-
tion equations, an approach that is reaching its limits. In the future, 
modelers will be able to express their models as a collection of 
interacting components, thus allowing them to build large models 
from smaller pieces. Improvements are also needed in simulators 
(including the ability to perform efficient stochastic simulations), 
in parameter estimation, and in computer performance.         

 5. Summary  
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   Chapter 5   

 Rule-Based Modeling of Biochemical Systems with BioNetGen       

     James R.   Faeder  ,      Michael L.   Blinov , and      William S.   Hlavacek     

  Summary 

 Rule-based modeling involves the representation of molecules as structured objects and molecular interac-
tions as rules for transforming the attributes of these objects. The approach is notable in that it allows one 
to systematically incorporate site-specific details about protein–protein interactions into a model for the 
dynamics of a signal-transduction system, but the method has other applications as well, such as following 
the fates of individual carbon atoms in metabolic reactions. The consequences of protein–protein interac-
tions are difficult to specify and track with a conventional modeling approach because of the large number 
of protein phosphoforms and protein complexes that these interactions potentially generate. Here, we focus 
on how a rule-based model is specified in the BioNetGen language (BNGL) and how a model specification 
is analyzed using the BioNetGen software tool. We also discuss new developments in rule-based modeling 
that should enable the construction and analyses of comprehensive models for signal transduction pathways 
and similarly large-scale models for other biochemical systems.  

  Key words:   Computational systems biology ,  Mathematical modeling ,  Combinatorial complexity , 
 Software ,  Formal languages ,  Stochastic simulation ,  Ordinary differential equations ,  Protein–protein 
interactions ,  Signal transduction ,  Metabolic networks.     

    

 BioNetGen is a set of software tools for rule-based modeling  (1) . 
Basic concepts of rule-based modeling and the BioNetGen Lan-
guage (BNGL) are illustrated in  Fig.    1   – these concepts and the 
conventions of BNGL will be thoroughly discussed later in the text. 
Here, in explaining how to use BioNetGen to model biochemical 
systems, we will be primarily concerned with signal-transduction 
systems, which govern cellular responses, such as growth and dif-
ferentiation, to signals, such as hormones and cytokines. In other 

1. Introduction
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words, signal-transduction systems are responsible for making 
decisions about the fates and activities of cells. Decision making 
in these systems is accomplished by dynamical systems of interact-
ing molecules  (2) . To develop predictive computational models of 
these complex systems, we must be able to abstract their relevant 
details in a form that enables reasoning about or simulation of the 
logical consequences of a set of interactions, which enables the 
testing of model predictions against experimental observations 
 (3) . Analysis of predictive models can help to guide experimental 

  Fig. 1 .   Rule-based modeling concepts and their encoding in BioNetGen Language (BNGL). ( A ) The basic building blocks 
are molecules, which are structured objects, composed of components that represent functional elements of proteins 
and may have associated states that represent covalent modifications or conformations. Molecules may be assembled 
into complexes through bonds that link components of different molecules. ( B ) Patterns select particular attributes of 
molecules in species (shown in  bold ). The pattern shown here selects molecules of B with a free b1 binding site regard-
less of the phosphorylation or binding status of the b2 component. ( C ) Rules specify the biochemical transformations 
that can take place in the system and may be used to build up a network of species and reactions ( see   Section    3.5   for 
a complete description of rule syntax). The reaction center (components undergoing direct modification) is  underlined . 
(This is shown for clarity and is not part of BioNetGen syntax.) Starting with the seed species, rules are applied to gener-
ate new reactions and species by mapping reactant patterns onto species and applying the specified transformation(s). 
Species generated by new reactions may be acted on by other rules to generate new reactions and species, and the 
process continues until no new reactions are found or some other stopping criteria are satisfied       .
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investigations and may ultimately enable model-guided engineer-
ing and manipulation of cellular regulation  (4–  6) . Before begin-
ning our discussion of BioNetGen, we will briefly recap features of 
signal-transduction systems that motivate a rule-based modeling 
approach and the general idea of rule-based modeling. For more 
thorough reviews of these topics see  refs.   7,   8 .  

 A prominent feature of any signal-transduction system is an 
intricate network of protein–protein interactions  (9,   10) . These 
interactions can have a number of consequences, including the 
posttranslational modification of proteins, the formation of heter-
ogeneous protein complexes in which enzymes and substrates are 
colocalized, and the targeted degradation of proteins. For under-
standing and modeling the system dynamics of protein–protein 
interactions, the details that are most relevant are typically found 
at the level of protein sites, the parts of proteins that are responsi-
ble for protein–protein interactions. These interactions are medi-
ated by evolutionarily conserved modular domains of proteins 
that have binding and catalytic activities, such as Src homology 2 
(SH2) domains and protein tyrosine kinase domains, and by short 
linear motifs (e.g., immunoreceptor tyrosine-based activation 
motifs or ITAMs)  (11)  with binding activities that can often be 
switched on and off through posttranslational modifications, such 
as tyrosine phosphorylation  (12–  14) . A great deal of knowledge 
about the site-specific details of protein–protein interactions has 
accumulated in the scientific literature and is being actively organ-
ized in electronic databases  (15,   16) , and new technologies, such 
as mass spectrometry (MS)-based proteomics  (17) , can be applied 
to quantitatively monitor system responses to a signal at the level 
of protein sites on a large scale. For example, time-resolved meas-
urements of the phosphorylation of individual tyrosine residues 
are possible  (18) . 

 Despite the high relevance of the site-specific details of 
protein–protein interactions for understanding system behavior, 
models incorporating these details are uncommon. For exam-
ple, the seminal model of Kholodenko et al.  (19)  and many of 
its extensions, such as the model of Schoeberl et al.  (20) , for 
early events in signaling by the epidermal growth factor receptor 
(EGFR) do not track the phosphorylation kinetics of individual 
tyrosines in EGFR. Models that incorporate such details are gen-
erally difficult or impossible to specify and analyze using conven-
tional methods, largely because of the combinatorial number of 
protein modifications and protein complexes that can be gener-
ated through protein–protein interactions  (7,   8) . For example, a 
protein containing  n  peptide substrates of kinases can potentially 
be found in up to 2  n   distinct phosphorylation states. This feature 
of protein–protein interactions, which arises because a typical 
protein involved in cellular regulation contains multiple sites of 
posttranslational modification and multiple binding sites, has 
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been called combinatorial complexity and has been recognized 
as a significant challenge to our understanding of cellular regu-
lation  (7,   21,   22) . In a conventional model specification, which 
often takes the form of a list of the reactions that are possible 
in a signal-transduction system or the corresponding system of 
coupled ordinary differential equations (ODEs) for the chemical 
kinetics, each chemical species that can be populated and each 
reaction that can occur must be manually defined, which is infea-
sible for all but the simplest systems because of the vast numbers 
of chemical species and reactions that can usually be generated 
by protein–protein interactions. 

 Another limitation of conventional modeling is a lack of stand-
ards for explicitly representing the composition and connectivity of 
molecular complexes. The chemical species accounted for in a typi-
cal model are represented as structureless objects whose identities 
and properties are referenced only by name. Modelers attempt to 
name model parameters and variables such that their names sug-
gest what is being represented, but conventions vary and are often 
inconsistent. A dimer of EGFR molecules may be represented as 
R-R or R:R – designations that abbreviate EGFR to R (for recep-
tor) and that indicate the composition of the complex – or simply 
as D (for dimer). A dimer of EGFR molecules associated with 
the adapter protein Grb2 may then be represented as R-R-Grb2, 
D-Grb2, or even as R-Grb2 or simply by the index of a generic vari-
able name (e.g.,  X  5 ). The latter examples obscure the fact that two 
receptor molecules are present in the complex. Model(er)-specific 
nomenclatures thus present a challenge to understanding a model, 
especially a large model, which becomes particularly problematic 
when one attempts to reuse or extend a model. In addition, infor-
mation about how two molecules are connected is nearly always 
absent in a conventional model specification, even though in many 
cases there is detailed site-specific information available about the 
interaction. For example, interaction of EGFR and Grb2 occurs 
when the SH2 domain of Grb2 binds a phosphorylated tyrosine 
residue in EGFR, such as Y1068  (23) . 

 The limitations of conventional approaches to model speci-
fication noted above have prompted the development of formal 
languages specially designed for representing proteins and protein–
protein interactions, the  κ -calculus being an early and notable 
example  (24) . One of these formal languages is the BioNetGen 
language (BNGL)  (8) , which is based on the use of graphs to 
represent proteins and protein complexes and graph-rewriting 
rules to represent protein–protein interactions  (25,   26) . BNGL 
allows site-specific details of protein–protein interactions to be 
captured in models for the dynamics of these interactions in a 
systematic fashion, alleviating both nomenclature and reusability 
issues  (8) . BNGL also provides a means for specifying precise 
visualizations of protein–protein interactions  (25,   26) . Below, 
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we provide a thorough overview of the text-based syntax and 
semantics of BNGL, an understanding of which is essential for 
using the BioNetGen software (  http://bionetgen.org    ). BioNet-
Gen facilitates a rule-based approach to modeling biochemical 
reaction kinetics, an alternative to conventional modeling that 
largely overcomes the problem of combinatorial complexity  (8) . 
We note that the current syntactical and semantic conventions of 
the  κ -calculus are nearly identical to those of BNGL  (27) . 

 In a rule-based approach to modeling, the molecular interac-
tions in a system are abstracted as BNGL-encoded rules, which 
are precise formal statements about the conditions under which 
interactions occur and the consequences of these interactions. 
Rules also provide rate laws for transformations resulting from 
molecular interactions. At one extreme, a rule simply corresponds 
to an individual chemical reaction. However, a rule is far more 
useful when local context governs an interaction, and the rule 
can be specified such that it defines not a single reaction but a 
potentially large class of reactions, all involving a common trans-
formation parameterized by the same rate law. The use of such 
rules to model protein–protein interactions can often be justified, 
at least to a first approximation, by the modularity of proteins 
 (12) . Rules can be used to obtain predictions about a system’s 
behavior in multiple ways. For example, they can serve as genera-
tors of a list of reactions. In other words, a set of rules, which can 
be viewed as a high-level compact definition of a chemical reac-
tion network, can be used to obtain a conventional model speci-
fication  (1,   28,   29) , which can then be analyzed using standard 
methods. Alternatively, rules can serve as generators of discrete 
reaction events in a kinetic Monte Carlo simulation of chemi-
cal kinetics  (21,   30,   31) . A rule-based model is capable of com-
prehensively accounting for the consequences of protein–protein 
interactions, including all possible phosphoforms of a protein 
and the full spectrum of possible protein complexes implied by a 
given set of interactions. Such a model is specified using BNGL 
in a BioNetGen input file, which may also contain directions for 
processing the model specification. For example, actions may be 
defined for simulating a model and producing desired outputs. 
In the following, we will describe the elements of an example 
input file in detail. 

 Since our initial application of a rule-based modeling approach 
in 2001 to study signaling by the high-affinity IgE receptor 
 (32–  34) , the software that we have used in our work – initially a 
FORTRAN code called EQGEN – has evolved dramatically and 
has been applied to study a number of other biochemical systems 
 (35–  39) . The initial version of BioNetGen was released in 2004  (1) . 
The name “BioNetGen” is a mnemonic for “Biological Network 
Generator,” but this name should not be interpreted to delimit 
the full range of the software’s capabilities. The software not only 
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generates reaction networks from rules, but also simulates such 
networks using a variety of methods. Iterative application of rules to 
a set of seed species ( see   Fig.    1c  ) may be used to generate a network 
in advance of a simulation, which may subsequently be carried out 
either by numerically solving ODEs or by implementing a stoc-
hastic simulation algorithm (SSA)  (40–  42) . Alternatively, rules 
may be applied during a simulation as the set of populated  species 
grows, a procedure that has been called “on-the-fly” network 
generation and simulation  (28,   29) . Finally, network generation 
may be avoided altogether by instantiating individual instances of 
chemical species and carrying out a discrete-event particle-based 
simulation, in which rules serve as event generators  (21,   30,   31)  
( see   Subheading    3.7.2  ). Simulation engines implementing such 
methods will soon be available within the BioNetGen framework 
and will be called through interfaces similar to those of the existing 
engines ( see   Subheading    3.6  ). 

 Later, we summarize essentially everything a modeler needs 
to know to start developing and analyzing rule-based models with 
BioNetGen. After an overview of the BioNetGen software distri-
bution, we present a step-by-step guide to writing a BioNetGen 
input file, in which we carefully explain the elements of an exam-
ple input file. Numerous tips and tricks can be found in the  Notes  
section. Building on the basics, we then present several examples 
that illustrate more advanced BioNetGen capabilities. Finally, we 
briefly discuss new developments in rule-based modeling that 
should enable the construction and analyses of large-scale compre-
hensive models for signal-transduction systems.  

    

 BioNetGen is a set of integrated open-source tools for rule-based 
modeling. A schematic of the software architecture is shown in 
 Fig.    2  . The software and documentation are available at   http://
bionetgen.org,     a wiki site. Downloading the software or modify-
ing the wiki pages requires user registration with a valid email 
address. The software is easy to install and runs with no compila-
tion on Linux, Mac OS X, and Windows operating systems ( see   
Note    1  ). BioNetGen can be also used online (without installa-
tion) from within the Virtual Cell modeling environment (  http://
vcell.org/bionetgen    ).  

 The components of BioNetGen include the network gene-
ra tion engine BNG2, which is written in Perl, the simulation 
program Network, which is written in C, a plotting program 
called PhiBPlot, which is written in Java, and a graphical front-
end called RuleBuilder, which is also written in Java. The core 

2. Software
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component, BNG2, which has a command-line interface, proce-
sses BioNetGen input files to generate two kinds of outputs: a 
chemical reaction network derived by processing rules and/or 
the results of simulating a model ( see   Note    2  ). Input files are 
discussed below at length. Reaction networks are exported in a 
native .net format, in M-file format for processing by MATLAB 
(The MathWorks, Natick, MA), and in Systems Biology Markup 
Language (SBML), which is a community-developed standard for 
the encoding of biological models  (43) . A network encoded in 
SBML can be processed by a variety of SBML-compliant software 
tools (for a list of these tools, see   http://sbml.org    ). An exam-
ple of an SBML-compliant tool that complements BioNetGen is 
COPASI  (44) , which provides model analysis capabilities, such as 
parameter estimation methods, unavailable in the native BioNet-
Gen environment. Simulation results are exported as tabular data 
in plain-text files that have the extension .cdat or .gdat. A .cdat 
file contains time series for concentrations of chemical species. A 

  Fig. 2 .   Software architecture of BioNetGen. The BioNetGen language (BNGL) file specifies 
a rule-based model that can be processed by the BioNetGen core version 2 (BNG2) in a 
variety of ways. Iterative application of rules to an initial set of species can generate a 
reaction network that is passed to one of the simulation modules through the .net format 
or exported to formats (SBML, MATLAB) that can be read by other programs. In the 
near future, an XML-based encoding will be used to pass model specifications among 
additional software components, including a particle-based simulator called NFsim 
(“network-free” simulator) (Sneddon, M., Faeder, J. and Emonet, T., private communication). 
Simulation modules produce .cdat and .gdat files, which record the time courses of spec-
ies concentrations and observables, respectively. The  dashed arrow  connecting the SSA 
module and BNG2 represents the on-the-fly network generation capability available for 
stochastic simulations       .
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.gdat file contains time series for observables defined in a BioNet-
Gen input file or .net file ( see   Subheading    3.3  ). Simulations speci-
fied in an input file are preprocessed by BNG2 and then passed to 
Network, which is a simulation engine driver. Network interfaces 
with the CVODE package  (45,   46) , a set of routines for solv-
ing stiff and nonstiff initial value problems for systems of ODEs. 
Network also provides an implementation of the direct method 
of Gillespie  (40)  for stochastic simulations. The command-line 
interface of Network allows a .net file to be processed directly 
without preprocessing by BNG2, but this option is unav ailable for 
simulation in on-the-fly mode  (28,   29) , which necessarily requires 
communication between BNG2 and Network. On-the-fly simu-
lation is discussed further in  Subheading    3.7.2  . PhiBPlot is a 
utility for producing  x – y  plots from .cdat and .gdat files. The 
.cdat and .gdat files can also be processed by other plotting tools, 
such as Grace (  http://plasma-gate.weizmann.ac.il/Grace    ). Rule-
Builder provides a graphical user interface to BioNetGen. It also 
provides a drawing tool for creating and editing models that may 
be particularly helpful to new users. 

 BioNetGen has been integrated into the Virtual Cell (VCell) 
modeling environment (  http://vcell.org    ) as a stand-alone appli-
cation called BioNetGen@VCell. A BioNetGen service is callable 
from a VCell user interface and runs on a client computer. The 
VCell user interface can be used to visualize and export simula-
tion results. Alternatively, a VCell BioModel can be automatically 
created from an SBML file generated by BioNetGen@VCell.  

    

 We will illustrate the method of constructing a rule-based model 
by stepping through the BioNetGen input file shown in  Listing    1  , 
which specifies a simplified version of a model for early events 
in EGFR signaling  (35) . Additional examples can be found in 
the Models2 directory of the BioNetGen distribution available 
from   http://bionetgen.org,     or on the Web at   http://vcell.org/
bionetgen/samples.html.     A BioNetGen input file contains the 
information required to specify a model, including definitions of 
molecules, rules for molecular interactions, and model outputs, 
which we call “observables.” An input file may also contain 
commands called “actions” that act on the model specification, 
such as generating the network of species and reactions implied 
by rules, performing simulations, and translating the model into 
other formats. The syntax of actions is borrowed from the Perl 
programming language. Model elements are specified in blocks 
delimited by “begin” and “end” tags as indicated in  Listing    1  .

3. Methods
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begin parameters
  NA 6.02e23 # Avogadro’s number (molecues/mol)
  f  1       # Fraction of the cell to simulate
  Vo f*1.0e-10 # Extracellular volume=1/cell_density (L)
  V  f*3.0e-12 # Cytoplasmic volume (L)
  # Inital amount of ligand (20 nM)
  EGF_init 20*1e-9*NA*Vo # convert to copies per cell
  # Initial amounts of cellular components (copies per cell)
  EGFR_init     f*1.8e5
  Grb2_init     f*1.5e5
  Sos1_init     f*6.2e4
  # Rate constants
  # Divide by NA*V to convert bimolecular rate constants
  # from /M/sec to /(molecule/cell)/sec
  kp1 9.0e7/(NA*Vo) # ligand-monomer binding
  km1 0.06         # ligand-monomer dissociation
  kp2 1.0e7/(NA*V) # aggregation of bound monomers
  km2 0.1          # dissociation of bound monomers
  kp3 0.5          # dimer transphosphorylation
  km3 4.505        # dimer dephosphorylation
  kp4 1.5e6/(NA*V) # binding of Grb2 to receptor
  km4 0.05         # dissociation of Grb2 from receptor
  kp5 1.0e7/(NA*V) # binding of Grb2 to Sos1
  km5 0.06         # dissociation of Grb2 from Sos1
  deg 0.01         # degradation of receptor dimers
end parameters

begin molecule types
  EGF(R)
  EGFR(L,CR1,Y1068~U~P)
  Grb2(SH2,SH3)
  Sos1(PxxP)
  Trash()
end  molecule types

begin seed species
  EGF(R)              0
  EGFR(L,CR1,Y1068~U) EGFR_init
  Grb2(SH2,SH3)       Grb2_init
  Sos1(PxxP)          Sos1_init
end seed species

begin observables
  1 Molecules  EGFR_tot  EGFR()
  2 Molecules  Lig_free  EGF(R)
  3 Species    Dim       EGFR(CR1!+)

  Listing 1.    Elements of the BioNetGen input file egfr_simple.bngl. Block names are shown in  bold , and reaction 
centers are underlined for clarity in the reaction rules block       .
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  4 Molecules  RP  EGFR(Y1068~P!?)
  # Cytosolic Grb2-Sos1
  5 Molecules  Grb2Sos1  Grb2(SH2,SH3!1).Sos1(PxxP!1)
  6 Molecules  Sos1_act  
EGFR(Y1068!1).Grb2(SH2!1,SH3!2).Sos1(PxxP!2)
end observables

begin reaction rules
# Ligand-receptor binding
1 EGFR(L,CR1) + EGF(R) <-> EGFR(L!1,CR1).EGF(R!1) kp1, km1
# Receptor-aggregation 
2 EGFR(L!+,CR1) + EGFR(L!+,CR1) <-> EGFR(L!+,CR1!1).EGFR(L!+,CR1!1) kp2,km2

# Transphosphorylation of EGFR by RTK
3 EGFR(CR1!+,Y1068~U) -> EGFR(CR1!+,Y1068~P)  kp3
# Dephosphorylation
4 EGFR(Y1068~P) -> EGFR(Y1068~U) km3
# Grb2 binding to pY1068
5 EGFR(Y1068~P) + Grb2(SH2) <-> EGFR(Y1068~P!1).Grb2(SH2!1) kp4,km4
# Grb2 binding to Sos1
6 Grb2(SH3) + Sos1(PxxP) <-> Grb2(SH3!1).Sos1(PxxP!1) kp5,km5
# Receptor dimer internalization/degradation
7 EGF(R!1).EGF(R!2).EGFR(L!1,CR1!3).EGFR(L!2,CR1!3) -> Trash() deg\ 
DeleteMolecules

end reaction rules

#actions
generate_network({overwrite=>1});
# Equilibration
simulate_ode({suffi x=>equil,t_end=>100000,n_steps=>10,sparse=>1,\
    steady_state=>1});
setConcentration(“EGF(R)”,”EGF_init”);
saveConcentrations(); # Saves concentrations for future reset
# Kinetics 
writeSBML({});
simulate_ode({t_end=>120,n_steps=>120});
resetConcentrations(); # reverts to saved Concentrations
simulate_ssa({suffi x=>ssa,t_end=>120,n_steps=>120});
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The five block types are “parameters,” “molecule types,” 
“seed species,” “reaction rules,” and “observa-
bles.” The blocks may appear in any order. Actions to be per-
formed on the model are controlled using commands that follow 
the model specification. All text following a “#” character on a 
line is treated as a comment, and comments may appear anywhere 
in an input file. Parsing of the input is line-based, and a continu-
ation character, “\”, is required to extend a statement over multi-
ple lines. There is no limit on line length. Any BioNetGen input 
line may begin with an integer index followed by space, which is 
ignored during input processing but may be useful for reference 
purposes. For example, .net files produced by BioNetGen auto-
matically index elements of each input block.   

 The following is a list of the general steps involved in con-
structing a BioNetGen model with the relevant section of the 
BNGL input file shown in parenthesis:
   1.    (parameters) Define the parameters that govern the 

dynamics of the system (rate constants, the values for initial 
concentrations of species in the biological system) ( see   Sub-
heading    3.1  ).  

   2.    (molecule types) Define molecules, including compo-
nents and allowed component states ( see   Subheading    3.2  ).  

   3.    (seed species) Define the initial state of system (initial 
species and their concentrations) ( see   Subheading    3.3  ).  

   4.    (observables) Define model outputs, which are functions 
of concentrations of species having particular attributes ( see 
  Subheading    3.4  ).  

   5.    (reaction rules) Define rules that describe how mol-
ecules interact ( see   Subheading    3.5  ).  

   6.    (actions) Pick method(s) for generating and simulating 
the network ( see   Subheading    3.6  ).     

 Steps 1–5 may be done in any order and the entire protocol is 
likely to undergo multiple iterations during the process of model 
development and refinement.  Subheadings    3.1–3.6   describe the 
sections of the BNGL input file with specific reference to the 
model presented in  Listing    1  .  Subheading    3.7   then presents 
two additional models that illustrate the use of more advanced 
language features. 

  Model parameters, such as rate constants, values for initial 
concen trations of chemical species, compartment volumes, and 
physical constants used in unit conversions can be defined in the 
parameters block ( see   Note    3  ). Both numerical and formula-
based parameter assignments are illustrated in the parameters 
block of  Listing    1  , which illustrates how formulas may be used 
to clarify unit conversions and to define a global parameter that 

 3.1. Parameters 
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controls the system size ( see   Note    4  ). Parameters have no explic-
itly defined units, but must be specified in consistent units, as 
assumed by BioNetGen. We recommend that concentrations be 
expressed in units of copy number per cell and bimolecular rate 
constants be expressed on a per molecule per cell basis, as in  List-
ing    1  . This choice, which assumes that the reaction compartment 
is a single cell and its surrounding volume, allows one to direct 
BioNetGen to switch from a deterministic simulation to a sto-
chastic simulation without changing parameter units.  

  Molecules in a BioNetGen model are structured objects composed 
of components that can bind to each other, both within a mole-
cule and between molecules. Components typically represent 
physical parts of proteins, such as the SH2 and SH3 domains of 
the adapter protein Grb2, or the PxxP motif of the guanine nucle-
otide exchange factor Sos1 that serves as a binding site for SH3 
domains. Components may also be associated with a list of state 
labels, which are intended to represent states or properties of the 
component. Examples of component states that can be modeled 
using state labels are conformation (e.g., open or closed), phos-
phorylation status, and location. There is no limit on the number 
of components that a molecule may have or on the number of 
possible state labels that may be associated with a component 
( see   Note    5  ). 

 BioNetGen allows users to  explicitly  enforce typing of mol-
ecules using the molecule types block, which is optional but 
recommended. The molecule types block defines the allowed 
molecule names, the components of each molecule type (if any), 
and the allowed states of each of these components (if any). Each 
molecule type declaration begins with the name of a molecule ( see   
Note    6  )  followed by an optional list of components in parenthe-
ses ( see   Note    7  ). The tilde character (“~”) precedes each allowed 
state value. In the input file of  Listing    1  , five molecule types are 
declared. These molecules have 1, 3, 2, 1, and 0 components, 
respectively. The component named Y1068 represents a tyrosine 
residue in EGFR that can be in either an unphosphorylated (U) 
or phosphorylated (P) state. For a molecule to be able to bind 
another molecule, at least one component must be defined. A mol-
ecule without components cannot bind or change states, but can 
be created or destroyed. Such a molecule essentially corresponds to 
a named chemical species in a conventional model ( see   Subhead-
ing    3.5.6  ). A component that appears in a molecule type declara-
tion without a state label may be used only for binding and may 
not take on a state label in subsequent occurrences of the same mol-
ecule. In contrast, the potential binding partners of a component 
are not delimited in a molecule type declaration. 

 The namespaces for components of different molecules are 
separated, so it is permissible for components of different molecules 

 3.2. Molecule Types 
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to have the same name. If two components of the same molecule 
have the same name, however, they are treated as separate instances 
of an identical type of object. For example, the two Fab arms of an 
IgG antibody have identical antigen-binding sites, which could be 
modeled as IgG(Fab,Fab).  

  The seed species block defines the initial chemical species to 
which rules are applied. This block may also be used to define the 
initial levels of populated species and identify species with fixed con-
centrations. Before discussing the details of the seed species 
block, we need to briefly explain how chemical species are repre-
sented in BNGL. 

 Chemical species are individual molecules or sets of mol-
ecules connected by bonds between components, in which each 
component that has allowed state values has a defined state. For 
example, a cytosolic complex of Grb2 and Sos1 in the model 
of   Listing    1   would be represented as Grb2(SH2,SH3!1).
Sos1(PxxP!1), where the “.” character is used to separate mol-
ecules that are members of the same chemical species and the “!” 
character is a prefix for a bond name (any valid name is allowed, 
but we recommend using an integer, which makes BNGL expres-
sions more readable). A shared name between two components 
indicates that the components are bonded. A complex of Grb2 
and Sos1 that is associated with EGFR would be represented 
as EGFR(L,CR1,Y1068~P!2). Grb2(SH2!2,SH3!1).Sos1
(PxxP!1), where the bond with the name “2” in this expres-
sion indicates that the SH2 domain of Grb2 is connected to 
the phosphorylated residue Y1068 in EGFR (i.e., connected to 
component Y1068 of the molecule EGFR, which is in the P 
state). Note that in a BNGL expression for a chemical species 
all components of each molecule are listed and each component 
that is allowed to have a state has one defined state chosen from 
among the set of possible states for that component. Wild card 
characters, which represent nonunique states and bonds, are not 
allowed in BNGL chemical species expressions. These wild card 
characters are discussed below in  Subheading    3.4  . 

 Finally, we note that the presence or absence of the mol-
ecule types block affects the way that molecules appearing in 
the seed species block are type checked ( see   Note    8  ). 

 Specifying the initial population level of a seed species is accom-
plished in the same way that a parameter value is assigned using 
either a numerical value or a formula, as can be seen in  Listing    1   
( see   Note    9  ). A species listed in the seed species block may 
also be designated as having fixed concentration ( see   Note    10  ). 

 Representation of molecular complexes in BNGL has been pre-
sented in this section to introduce the syntax of bonds, but, generally 
speaking, it is not necessary to define seed species that are complexes 
of molecules because they can be generated through a process of 

 3.3. Seed Species 
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equilibration ( see   Subheading    3.6  ), provided that there are rules 
that generate these complexes. If a complex species is defined and 
no reaction rule is specified that causes dissociation of the complex, 
the complex will be indivisible. A multimeric protein composed of 
several polypeptide chains could be specified in this way.  

  The observables block is used to specify model outputs, which 
are functions of the population levels of multiple chemical species 
that share a set of properties. For example, if one could measure the 
tyrosine phosphorylation level of a particular protein, then one might 
be interested in determining the total amount of all chemical spe-
cies containing the phosphorylated form of this protein. We call a 
function for calculating such a quantity an “observable.” Observables 
are computed over a set of chemical species that match a search pat-
tern or set of search patterns specified in BNGL ( see   Fig.    1b  ). Each 
observable is defined by a line in the observables block consisting 
of an (optional) index, one of two keywords that defines the type of 
observable (Molecules or Species), a name for the observable, and 
a comma-separated set of search patterns ( see   Listing    1   and  Note  
  11  ). Before we discuss the two types of observables and how they are 
computed, we will describe the basic syntax and semantics of patterns 
in BNGL, which are common to observables and reaction rules. 

 Patterns are used to identify a set of species that share a set of 
features, and their behavior is illustrated in  Fig.    1b  . Pattern speci-
fication includes one or more molecules with optional specification 
of connectivity among these molecules, optional specification of 
states of their components, and optional specification of how these 
molecules are connected to the rest of the species they belong to. 
Patterns are analogous to the regular expressions used in computer 
programming. A match between a chemical species and a pattern 
means that there exists a mapping (injection) from the elements 
of the pattern to a subset of the elements of the species. Roughly 
speaking, a species matched by a pattern includes this pattern as a 
part. Note that there may be multiple mappings of a pattern into 
a single species and that BioNetGen considers each mapping to be 
a separate match. The formal definition of a match in the graph 
formalism upon which BNGL is based was given by Blinov et al. 
 (26) . Patterns are similar to species in that they are composed of 
one or more molecules and may contain components, component 
state labels, and edges. Unlike in species, however, the molecules 
in patterns do not have to be fully specified and the molecules do 
not have to be connected to each other by bonds specified in the 
pattern. The absence of components or states in a pattern excludes 
consideration of the missing elements from the matching process, 
as illustrated in  Fig.    1b  . In the model of  Listing    1   observable 1 
is specified using the pattern EGFR(), which matches any species 
containing a molecule of EGFR, regardless of the state or binding 
status of any of its components. 

 3.4. Observables 
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 When a component is specified in a pattern, both the 
absence and presence of a bond name affects matching. 
The specification of a component without an associated bond 
requires that the component is unbound in the corresponding 
match. For example, observable 2 in  Listing    1   uses the pattern, 
EGF(R), which selects only species in which the R component 
of EGF is unbound. The specification of a component with 
an associated bond is used to select bound components. If a 
complete bond is specified, as in observable 5, which selects 
complexes of Grb2 and Sos1, then the component must be 
bound in the manner indicated by the pattern ( see   Note    12  ). 
An incomplete bond may also be specified using “!+”, where 
the wild card “+” indicates that the identity of the binding 
partner of a component is irrelevant for purposes of match-
ing. For example, observable 3 in  Listing    1   uses the pattern, 
EGFR(L!+), which selects species in which the L component 
of EGFR is bound, regardless of the binding partner. A second 
wild card, “?”, may be used to indicate that a match may occur 
regardless of whether a bond is present or absent ( see   Note  
  13  ), and is sometimes required for the correct specification of 
observables. For example, the two patterns EGFR(Y1068~P) 
and EGFR(Y1068~P!?) are not equivalent. The first pattern 
selects only EGFR molecules in which the Y1068 component 
is phosphorylated and unbound, whereas the second pattern 
selects all EGFR molecules in which the Y1068 component 
is phosphorylated. (The second pattern is more relevant for 
comparing model predictions against the results of Western 
blotting with anti-pY antibodies.) Examples of patterns from 
the observables block of  Listing    1   and their correspond-
ing matches in the implied model are listed in  Note    14  . 

 We are now ready to discuss the two types of observables. 
An observable of the Molecules type is a weighted sum of the 
population levels of the chemical species matching the pattern(s) 
in the observable. Each population level is multiplied by the 
number of times that the species is matched by the pattern(s). 
An observable of the Species type is simply an unweighted sum of 
the population levels of the matching chemical species ( see   Notes  
  15   and   16  ). A Molecules type of observable is useful for counting 
the number of copies of a particular set of patterns in a system, 
e.g., the number of copies of receptors in receptor dimers. A Spe-
cies type of observable is useful for counting the populations of 
chemical species in a system containing a particular pattern (or 
set of patterns), e.g., the number of receptor dimers, as specified 
by observable 3 in  Listing    1  . Changing the type from Species to 
Molecules for this observable would specify a function that gives 
the number of copies of receptors in receptor dimers. The values 
of observables computed by one of the simulation commands 
described below are written to a .gdat file ( see   Note    17  ).  
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  The reaction rules block of a BioNetGen input file is used 
to specify rules, which describe the allowed ways in which species 
can be transformed and typically represent molecular interactions 
and the consequences of these interactions. Each rule is similar to 
standard chemical reaction notation in that it has four basic ele-
ments: reactant patterns, an arrow, product patterns, and a rate 
law specification ( see   Note    18  ). Patterns in rules have the same 
syntax and semantics as introduced above in our discussion of the 
observables block. Reactant patterns are used to select sets 
of reactant species to which the transformation implied by the 
rule will be applied. The arrow indicates whether the rule is appli-
cable in forward direction only (“–>”) or in both the forward 
and reverse directions (“<–>”). The product patterns define how 
the selected species are transformed by the rule and act as the 
reactant patterns when the rule is applied in reverse. Rules may 
transform a selected set of reactant species by adding or delet-
ing molecules or bonds and by changing component state labels. 
Rules may not add or delete components of molecules ( see   Note  
  19  ). The default rate law for reactions produced by rules is an 
elementary rate law, in which the rate is given by the product of a 
multiplicity factor (usually an integer or ½) generated automati-
cally by BioNetGen ( see   Subheading    3.5.3  ), the specified rate 
constant (which may be a numerical value or a formula), and the 
population levels of the reactants. This type of rate law is speci-
fied simply by appending a comma-separated numerical value or 
formula at the end of the line defining a rule, as illustrated in 
 Listing    1  . Nonelementary rate laws, such as Michaelis–Menten 
rate laws, may also be specified ( see   Note    20  ). For a rule that 
defines reverse reactions, a second numerical value or formula 
follows the first after a comma. Rules 1, 2, 5, and 6 in  Listing    1   
provide examples of how the parameters of two elementary rate 
laws are defined on the same input line. It should be noted that 
the parameter of a default rate law is taken to be a single-site rate 
constant ( see   Note    21  ). Additional commands that modify the 
behavior of rules may appear after the rate law specification ( see   
Subheading    3.5.7  ). 

 Consider the egfr_simple.bngl file illustrated in  List-
ing    1  . Each reaction rule is defined on one line of the input file. 
(Recall that long input lines can be continued using the “\” char-
acter.) The first six rules represent classes of reactions mediated 
by particular molecular interactions (e.g., rule 1 specifies a class 
of ligand-receptor binding reactions in which the R domain of 
the ligand associates with the L domain of the receptor), and the 
last rule represents a class of irreversible degradation reactions, 
which removes receptor dimers from the system while retaining 
cytosolic molecules bound to the receptor complex. Rules 3 and 
4 also define classes of irreversible reactions, whereas the remain-
ing rules define classes of reversible reactions. The molecularity of 

 3.5. Reaction Rules 
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a reaction,  M , is the number of species participating in the reac-
tion. The molecularity of all reactions generated by a given rule 
is fixed and is equal to the number of reactant patterns, which 
are separated by “+” characters. The value of  M  for rules 1–7 in 
 Listing    1   is 2, 2, 1, 1, 2, 2, and 1, respectively. The “+” char-
acter is used on the right side of a rule to define the number of 
products produced by a reaction and the molecularity of reverse 
reactions (if the rule is reversible). In  Listing    1  , rules 1–6 each 
have one product, and the reverse reactions have 2, 2, 1, 1, 2, 
and 2 product(s), respectively. Reactions defined by rule 7 have a 
variable number of products because of the DeleteMolecules 
keyword, which is discussed later in this section. 

 We will now discuss the five basic transformations that can 
be carried out by a BioNetGen rule. These transformations are 
(1) add a bond, (2) delete a bond, (3) change a component state 
label, (4) delete a molecule, or (5) add a molecule. In each case, 
there is a direct correspondence between a transformation of a 
set of graphs and a biochemical transformation of the molecules 
 represented by the graphs  (26) . For example, adding a bond 
between the interacting components of two binding partners 
corresponds to connecting two vertices in the graphs represent-
ing these binding partners. In the following subsections, we will 
discuss each of these types of transformations and present exam-
ples. A transformation is specified implicitly by the difference 
between the product and reactant patterns in a rule. BioNetGen 
automatically determines a mapping from reactant molecules and 
their components to product molecules and their components, 
and from this mapping determines the set of transformations 
implied by a rule. Although we will note exceptions, we recom-
mend in general that each rule apply only a single transformation. 
A user may manually override automatic mapping through the use 
of molecule and component labels, as discussed in  Subheading  
  3.7.1   ( see   Note    22  )  (28,   38) . Such labels have been used to create 
a database of carbon atom fates in metabolic reactions  (38) . 

  A rule may add bond labels (e.g., “!1”) to specific components 
of reactant species selected by the reactant pattern(s) in the rule, 
which results in the formation of a new bond. Including a bond 
in a product pattern that is absent in the reactant pattern(s) speci-
fies this action. The simplest example of such a transformation is 
provided by the rule “A(a)+B(b)–> A(a!1).B(b!1) k_bi,” 
which specifies the association of molecules A and B through the 
forma tion of a bond between components a in molecule A and b 
in molecule B. Note that the “+” character constrains the molecu-
larity to 2, which means that a and b must belong to separate spe-
cies, precluding binding of A to B when these molecules are part 
of the same complex. To specify intracomplex binding of a and 
b, we could specify the rule as “A(a).B(b)<–>A(a!1).B(b!1) 

 3.5.1. Add a Bond 
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k_uni”, where the “.” character in the reactant pattern indicates 
that the molecules A and B are part of the same complex. Note 
that these two rules have bimolecular and unimolecular rate laws, 
respectively, because they have different molecularities, and thus 
the units of k_bi and k_uni necessarily differ. As noted earlier, 
it is the modeler’s responsibility to specify values of model para-
meters using consistent units. 

 Let us consider rule 1 in  Listing    1  , which provides an example 
of a reaction rule for the reversible binding of a ligand to a 
receptor. We first consider application of the rule in the forward 
direction (application of the rule in reverse will be considered 
in  Subheading    3.5.2  ). The reactant pattern EGF(R) selects 
ligand (EGF) molecules that have an unbound R component. 
Since EGF molecules in this model have only one component, 
the only species that is selected by this pattern is  EGF(R)  (Here, 
we adopt the convention that the image of a pattern in a match-
ing species is shown in  bold ). The pattern EGFR(L,CR1) 
selects EGFR molecules with unbound L and CR1 components, 
regardless of the binding or phosphorylation status of the Y1068 
component of EGFR. For example, the pattern would select all 
of the following possible species:  EGFR(L,CR1 ,Y1068~U ) , 
 EGFR(L,CR1 ,Y1068~P ) , and  EGFR(L,CR1 ,Y1068~P!1 ) .
Grb2(SH2!1,SH3). By specifying the component CR1 in the 
pattern and indicating that this component is free (by the absence 
of a bond specification), we are requiring that the CR1 compo-
nent be unbound. Because receptors must associate via the CR1 
domain to form dimers, as specified by rule 2, this means that 
ligand can bind receptor monomers but not dimers through rule 
1. Rule 1 can be made independent of the state of CR1 by simply 
omitting it from the pattern for EGFR. In other words, by speci-
fying EGFR(L) instead of EGFR(L,CR1), ligand is allowed to 
associate with (and dissociate from) both monomeric and dimeric 
receptors. The general principle is that a reaction rule should only 
include molecules, components, state labels, and bond specifica-
tions that are either modified by a transformation or that affect 
the transformation. We call the component(s) directly modified 
by a transformation a  reaction center  and the rest of the informa-
tion included in a rule the  reaction context . For clarity, we will 
underline the reaction centers in the rules ( see   Listing    1  ). The 
process of rule application is illustrated in  Fig.    1   and further 
examples are listed in  Note    23  . 

 Let us now consider rule 2 of  Listing    1  , which specifies the 
reversible dimerization of ligand-bound EGFR and illustrates the 
use of bond wild cards in the reactant specification. The “!+” 
string following the L component of each EGFR means that 
the L component must be bound (albeit in an unspecified way) 
for the pattern to match and thus for the reaction to take place. 
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Another important feature of this rule is that it is symmetric with 
respect to interchange of the two reactant patterns, which is 
detected automatically by BioNetGen, which then ensures that 
generated reactions are assigned rate laws with correct multiplic-
ity. Reaction multiplicity, which is a multiplicative factor in a rate 
law, is discussed in more detail below in  Subheading    3.5.3  . For 
many users, it is sufficient to note that BioNetGen automatically 
detects symmetries in rules and generates reactions with correct 
multiplicities.  

  Rules specify bond deletion when a bond that appears in the reac-
tant patterns has no corresponding bond on the product side ( see   
Note    24  ). Frequently, bond deletion rules are specified simply 
by making a bond addition rule reversible, as in the extension of 
the elementary bond addition rule above to “A(a)+B(b) <–> 
A(a!1).B(b!1) k_a,k_d”. Bond dissociation step can also 
be specified using a unidirectional rule, as in “A(a!1).B(b!1) 
–>  A(a)+B(b) k_d”. The reversible rule syntax is provided 
solely as a matter of convenience; the functional behavior of the 
rules is identical whether an association/dissociation pair is speci-
fied as a single reversible rule or as two irreversible rules with the 
reactant and product patterns interchanged ( see   Note    25  ). Note 
that the molecularity of the products in the dissociation rule (2 in 
this case) has a restrictive effect analogous to that of the specifica-
tion of molecularity in the association rule. When the rule is applied 
to a species selected by the reactant pattern, a reaction is gener-
ated only if removal of the specified bond eliminates all possible 
paths along bonds between A and B, i.e., if bond removal produces 
two separate fragments. Specifying bond dissociation that does 
not result in breakup of the complex requires a rule of the form 
“A(a!1).B(b!1) –> A(a).B(b) k_d”. An example illustrat-
ing the different action of these two rules is provided in  Note    26  . 

 As an example of a bond deletion rule that has additional 
reaction context, let us consider the reverse of the dimerization 
rule discussed in  Subheading    3.5.1  , 

     
ÆEGFR(L!+,CR1!1).EGFR(L!+,CR1!1) EGFR(L!+,CR1)+\

EGFR(L!+,CR1)km2,

 which breaks the bond between the CR1 components of two 
receptors in a complex. The contextual requirement that an L 
component of each EGFR also be bound is specified using the 
bond wild card “L!+”. The molecularity of the products in the 
rule means that the rule will only be applied if breaking the bond 
results in dissociation of an aggregate. It is important to note here 
that the bond wild card “!+”can only be used to specify context; 
it is not permitted to break a bond that is only partially specified 
because such a rule would leave the molecularity unspecified.  

 3.5.2. Delete a Bond 
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  Rules specify a change in the state label of a component when-
ever the state label of a component changes in going from its 
appearance in the reactants to its corresponding occurrence in the 
products. State label changes may be used to represent covalent 
modification, a change in conformation, translocation between 
two compartments, or any other property of a molecule that might 
influence its subsequent reactivity. The simplest possible example 
of a rule specifying a state label change is rule 4 of  Listing    1  , 

   - >EGFR(Y1068 P) EGFR(Y106~ 8~ U)km3     

 which encodes the dephosphorylation of a receptor tyrosine, 
through a change in the state label for Y1068 from “P”, repre-
senting the phosphorylated state, to “U”, representing the 
unphosphorylated state ( see   Note    27  ). It should be noted that 
just as for bond addition and deletion reactions, the rate constant 
should be specified as if only one instance of the reaction implied 
in the rule is possible for any given set of reactant species ( see 
  Note    21  ). BioNetGen will generate a distinct reaction for each 
distinct occurrence of the reactant pattern in a species. For exam-
ple, consider the application of rule 4 to the following species in 
the EGFR network: 

   
( ) ( )EGF R!1 .EGF R!2 (CR1!3,L!1,  )\

(CR1!3,L!2, )

~.EGFR P

.EGFR Y1068  P~

Y1068
    

 The two occurrences of the reactant pattern are shown in  bold . 
During the process of network generation, this species is auto-
matically assigned the index 11, which is used to reference species 
in the reactions and groups blocks of the resulting .net file. 
Because this species is symmetric, application of the rule gener-
ates two instances of the dephosphorylation reaction   11 → 8, and 
species 8 is 

   
( ) ( )

( )
EGF R!1 .EGF R!2 (CR1!3,L!1, )\

.EGFR CR1!3,L!2,Y P1068~

.EGFR Y1  U~068
    

 In this case, application of rule 4 to the first Y1068 appearing in 
species 11 generates the same species as application of the rule to 
the second instance ( see   Note    28  ). Upon generation of a reaction, 
BioNetGen checks to determine whether the reaction is identical 
to one that has already been generated. If so, the multiplicity of 
the reaction is incremented by one ( see   Note    29  ). So application of 
rule 4 to species 11 produces the reaction 11→ 8 2*km3, where 
2*km3 following the reaction refers to the constant portion of the 
elementary rate law that is used to compute the rate of the reac-
tion. The multiplicity of the reaction is 2, and the rate is given by 
2*km3*X11, where X11 is the population level of species 11. 

 3.5.3. Change 
a Component State Label 
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 As in other reaction rules, additional contextual information 
can be supplied to restrict application of a rule. An example of 
a rule that uses contextual information in this way is rule 3 of 
 Listing    1  , which specifies phosphorylation of Y1068 within a 
receptor aggregate: 

   ÆEGFR(CR1!+,Y1068 U)  EGFR(CR1!+,Y~ ~1068 P)kp3     

 In this rule, the wild card operator “+” is used to specify that 
the phosphorylation reaction occurs only for a receptor that is 
part of a receptor dimer. Because in this model the CR1 domain 
can only bind to another CR1 domain, requiring CR1 to be 
bound, as specified here, is equivalent to requiring that another 
EGFR be present in the aggregate ( see   Note    30  ). Thus, the rule 
above models trans (auto)phosphorylation of Y1068 catalyzed 
by the protein tyrosine kinase domain in a neighboring copy 
of EGFR.  

  In addition to the operations described in the previous sections, 
rules may also specify the creation of new molecules as products, 
which could be used to model, for example, translational proc-
esses or transport across the cell membrane. As a simple example 
of how to introduce a source for a protein A, consider the rule 

 ( )- >I()  I()+A a,Y U ks~ ynth       

 where I() is a structureless molecule. The appearance of I on 
both the reactant and product sides of the rule means that its 
concentration will not change as a result of the reaction occur-
ring. If the species “I()” is set to have a concentration of 1 in 
the seed species block and its concentration is not affected 
by any other rules, the rate constant ksynth will be have units 
of concentration/time and will define the synthesis rate of the 
species A(a,Y~U). Note that BioNetGen does not allow the 
number of reactants or products in a reaction to be zero, which is 
why the molecule I must be included in this rule. Molecule addi-
tion is specified any time that a molecule appearing on the prod-
uct side of a rule has no corresponding molecule on the reactant 
side. Appearance of a new molecule in the products generates 
an error unless the molecule is fully specified, i.e., all compo-
nents of the molecule are listed and those components requiring 
a state label have a valid specified state label, and connected to the 
remainder of the pattern in which it appears. New molecules can 
also be combined with reactant molecules, as in the rule 

   
( )- >B(b)  B(b!1).A a!1,Y U~ ksynth

    
 which creates a new molecule of A bound to a B molecule.  

 3.5.4. Add a Molecule 
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  Rules may also specify degradation of specified molecules or of 
entire species matching a particular reactant pattern by omitting 
reactant molecules in the product patterns. Because degradation 
rules may specify deletion of individual molecules or entire species, 
the semantics of degradation rules are somewhat more complicated 
than those of other rules considered so far. Let us first consider the 
simplest form of a degradation rule 

   - >A()  Trash()kdeg    

 which specifies degradation of any species in which the molecule 
A appears. Degradation of a species is specified whenever all of 
the reactant molecules used to select the species are omitted 
from the products. This rule also specifies the synthesis of a Trash 
mole cule, which is necessary because BioNetGen require that at 
least one product molecule be specified. Note that the species 
Trash() acts as a counter for the number of A-containing species 
that have been degraded ( see   Note    31  ). If multiple molecules of A 
can appear within a single species, degradation reactions involv-
ing these species would have multiplicity equal to the number of 
occurrences of A in the degraded species. In other words, a species 
containing  n  copies of A will be degraded  n  times faster than a 
species containing only a single copy of A. If this behavior is not 
the desired, then the multiplicity can be held to one by specifying 
the MatchOnce attribute for the reactant pattern, as in 

   { } - >MatchOnce A() Trash()kdeg
    

 As of this writing MatchOnce is the only recognized pattern 
attribute. 

 Rules can also specify the degradation of a set of molecules 
within a complex, which can be accomplished in one of two ways. 
First, one can specify the degradation of a molecule or molecules 
within a reactant complex by transferring to the products at least 
one of the molecules used to select the complex on the reactant 
side. The simplest example is the rule 

   - >A().B()  B() kdeg     

 which specifies the deletion of the matching A molecule in the 
complex. When the rule is applied, the A molecule and all of its 
bonds will be deleted. If this action leaves behind only a single 
connected fragment containing the matched B molecule, a reac-
tion will be generated. If, however, deletion of A leaves behind 
multiple fragments, no reaction will be generated. The keyword 
DeleteMolecules can be added to the rule following the rate 
law to bypass this constraint, as in 

 3.5.5. Delete a Molecule 
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   - >A().B()  B()kdeg DeleteMolecules     

 which, when applied to the complex C(c!1).A(a1!1,a2!2). 
B(b!2), would generate the reaction 

   ( ) ( ) ( ) ( ) ( )- >C c!1 .A a1!1,a2!2 .B b!2 C c +B b kdeg     

 The deletion of the A molecule from the C-A-B chain produces a C 
fragment and a B fragment. The DeleteMolecules keyword can 
also be used when no molecules from the reactant pattern remain 
in the products. Thus, the species-deleting rule from the previous 
paragraph can be transformed into a molecule-deleting rule 

   - >A() Trash() kdeg DeleteMolecules     

 which has the same action on the C-A-B complex as the rule 
above. 

 Rule 7 of  Listing    1   provides an example of how such a rule 
might be used to model endosomal degradation of signaling com-
plexes in which some components of the complex are recycled. 
The rule specifies that the EGFR dimer and both associated EGF 
molecules are degraded, but the DeleteMolecules keyword 
means that additional molecules associated with the complex will 
be retained as products in any generated reactions. Thus, any Grb2 
molecules that associate with such a dimer and any Sos1 molecules 
that bind to dimer-associated Grb2 molecules are (effectively) 
returned to the cytoplasm when the receptor complex is degraded.  

  Addition and deletion actions may be combined within single 
rules to construct rules that describe conventional mass action 
kinetics involving structureless species. A typical rule of this type 
would be 

   - >A+B C kAB     

 which encodes the deletion of A and B and the addition of C. 
This rule will be valid only if the molecule C is defined to have 
no components, and it will have the intended meaning only if 
A and B are also structureless. Any standard reaction scheme can 
thus be trivially encoded in BioNetGen, although the power of 
the rule-based approach is lost. Structureless species may be useful 
as sources and sinks, and may also be used to represent small mol-
ecules or atoms. Note that A and A() are equivalent representa-
tions for a molecule or species A, in that neither representation 
specifies the substructure of A.  

  As described in  Subheading    3.5.5  , BioNetGen includes several 
commands that modify the application of rules. These commands 
have been introduced to address the need for specific behaviors 

 3.5.6. Encoding 
Conventional Reactions 

 3.5.7. Commands for 
Modifying Rule Application 
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that are difficult or impossible to specify using the semantics of 
patterns and transformation rules alone. In this section, we cover 
the include/exclude commands that provide a basic logic for 
extending the selection capabilities provided by patterns. In the 
future, we anticipate the development of a “pattern logic” that 
will provide these capabilities in a more general way. 

 The basic functionality of the include_reactants and 
include_products commands is to add criteria for the selec-
tion of reactant species to be transformed by a rule or the accept-
ance of products species generated by a rule. In other words, these 
commands provide an AND operator for pattern matching. The 
basic syntax of the include commands is illustrated by the rule 

   
( )

- > A(a)+B(b) A(a!1).B(b!1)kabinclude_reactants\

2,R1,R2
    

 which specifies that a bond will be created between a reactant 
species containing a free component a of a molecule A and a sec-
ond reactant species containing a free component b of a molecule 
B only if the second reactant species also includes a molecule of 
 either  R1 or R2. The first argument of an include command 
is always a number corresponding to the index of a reactant or 
product pattern in the rule (1 for the first reactant/product, 
2 for the second, etc.), and the remaining arguments are BNGL 
patterns, at least one of which must generate a match for the 
species to be selected. In logical terms, the effective pattern for 
the second reactant in this rule becomes “B(b) AND (R1 OR 
R2)”. Any valid BioNetGen pattern may be used as an argument 
to an include_reactants or include_products com-
mand. Multiple include commands applying to the same reactant 
or product pattern can be specified to create additional selection 
criteria for a species, and thus function as additional AND opera-
tors. To generate similar behavior without the include command, 
two rules would have to be specified: 

   ( ) ( ) ( ) ( )- >A a +B b .R1A a!1 .B b!1 kab    

   ( ) ( ) ( ) ( )- >A a +B b .R2A a!1 .B b!1 kab     

 where the “.” operator is used to test for the presence of an addi-
tional molecule in the second reactant complex. It is worth noting 
that the rule using the include_reactants command behaves 
slightly differently in this case than the pair of rules, because the 
latter may each generate multiple matches to the same reactant 
species if multiple molecules of either R1 or R2 are present. For 
instance, the pattern “B(b).R1” generates two matches to the spe-
cies “B(b.r!1).R1(r!1,d!2).R1(r,d!2)” because R1 in 
the pattern can be mapped onto either of the two R1’s in the com-
plex. It is easy to specify two rules that have the same behavior as the 
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one rule by extending the pattern “B(b).R1” to “B(b.r!1).
R1(r!1)”. Unfortunately, as illustrated in this example, subtle dif-
ferences in the way that rules are specified can have dramatically 
different effects, which are sometimes difficult to anticipate. This 
problem will be alleviated in the future by extending BioNetGen to 
allow a user to differentiate between the reaction center (the part 
of a pattern affected by a transformation) and reaction context (the 
part of a pattern necessary for a transformation to occur) in rules. 

 The “exclude_reactants( index , pattern1 , pattern
2 ,…)” and “exclude_products” commands have the same syn-
tax as the include commands but apply the logic “pattern_index 
AND ((NOT pattern1) OR (NOT pattern2) …)”, where pattern_
index is the pattern used to specify the reactant or product with 
the specified index. Equivalent functionality can be obtained by the 
use of patterns alone, but in complex cases several patterns may be 
required to accomplish the same effect. It should be noted that when 
they appear in reversible reactions, include_reactants and exclude_
reactants are automatically transformed into include_products 
and exclude_products, respectively, when the rule is applied in 
the reverse direction. Appearances of include_products and 
exclude_products commands are also similarly transformed.   

  BioNetGen is capable of performing two basic types of actions 
with a model specification in an input file: generate a chemical 
reaction network implied by the model specification and simulate 
the network (e.g., solve an initial value problem for the system 
of coupled ODEs that provides a deterministic description of 
the reaction kinetics in the well-mixed limit). These actions are 
controlled using commands that follow the model specification 
blocks we have discussed in the previous section ( see   Listing    1  ). 
Other commands export BioNetGen-generated networks in vari-
ous formats. All of the available commands and the parameters 
that control them are summarized in  Table    1  , which also sum-
marizes the general syntax.  

  The commands shown in  Listing    1   illustrate the range of actions 
that can be performed on a BioNetGen model. The generate_
network command directs BioNetGen to generate a network 
of species and reactions through iterative application of the rules 
starting from the set of seed species. At each step in this iterative 
process, rules are applied to the existing set of chemical species 
to generate new reactions. Following rule application, the species 
appearing as products in the new reactions are checked to deter-
mine whether they correspond to existing species in the network 
 (26)  ( see   Note    32  ). If no new species are found, network genera-
tion terminates. 

 Restrictions on rule application may be useful when rules sets 
would otherwise produce very large or unbounded networks ( see 

 3.6. Actions 

 3.6.1. Generating 
a Network 
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  Table 1 
  Syntax and parameters for BioNetGen actions    

 Action/parameter a   Typeb  Description  Default 

 generate_network  Generate species and reactions through iterative application 
of rules to seed species 

 max_agg  int  Maximum number of molecules in one 
species 

 1e99 

 max_iter  int  Maximum number of iterations of rule 
application 

 100 

 max_stoich  hash  Maximum number of molecules of 
specified type in one species 

 - 

 overwrite  0/1  Overwrite existing .net file  0 (off) 

 print_iter  0/1  Print .net file after each iteration  0 

 prefix c   string  Set basename e  of .net file to  string   basename of .bngl file 

 suffix c   string  Append _ string  to basename of .net file  - 

  simulate_ode/simulate_ssa    Simulate current model/network  

 t_end  float  End time for simulation  required 

 t_start  float  Start time for simulation  0 

 n_steps  int  Number of times after  t =0 at which to 
report concentrations/observables 

 1 

 sample_times  array  Times at which to report concentra-
tions/observables (supercedes t_end, 
n_steps) 

 - 

 netfile  string  Name of .net file used for simulation  - 

 atol d   float  Absolute error tolerance for ODE’s  1e-8 

 rtol d   float  Relative error tolerance for ODE’s  1e-8 

 steady_state d   0/1  Perform steady-state check on species 
concentrations 

 0 

 sparse d   0/1  Use sparse Jacobian/iterative solver 
(GMRES) in CVODE 

 0 

  readFile    Read a .bngl or a .net file  

 file  string  Name of file to read  required 

  writeNET/writeSBML/
writeMfile  

  Write current model/network in specified format  

 setConcentration( species,value )   Set concentration  of  species  to  value  

  setParameter ( parameter,value )   Set   parameter  to  value  

(continued)
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  Note    33  ). These restrictions can be imposed using optional argu-
ments to the generate_network command, which are shown 
in  Table    1  . The three basic restrictions that can be specified are 
an upper limit on the number of iterations of rule application 
(max_iter), an upper limit on the number molecules in an 
aggregate (max_agg), and an upper limit on the number of 
molecules of a particular type in an aggregate (max_stoich). 
An example of a command specifying all three restrictions in the 
order given above is 

   

generate_network ({max_iter =>15,max_agg =>10,

max_stoich=>{L =>5,R >5});    

 This command limits the number of iterations to 15, the maximum 
size of an aggregate to 10 molecules, and the maximum number of 
L or R molecules in an aggregate to be 5. An example illustrating 
the use of such restrictions is given in  Subheading    3.7.2  . 

 When network generation terminates, whether through 
convergence or when a stopping criterion is satisfied, the result-
ing network is written to a file with the .net extension ( see   Note  
  34   ). By default the basename of this file is determined from the 
basename of the input .bngl file. For example, the generate_
network command in the file egfr_simple.bngl creates the 
file egfr_simple.net by appending the .net extension to the 
basename egfr_simple. The options prefix and suffix, 
which are taken by all commands that write output to a file, can 
be used to modify the basename of all files generated by the com-
mand ( see   Note    35  ). By default, generate_network will ter-
minate with an error if the .net file it would produce exists prior 
to network generation. This behavior can be overridden by setting 
option overwrite = >1, as shown in  Listing    1  . This option can 
be useful during the debugging phase of model development.  

 Action/parameter a   Typeb  Description  Default 

  saveConcentrations()    Store current species concentrations  

  resetConcentratons()    Restore species concentrations to value at point of last save-
Concentrations command  

 aGeneral syntax is  action ({ scal  val , array [ x1 , x2 ,…], hash  ⇒{ key1 ⇒ val1,key2 ⇒ val2 ,…},…}). 
   bScalar types are int, 0/1 (a boolean), string, and float. Multivalued parameters may be either arrays 

or hashes .
 cThe prefix and suffix parameters can be used with any command that writes output to a file. 
 dThese parameters only apply to simulate_ode .
 e See   Note    35    .

 Table 1 
(Continued)
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  Once a network has been generated, a simulation can be specified 
using the simulate_ode or simulate_ssa commands. The 
simulation specified in the example in  Listing    1   consists of three 
phases, which we now summarize and will be described in detail 
below. The first phase is equilibration, in which reactions that can 
occur prior to the introduction of the EGF ligand are allowed 
to reach steady state. Time courses produced by the first simu-
late_ode command, which terminates when the species con-
centrations pass a numerical check for convergence, are written 
to the files egfr_simple_equil.gdat and egfr_simple_
equil.cdat (assuming the input file is named egfr_simple.
bngl). Before the second phase of simulation, ligand is intro-
duced (using setConcentration), the concentrations at the 
end of equilibration are saved (using saveConcentrations), 
and the network is written to an SBML file (using writeSBML). 
The second simulate_ode command then initiates a simula-
tion of the dynamics following introduction of EGF ligand into 
the system. The results are written to the files egfr_simple.
gdat and egfr_simple.cdat. The third phase is then pre-
ceded by a resetConcentrations command, which restores 
the concentrations to the initial values used in the second phase, 
i.e., following equilibration and introduction of EGF. The simu-
late_ssa command then initiates the third and final phase of 
simulation, a kinetic Monte Carlo simulation using the Gillespie 
algorithm, and results are written to the files egfr_simple_
ssa.gdat and egfr_simple_ssa.cdat. 

 In the equilibration phase the population level of the ligand 
(EGF(R)) is zero, as specified in the seed species block of 
 Listing    1  . Network generation is unaffected by the population 
levels of the seed species, but in the absence of ligand the only 
reactions with nonzero flux are the binding and unbinding reac-
tions of Grb2 and Sos1 in the cytosol, which are defined by rule 
6. The purpose of the equilibration phase is then to allow the 
concentrations of free Grb2, free Sos1, and the cytosolic Grb2-
Sos1 complex to reach steady-state levels, which we would expect 
to find in the resting state of the cell. 

 The first simulate_ode command propagates the simula-
tion forward in time (in large time steps) and checks for conver-
gence to a steady state. By going over each of the options used 
in this command, we will provide an overview of the operation 
and capabilities of the simulate_ode command. The “suf-
fix ⇒ equil” appends “_equil” to the basename for output 
files of the simulation, which becomes here “egfr_simple_
equil”. This prevents output files from the equilibration phase 
from being overwritten by subsequent simulation commands. 
The end time (t_end) for the simulation is given a sufficiently 
large value to ensure that steady state is reached prior to the end 
of the simulation ( see   Note    36  ). The number of steps at which 

 3.6.2. Simulating 
a Network 
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results are written to the output files is specified by the n_steps 
parameters, which is set to a relatively small value here because we 
are only interested in reaching steady state and not in tracking the 
time course. The interval between reporting of results is given by 
(t_end/n_steps), which is 10,000 s in this case. (Note that 
the n_steps parameter controls only the reporting interval and 
not the step size used by the CVODE solver, which uses adaptive 
time stepping). Results can also be reported at unevenly spaced 
intervals ( see   Note    37  ). The sparse option invokes fast itera-
tive methods in the CVODE solver that can greatly accelerate 
the simulations ( see   Note    38  ). The steady_state flag causes 
a check for the convergence of the species population levels to 
be performed following each report interval, with the propaga-
tion terminating if the root mean square of the relative change 
in the population levels falls below a threshold, which is taken to 
be 10×atol, the absolute integration tolerance. Note that the 
basic operation of the simulate_ssa command is the same 
as that of the simulate_ode command. A summary of options 
available for the simulation commands is given in  Table    1  . Of the 
options discussed above, only steady_state and sparse are 
not available for use with simulate_ssa. 

 After completion of a simulation, the final population levels 
of all species in a network are saved and used by default as the 
initial population levels for subsequent simulation commands. 
In the example, we have modified or overridden this behavior by 
using the setConcentration ( see   Note    39  ) or resetCon-
centrations commands ( see   Note    40  ). Additional options 
are discussed in  Subheading    3.6.4  .  

  We now consider visualization of the output produced by the 
two simulation commands that follow equilibration. Each simu-
lation is run from the same initial conditions, but the second is 
run using the simulate_ssa command, which produces a 
stochastic (discrete-event) trajectory using the direct method of 
Gillespie  (40) . Trajectory data are written into two multicolumn 
output files for each simulation: a .gdat file that reports the value 
of each defined observable at each sample time and a .cdat file 
that reports the population level of every species in the network 
at each sample time. To avoid overwriting the data produced by 
simulate_ode, the simulate_ssa command sets the suffix 
parameter to “ssa”, so that the basename of the file becomes 
“egfr_simple_ssa”. Both data file types are in ASCII format, 
so they can be viewed in a text editor or imported into any number 
of different plotting and data analysis programs. The BioNetGen 
distribution includes the PhiBPlot plotting utility, which is a Java 
program that can be run by double-clicking on the file PhiB-
Plot.jar in the PhiBPlot subdirectory of the distribution or 
by typing “java –jar  path /PhiBPlot.jar [ datafile ]” 

 3.6.3. Viewing 
the Simulation Results 
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on the command line. PhiBPlot can display data from up to two 
BioNetGen data files at a time and is useful for quickly visual-
izing the results of a BioNetGen simulation and for comparing 
the results of two ( see   Fig.    3  ).   

  Network generation can be the most time-consuming part of 
processing a BioNetGen input file, and during repeated simula-
tions of the same network (e.g., with varying parameters) one 
may wish to avoid regenerating the network. There are several 
ways to achieve this outcome. The first way, presented in the 
example above, is to run multiple simulations within the same 
input file using the saveConcentrations, and resetCon-
centrations commands in combination with the setCon-
centration and setParameter commands to vary initial 
conditions and parameters ( see   Note    41  ). 

 In some cases, however, it may be desirable to reload a net-
work that was generated during a previous invocation of BNG2.
pl. The readFile command provides a way to fully restore a 
previously generated network so that parameters and species con-
centrations can be modified using the set commands. The basic 
syntax is illustrated by the command 

 3.6.4. Simulating 
a Previously-Generated 
Network 

  Fig. 3.    Plotting BioNetGen simulation data in PhiBPlot. Data from up to two different files may be plotted simultaneously. 
Here, data for the Sos1_act observable from the ODE and SSA simulations is overlaid, showing the effects of fluctua-
tions in the stochastic simulation       .
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=> =>readFile({prefix "testread",file

"egfr_simple.net"}),     

 which restores the network generated in the example of  Listing  
  1   with population levels set to their postequilibration values ( see   
Note    42  ). The readFile command, unlike other BioNetGen 
commands, resets the global basename to be the basename of 
the file argument, which is “egfr_simple” in the example 
given above. The prefix parameter is set here to override this 
behavior and to set the basename for subsequent simulations 
commands to “testread” rather than egfr_simple. 

 Reading a previously generated network from a file is always 
much faster than regenerating the network, but can still be time-
consuming for very large networks. It may, therefore, be advanta-
geous to pass the previously generated .net file directly to the 
simulation program by using the netfile argument to the 
simulate_ x  command, as in 

   
=>

=> =>
simulate_ode({netfile "egfr_simple.net

t_end 120,n_steps 12});
    

 The disadvantage of this method is that it does not permit the 
model parameters to be changed without directly editing the .net 
file ( see   Note    43  ).   

  In this section, we discuss two example applications of BioNet-
Gen. In the first example, we illustrate how BioNetGen can be 
used to extend a conventional model so that it can be used to 
interpret fluorescent labeling experiments. In the second exam-
ple, we illustrate how BioNetGen can be used to produce a model 
for a system in which polymerization-like reactions are possible 
(e.g., a model for multivalent ligand-receptor interactions). The 
graphical formalism upon which BioNetGen is based was designed 
with these types of systems in mind  (25) . The structured objects 
(graphs) of BNGL allow the topological connectivity of (protein) 
complexes to be explicitly represented and tracked in a model. 

  Here we illustrate how BioNetGen can be used to extend an exist-
ing (nonrule-based) reaction network. In some cases, one needs 
to add a property that is passed from one species to another in a 
reaction network. For example, many experiments involve fluores-
cent labeling, in which the system is injected with fluorescently-
labeled proteins that can be monitored. Fluorescent species carry 
all the properties of nonfluorescent species, but can also be photo-
bleached, losing fluorescence. Given a reaction network of non-
fluorescent species, the network that includes both fluorescent 
and nonfluorescent species nearly doubles in size. For larger 
networks, this expansion will be error-prone if done manually. 

 3.7. Additional 
Examples 

 3.7.1. Fluorescent Labeling 
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Thus, it is desirable to be able to extend a model to enable track-
ing of fluorescent labels, and BioNetGen provides such a capability 
by allowing the definition of a mapping of component state labels 
from reactants to products. In addition to the application shown 
here, these mappings have been used to define carbon fate maps 
for many of the currently known reactions in metabolism  (38) . 

 We consider a simple reaction network consisting of five spe-
cies and described by four basic reactions (considering each direc-
tion as a separate reaction)

   

AB

AB

CD

CD

k
k

k
k

A B C

C D E

+

−

+

−

+ ←⎯⎯→
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 The label chemistry we want to describe works as follows: fluo-
rescence is passed from A to C in reaction 1 and from C to E in 
reaction 2. This can be described by adding a component, which 
we will call “f”, to the molecules A, C, and E. The f component 
in each molecule may be in either the “off” or the “on” state, 
as shown in the molecule types definitions of  Listing    2  . We 
then define rules for mapping the state of the f component between 

begin parameters
NA 6.02e23 # Avogadro’s number (molecues/mol)
f  0.1       # Fraction of the cell to simulate
Vo f*1.0e-10 # Extracellular volume=1/cell_density (L)
V  f*3.0e-12 # Cytoplasmic volume (L)
# Initial concentrations (copies per cell)
A_tot 10000  
B_tot  8000 
D_tot 50000
# Rate constants 
# Divide by NA*V to convert bimolecular rate constants
# from /M/sec to /(molecule/cell)/sec
kpAB 3.0e6/(NA*V) 
kmAB 0.06         
kpCD 1.0e6/(NA*V) 
kmCD 0.06         
kpI  1.0e7/(NA*V) 
kmI   0.1
end parameters

begin molecule types
A(f~off~on)
B()
C(f~off~on)
D()
E(f~off~on)
I()

  Listing 2 .   BioNetGen input file for the fluorescent labeling example ( see   Subheading    3.7.1  )       .



 Rule-Based Modeling of Biochemical Systems with BioNetGen 145

end molecule types

begin seed species
A(f~off) A_tot
B()      B_tot
C(f~off) 0
D()      D_tot
E(f~off) 0
I()      0
end seed species

begin reaction rules
1 A(f%1) + B() <-> C(f%1) kpAB, kmAB
2 C(f%1) + D() <-> E(f%1) kpCD, kmCD
3 A(f~off) + I <-> A(f~on) kpI, kmI
end reaction rules

begin observables
Molecules A_f A(f~on)
Molecules C_f C(f~on)
Molecules E_f E(f~on)
Molecules Tot_f A(f~on) ,C(f~on),E(f~on)
end observables

generate_network({overwrite=>1});
# Equilibrate
simulate_ode({suffi x=>equil,t_end=>10000,n_steps=>10,\
 steady_state=>1});
# Add indicator
setConcentration(“I”,”A_tot/10”);
simulate_ode({t_end=>200,n_steps=>50});

A and C ( see  rule 1 in reaction rules block of  Listing    2  ) 
and between C and D ( see  rule 2 in reaction rules block 
of  Listing    2  ) using the “%” character followed by a string to 
tag components ( see   Note    22  ). By not specifying the component 
state of f in the rules, we cause the component state to be mapped 
from the selected reactant molecule to the created product mol-
ecule. This trick allows us to avoid writing separate rules for the 
labeled and unlabeled species. (When mapping components in 
this way the user should be careful that the allowed state label 
values of the components are the same or an error will be gener-
ated.) The defined observables track the amount of label associ-
ated with each of the molecules that can be labeled (A_f, C_f, 
and E_f) and the total amount of label present in the system 
(Tot_f). The resulting network has 9 species and 10 reactions.  

 There are different ways in which labeled components may 
be introduced into the system. The simplest way would be to 
define an initial pool of labeled A molecules, i.e., define the species 
“A(f~on)” to have nonzero initial concentration. Here, we have 
chosen a somewhat more complex scenario in which the system is 
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initially equilibrated without the label, followed by the introduc-
tion of an indicator molecule that adds label to A through a chemi-
cal reaction, the third rule in the input file. Following equilibration 
with no indicator present, the indicator concentration is set to be 
a fraction of the total number of A molecules using the setCon-
centration command. Results of simulation of the network 
following equilibration and introduction of the indicator molecule 
are shown in  Fig.    4  . The labeling reaction (rule 3) is fast compared 
with the other reactions, so that labeled A initially accumulates fol-
lowed by a slower rise in the levels of labeled C and D molecules.   

  BNGL can be used to model the kinetics of molecular aggregates 
having different topological structures, such as chains, rings, and 
trees. Here, we present a simple model for the binding of a sol-
uble multivalent ligand to a bivalent cell-surface receptor, such 
as a membrane-bound antibody. In this model, we consider a 

 3.7.2. Polymerization 

  Fig. 4 .   Plot of simulation results obtained from BioNetGen input file for the fluorescent labeling example shown in  Listing    2   
made using PhiBPlot (black and white rendition of color output). The plot shows time courses of the observables from the 
second simulate_ode command in the actions block of  Listing    2         .
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Listing 3. BioNetGen input file for binding of bivalent ligand to bivalent receptor (see Section 3.7.2).

setOption(SpeciesLabel,HNauty);
begin parameters
NA 6.02e23 # Avogadro’s number (molecues/mol)
f  0.001       # Fraction of the cell to simulate
Vo f*1.0e-9 # Extracellular volume=1/cell_density (L)
V  f*3.0e-12 # Cytoplasmic volume (L)
L0  1e-9*NA*Vo # Conc. in Molar -> copies per cell
R0  f*3e5
kp1 3.3e/(NA*Vo)
km1 0.1
kp2 1e6/(NA*V)
km2 0.1
kp3 30
km3 0.1
end parameters

begin molecule types
 R(r,r)
 L(l,l)
end molecule types

begin reaction rules
# Ligand addition
1 R(r) + L(l,l) <-> R(r!1).L(l!1,l) kp1,km1
# Chain elongation
2 R(r) + L(l,l!+) <-> R(r!1).L(l!1,l!+) kp2,km2
# Ring closure
#3 R(r).L(l) <-> R(r!1).L(l!1) kp3,km3
end reaction rules

bivalent ligand with two identical binding sites (L(l,l)) and a 
bivalent receptor with two identical binding sites (R(r,r)). The 
ligand may cross-link two receptors to form a dimeric receptor 
aggregate (R(r,r!1).L(l!1,l!2).R(r!2,r)), which can 
then interact with additional ligand via free receptor sites. Lig-
and-receptor interaction can form a distribution of linear chains 
of alternating ligands and receptors (R(r,r!1).L(l!1,l!2).
R(r!2,r!3).L(l!3,l!4).…). Two simple rules, shown in 
 Listing    3  , provide an elementary model of bivalent ligand–
bivalent receptor interaction under the assumptions that the 
length of a chain does not affect its reactivity and that rings do 
not form ( see   Note    44  ). A third rule that allows the formation 
of rings of any size is shown in  Listing    3  , but this rule is com-
mented out ( see   Note    45  ). For a different example of polymeriza-
tion in a biological context,  see   Note    46  .
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begin seed species
 R(r,r) R0
 L(l,l) L0
end seed species

begin observables
Species FreeL L(l,l)
Dimers  R==2
Trimers  R==3
4mers   R==4
5mers   R==5
6mers   R==6
7mers   R==7
8mers   R==8
9mers   R==9
10mers  R==10
gt10mers R>10
end observables

# Simulation of a truncated network
generate_network({overwrite=>1,max_stoich=>{R=>10,L=>10}});
simulate_ode({t_end=>50, n_steps=>20});

# Simulation on-the-fl y
generate_network({overwrite=>1,max_iter=>1});
simulate_ssa({t_end=>50,n_steps=>20});

       The observables block in  Listing    3   introduces a new syntax 
for using stoichiometry in the definition of observables, which 
is needed to track the aggregate size distribution in models that 
exhibit polymerization ( see   Note    47  ). 

 Because chains can grow to any length, unless stopping cri-
teria are specified, the process of iterative rule application initi-
ated by a generate_network command will not terminate 
until the user runs out of patience or the computer runs out of 
memory. We discuss here two methods of simulating a network 
that cannot be enumerated completely. 

 The first method is to specify any of the restrictions described 
in  Subheading    3.6.1   on the generate_network command, 
which will cause termination before all possible species and reac-
tions have been generated. The first pair of actions in  Listing    3   
shows how the max_stoich parameter can be used to limit the 
stoichiometry of complexes, producing in this case a network of 
30 species and 340 reactions, which can be rapidly simulated using 
either the ODE or SSA methods. The accuracy of simulations on 
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artificially truncated networks is, however, not guaranteed and 
may depend strongly on the parameter values. For the parameters 
shown in  Listing    3  , the population of clusters with more than 
about 5 receptors is small, and little error results from network 
truncation. However, if the value of the cross-linking parameter, 
kp2, is increased by a factor of 10, the cluster size distribution 
generated by the truncated network becomes inaccurate. The user 
must therefore be careful to check results for convergence, particu-
larly when changing the parameter values over substantial ranges. 

 The second method, which is specified by the second pair of 
actions in  Listing    3  , is to do a minimal initial round of network 
generation and then allow the network to be generated as new 
species become populated during a stochastic simulation. The call 
to generate_network is required here to generate the reac-
tions that can take place among the seed species; otherwise, an 
error will occur when a simulation command is invoked and there 
are no reactions in the network. With max_iter set to 1 only 
reactions involving seed species are initially generated. During 
simulation initiated with the simulate_ssa command, Bio-
NetGen detects when a reaction event occurs that populates one 
or more species to which rules have not been previously applied 
and automatically expands the network through rule application. 
This behavior is built into the simulate_ssa command and no 
additional parameters need to be specified. The performance of 
on-the-fly simulation is highly dependent on the system param-
eters and on the number of molecules being simulated. Increasing 
the number of molecules while holding the concentrations fixed 
(accomplished by changing the parameter f) increases the size of 
the network that is generated by on-the-fly sampling. Because the 
network generation involves the computationally expensive step 
of generating and comparing canonical labels ( see   Note    33  ), the 
simulation performance can become poor if one attempts to simu-
late on-the-fly under conditions that lead to the possible formation 
of more than about 10 3 –10 4  species. Simulation of the dynamics 
of 300 receptors up to steady state takes about 30 CPU seconds 
on a MacBook Pro with the 2.4 GHz Intel Core Duo processor 
and generates a network of about 50 species and 350 reactions. 

 In the near future, a third and more powerful option will be 
available for simulating large-scale networks, such as those that arise 
when polymerization is possible or when some of the signaling mol-
ecules have high valence ( see   Note    48  ). Work is currently underway 
to implement the discrete-event particle-based simulation method 
that has been recently developed, which extends Gillespie’s method 
to consider rules rather than individual reactions as event generators 
 (30,   31) . The main idea behind this method is that by tracking indi-
vidual particles in a simulation rather than populations the need to 
explicitly enumerate the possible species and reactions is eliminated. 
The computational scaling of a stochastic, event-driven simulation 
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using the particle-based approach becomes effectively independ-
ent of network size and has moderate (logarithmic) scaling with the 
size of the rule set. This rule-based kinetic Monte Carlo method 
offers significantly better performance than the earlier particle-based 
event-driven algorithm used in the STOCHSIM software, which uses a 
less efficient event sampling algorithm that produces a high fraction 
of nonreactive events  (21) . The planned incorporation of the rule-
based kinetic Monte Carlo method will enable the efficient simula-
tion of comprehensive models of signal transduction networks on 
the basis of molecular interactions, and, we hope, greatly increase 
the power of predictive modeling of such systems. 

 The plot in  Fig.    5   shows simulation results for the number 
of receptors in trimers as a function of time (in seconds) from 
the ODE simulation of the truncated network (smooth line) and 
the SSA simulation with on-the-fly network generation (jagged 
line). Following the initial equilibration period about 10–20% 
of the receptors are in trimers at any given time. The total time 
required for network generation and simulation is comparable 
in the two cases, with network generation consuming the vast 
majority of the CPU time.    

  The information provided here serves as both an introductory 
guide and reference resource for the modeler interested in using 
BioNetGen to develop and analyze rule-based models of bio-

 3.8. Concluding 
Remarks 

  Fig. 5 .   Plot of simulation results obtained from BioNetGen input file for the bivalent ligand 
bivalent receptor binding model shown in  Listing    3   made using PhiBPlot.  Smooth solid 
line  is the curve obtained from the simulate_ode command;  jagged line  with  cir-
cles  shows results from the simulate_ssa command       .
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chemical systems. Several applications of BioNetGen have been 
presented and discussed, but the rule-based modeling approach 
enabled by BioNetGen can be used for a much broader range 
of purposes. We strive to be responsive to the needs of the Bio-
NetGen user community and encourage users to contact us to 
share their experiences, to request new capabilities and features, 
and to report bugs. The BioNetGen web site (  http://bionetgen.
org    ) has a wiki format to allow users to contribute information 
and models. Updates of the information presented here will be 
announced at the wiki site. Rule-based modeling of biochemical 
networks is a rapidly evolving area of research and BioNetGen 
is therefore very much a work in progress, with new capabilities 
being added continually. 

 BioNetGen is an open-source project. Although contribu-
tions of code are welcome, the main reason the source code is 
made available is so that users can see how the code works and 
can confirm that model specifications are being processed as 
expected. Because of the difficulties of checking the correctness 
of a chemical reaction network or a simulation result generated 
automatically from rules, key elements of BioNetGen have been 
coded independently multiple times and crosschecked. After 
extensive testing, we are confident that the software is reliable. By 
following the guidance provided here, a modeler should be able 
to precisely use BNGL to obtain intended model specifications. 

 In the future, we hope to see the BioNetGen framework evolve 
to enable community-driven development of comprehensive models 
for cellular regulatory systems. The material components and 
interactions of a cellular regulatory system are typically too numer-
ous and complicated for a single researcher to thoroughly docu-
ment and capture faithfully in a model of comprehensive scope. 
For example, nearly 200 proteins are documented to be involved 
in EGFR signaling in the NetPath database (  http://netpath.org    ). 
The ability to extend models through the composition of rules is a 
key factor that makes incremental construction of large-scale mod-
els a real possibility  (8,   27) . To take advantage of collective intel-
ligence for the construction of large-scale models, we are actively 
pursuing the following extensions of the BioNetGen framework: 
(1) implementation of methods capable of simulating models com-
posed of a large number of rules  (30,   31) , (2) manipulation and 
encoding of BNGL using an XML-based format proposed as an 
extension of SBML (  http://sbml.org    ) to better facilitate electronic 
exchange and storage of models, and (3) development of conven-
tions and database-related tools for annotating models and model 
elements (e.g., linking of molecule names in a model specification 
to amino acid sequences and other information in standard data-
bases). However, for a long time to come, we foresee that a sound 
understanding of the material presented here will be useful for 
rule-based modeling with BioNetGen.   
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    1.    Users familiar with a command line interface on any of these sys-
tems should have no trouble following the instructions for using 
the software after reading this chapter. Other users may find the 
RuleBuilder application, which provides a graphical user interface 
to BioNetGen, more accessible. This application may be started 
by double-clicking on the RuleBuilder-beta-1.51.jar file 
in the RuleBuilder subdirectory of the BioNetGen distribution. 
The RuleBuilder Getting Started Guide in the same directory 
explains use of the software. Although this chapter focuses on the 
text-based interface, the basic concepts of BioNetGen modeling 
discussed here are essential for proper use of RuleBuilder.  

   2.    BioNetGen is invoked in a command shell using
prompt>  path /Perl2/BNG2.pl  file .bngl  

   3.    The syntax of a line in the parameters block is
[ index ]  parameter  [=]  value  where square brackets 
indicate optional elements,  parameter  is a string consisting 
of only alphanumeric characters plus the underscore character 
(“_”) and containing at least one nonnumeric character.  value  
may be either a number in integer, decimal, or exponential 
notation or a formula involving numbers and other parameters 
in C-style math syntax.  See   Listing    1   for examples.  

   4.    The size of the system being simulated can be scaled by chang-
ing the value of the parameter f in  Listing    1  . By scaling all 
of the initial populations and the volumes by this factor, the 
system size is scaled without changing the  concentrations  of 
any of the constituents. For a deterministic simulation, the 
simulation time and the behavior of the system (e.g., the value 
of any observable divided by f) is independent of f. For a sto-
chastic simulation, however, the time required to carry out a 
simulation will be proportional to f, whereas the noise will be 
proportional to 1/sqrt(f).  

   5.    In current BNGL each component may have at most one 
associated state label, which may take on an arbitrary number 
of discrete values, specified as strings. The state is thus a scalar 
variable that can be considered as an enum data type. Future 
planned extensions of BNGL include nesting of components 
to allow a single component to have multiple associated states 
and binding sites.  

   6.    Names for all BioNetGen objects other than parameters, 
which includes molecules, components, state labels, bonds, 
labels, and observables may consist of alphanumeric characters 
and the underscore character (“_”), but may not include the 
dash character (“-”), which is sometimes used in the biologi-

4. Notes
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cal literature as part of protein or domain names. It is not an 
allowed character here because in some contexts it may be 
confused with the arithmetic minus operator.  

    7.    The syntax of a line in the molecule types block is

  [ index ]  moleculeType  

  where  moleculeType  has the syntax described in the text 
and illustrated in  Listing    1  .  

    8.    If the molecule types block is present, all molecules in 
the seed species block must match the type declarations 
in the molecule types block. A molecule matches its 
type declaration if each of its declared components is present 
and each component state is a member of the declared set of 
possible states. If the molecule types block is not present, 
then the seed species block serves a typing purpose. The 
first instance of a molecule in the seed species block is 
taken to define the complete set of components in that mol-
ecule in the model, and only components that are assigned 
a state in the first occurrence may subsequently have defined 
states. For example, the Grb2 molecule implicitly defined 
by the species Grb2(SH2,SH3) may not have any states 
assigned to SH2 or SH3 components. However, the species 
EGFR(L,CR1,Y1068~U) defines the Y1068 component of 
EGFR as one that has an associated state label, which has 
at least one allowed value, “U”, and potentially others to be 
defined later. Occurrences of additional allowed state labels 
may occur in the seed species block or in the reac-
tion rules block, and in either case BioNetGen gener-
ates a warning message that additional allowed state values 
are being associated with the component.  

    9.    The syntax of a line in the seed species block is

  [ index ]  species  [ initialPopulation ]

  where species has the syntax for a BioNetGen species as 
described in the text and illustrated in the seed species 
block of  Listing    1   and  initialPopulation  is a number 
or formula that specifies the amount of the species present at 
the start of the first simulation (default is zero).  

   10.    The amount of a chemical species may be specified to have 
a constant value by prefixing the chemical species name in 
the seed species block with a “$” character, as follows: 
the expression “$EGF(R) 1” would set the amount of free 
EGF in the system to 1. This feature is useful for consider-
ing certain scenarios.  
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   11.    The syntax of a line in the observables block is

  [ index ] [ observableType ]  observableName 
pattern1 [,  pattern2 ]…

  where  observableType  is either Molecules or Spe-
cies (defaults to Molecule if omitted)  observa-
bleName  is a valid name for a BioNetGen observable, and 
each  pattern  is a valid BioNetGen pattern.  

   12.    Recall that bond names are arbitrary and are used only to 
identify the bond endpoints. Thus, the bond names used in 
a pattern do not affect the resulting matches.  

   13.    The “?” wildcard can also be used in state matching, but 
leaving component state out of a match is more commonly 
achieved by omitting the state label altogether. For example 
the patterns “EGFR(Y1068)” and “EGFR(Y1068~?)” are 
equivalent, i.e., generate the same matches.  

   14.    For each pattern, selected matches to species in the model of 
 Listing    1   are listed with the image of the pattern elements 
shown in  bold . (These are not meant to be exhaustive, just 
illustrative.) Note that some chemical species are matched 
multiple times by a given pattern.
   a.    EGFR() matches   

EGFR( CR1,L,Y1068~U ) ,EGF(R!1). 
 EGFR( CR1,L!1,Y1068~U ) , EGF(R!1). EGF(R!2).
 EGFR( CR1!3,L!1,Y1068~U ) .EGFR(CR1!3, 
L!2,Y1068~U), and EGF(R!1).EGF(R!2).EGFR(CR
1!3,L!1,Y1068~U). EGFR( CR1!3,L!2,Y1068~U )   

   b.     EGF(R)  matches  EGF(R)   
   c.     EGFR(CR1!+)  matches EGF(R!1).EGF(R!2).

 EGFR(CR1!3 ,L!1,Y1068~U ) .
EGFR(CR1!3,L!2,Y1068~U), and EGF(R!1).
EGF(R!2).EGFR(CR1!3,L!1,Y1068~P). 
 EGFR(CR1!3 ,L!2,Y1068~U )   

   d.     EGFR(Y1068~P!?)  matches EGF(R!1).
EGF(R!2). EGFR( CR1!3,L!1, Y1068~P) .
EGFR(CR1!3,L!2,Y1068~U), and EGF(R!1).
EGF(R!2). EGFR( CR1!3,L!1, Y1068~P!4) .
EGFR(CR1!3,L!2,Y1068~U).Grb2(SH2!4,SH3)  

   e.     Grb2(SH2,SH3!1).Sos1(PxxP!1)  matches 
 Grb2(SH2,SH3!1).Sos1(PxxP!1)   

   f.     EGFR(Y1068!1).Grb2(SH2!1,SH3!2).
Sos1(PxxP!2)  matches EGF(R!1).EGF(R!2).
 EGFR( CR1!3,L!1, Y1068 ~P !4) .EGFR(CR1!3,L!2,
Y1068~U). Grb2(SH2!4,SH3!5).Sos1(PxxP!5)       

   15.    The sum corresponding to an observable is defined explicitly 
in the .net file that is generated by BioNetGen when an input 
file is processed. These sums are contained in the groups 
block of the .net file ( see   Note    28  ).  
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   16.    When an observable is defined by two or more patterns, the 
associated functions are computed as follows. For an observ-
able of the Molecules type, the observable is a sum of the 
observables defined by each individual pattern in the set. For an 
observable of the Species type, the observable is an unweighted 
sum of the populations of chemical species matched by any 
of the patterns in the set. Multiple patterns can be useful for 
specifying observables that are functions of multiple sites on a 
molecule, e.g., the total phosphorylation level of a protein that 
can be phosphorylated at multiple sites.  

   17.    The .gdat and .cdat files produced by BioNetGen simula-
tion commands are ASCII text files that list the time courses 
of observables and concentrations, respectively, in a tabular 
format. The first line of each file is a header beginning with 
a “#” character, followed by a whitespace-separated list of 
strings identifying the contents of each column. The first 
column is “time” in both .gdat and .cdat formats. In a .gdat 
file the remaining columns list the observable names cor-
responding to each column. In the .cdat file, the remaining 
columns list the index of the species concentration corre-
sponding to each column.  

   18.    The syntax of a line in the reaction rules block is

  [ index ]  rPattern1  [+ rpattern2 ] …  arrow pPat-
tern1  [+ pPattern2 ] …  rateLaw1 [, rateLaw2 ] 
[ command1 ]… 

  where each  Pattern  is a valid BioNetGen pattern, arrow is 
one of “–>” or “<–>,” each  rateLaw  is a parameter or a rate 
law function ( see   Note    20  ), and commands have the syntax 
described in  Subheading    3.5.7  .  

   19.    If a component of a molecule appears in a reactant pattern, 
the corresponding molecule in the product pattern, if it is 
not deleted, must include that component. Failure to include 
the full set of components referenced by the reactant pattern 
will produce an error. Thus, the rule “A(a)–> A(b) kab” 
produces an error, even if the A molecule has both compo-
nents a and b.  

   20.    Other rate laws are invoked by using one of the keywords for 
the allowed rate law types followed by a comma-separated 
list of numerical values or formulas in parentheses. As of 
this writing, the three recognized rate law types are “Ele”, 
“Sat”, and “MM”. The formula for the Ele rate law is 

   1 1
1

Ele( ) ,
M

i
i

k k x
=

= ∏    

  where  M  is the molecularity of the reaction (i.e., the number 
of reactants) and  x   i   is the population level of the  i th reactant. 
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This rate law type is specified by default when only a numeri-
cal value or a formula is given following the product patterns 
in a rule, as described in  Subheading    3.5  . The current ver-
sion of BioNetGen supports a few nonelementary rate law 
formulas, primarily to allow simulation of models from the 
literature that incorporate these rate laws. The formula for 
the Sat rate law is 

   cat m cat m 1
1

Sat( , ) / ( ) ,
M

i
i

k K k x K x
=

= +∏    

  where  x  1  is the population level of the reactant matching 
the first reactant pattern in the rule. Note that   max cat 2V k x=
  and  K  m  are the usual Michaelis–Menten parameters if  M = 
2  (47)  and that these parameters should be specified in con-
sistent units. An example of a rule that uses this rate law is 

  
Prot(Y ~ U)+ Kinase(aloopY ~ P)®Prot(Y ~ P)+

e(aloopY ~ P) Sat(kcat,Km)
  

   The formula for the MM rate law is 

   
cat m cat 1 2 1m( , ) / ( )MM k K k x x K x+′ ′=   ,  

where   ( )2
1 1 2 m 1 2 m m 1( ) ( ) 4 / 2x x x K x x K K x= + − + + − +′   . 

  Note that this rate law type is applicable only if  M  = 2. The 
MM rate law type is the same as the Sat rate law type when 
 M  = 2 except that  x  1  is replaced by  x  ′ 1  to account for the 
amount of “substrate” bound to “enzyme.” In the near 
future it will be possible to define rate laws using arbitrary 
mathematical formulas.  

   21.    A single-site rate law characterizes the rate of a reaction 
that involves the formation or dissolution of a single bond. 
In some cases, a reaction can occur in multiple ways that 
are indistinguishable. In these cases, the single-site rate law 
needs to be multiplied by a statistical factor to obtain the 
appropriate observable rate of the reaction. For example, if 
an antibody with two identical binding sites associates with 
a monovalent hapten, then there are two indistinguishable 
ways that this reaction could occur. If the single-site rate 
constant is  k , then the observable rate at which the reaction 
occurs is 2  k  [IgG] [hapten], where [IgG] is the concentra-
tion of bivalent antibody, [hapten] is the concentration of 
monovalent hapten, and the statistical factor of 2 accounts 
for the fact that hapten can add to either of the two sites 
on the antibody. BioNetGen in generating or simulating a 
reaction network automatically accounts for such statisti-
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cal factors under the assumption that the rate law associated 
with a rule applies to a single-site reaction. A modeler should 
therefore be careful to always specify a single-site rate con-
stant when writing a rule. Likewise, BioNetGen automati-
cally adds a symmetry factor of 1/2 to account for reactions 
such as A + A →  product(s), a factor of 1/6 to account for 
reactions such as A + A + A →  product(s), etc. In general, 
when assigning a rate constant to the elementary rate law 
of a rule, one should assign the constant appropriate for a 
reaction of the form A+B → product(s) where in this reac-
tion there is a unique path from the reactants to product(s). 
BioNetGen will automatically correct rates of reactions for 
statistical and symmetry factors. This feature is important 
because these factors often vary from reaction to reaction 
within a class of reactions defined by a single rule  (28) .  

   22.    Any component in a reaction rule may be tagged by adding 
the “%” character followed by the tag name. The scope of a 
tag is local to the rule in which it appears.  

   23.    The application of rule 1 of   Listing    1   to the species { EGF(R), 
EGFR(L,CR1 ,Y1068~U ) ,  EGFR(L,CR1 ,Y1068~P ) , 
 EGFR(L,CR1 ,Y1068~P!1 ) .Grb2(SH2!1,SH3)}, pro-
duces the following reactions: 

    EGF(R) + EGFR(L , CR1 ,Y1068~U ) -> 
  EGF(R!1) . EGFR(L!1,CR1 ,Y1068~U )  kp1 

    EGF(R) + EGFR(L,CR1 ,Y1068~P)-> 
  EGF(R!1) . EGFR(L!1,CR1 ,Y1068~P )  kp1 

    EGF(R) + EGFR(L,CR1 ,Y1068~P!1 ) .Grb2
(SH2!1,SH3) ->\  

    EGF(R!2) . EGFR(L!2,CR1 ,Y1068~P!1 ) .Grb2(SH2!1,
SH3) kp1 

   where the images of the reactant patterns are shown in bold 
and the reaction centers are underlined. The rate law for an 
individual reaction has the same format as a rate law in a 
reaction rule ( see   Note    18  ).  

   24.    The scope of a bond name is restricted to the pattern in which 
it appears. Bond names are not used in establishing the cor-
respondence between reactant and product patterns. Thus, the 
rule “A(a!1).B(b!1~U) –> A(a!2).B(b!2~P)” has no 
effect on the bond between A and B even though in the specifi-
cation the name of the bond changes between the reactant and 
product sides. Similarly, in the expression “A(a!1).B(b!1) 
+ C(c!1).D(d!1)” the fact that both bonds have the same 
name has no consequence.  

   25.    Internally, BioNetGen represents all reactions generated 
by rules as unidirectional and maintains this representation 
when generating a .net file or exporting networks to SBML 
and MATLAB M-file formats.  
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   26.    Consider the action of the following two rules on the 
 initial species “A(a1!1,a2!2).B(b1!1,b2!2)”, which 
describes a complex between A and B molecules connected 
by two bonds. Both rules break the bond between the a1 
component of A and the b1 component of B. The first rule, 
“A(a1!1).B(b1!1) –> A(a1)+B(b1),” has a molecular-
ity of two in the products, and thus does not apply to this 
complex because breaking the bond still leaves the complex 
held together by the bond between a2 and b2. The second 
rule, “A(a1!1).B(b1!1) –> A(a1).B(b1)”, does not 
require dissociation of the resulting complex and gener-
ates the reaction “A(a1!1,a2!2).B(b1!1,b2!2) –> 
A(a1,a2!1).B(b1,b2!1)”.  

   27.    Describing dephosphorylation as a first order reaction involv-
ing only the substrate assumes that the responsible enzyme, 
a phosphatase is constitutively active and is present at an 
excess and unchanging level. Dephosphoryation reactions 
have been handled this way ( see , e.g.,  ref.   33)  because the 
identities of the phosphatases acting on a particular substrate 
are often unknown.  

     28.    The two products are 
 EGF(R!1). EGF(R!2).  EGFR( CR1!3,L!1, Y1068~U) .

  EGFR(CR1!3,L!2,Y1068~P) 

   EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P). 

  EGFR( CR1!3,L!2, Y1068~U) , which are isomorphic, as 
can be verified by switching the order of the two EGF and 
two EGFR molecules and renumbering bonds 1 and 2.  

 29.    A correction is required for  rules  that are symmetric  (26) . 
BioNetGen automatically detects rule symmetry generates 
reactions with the correct multiplicity. Consider the sym-
metric rule “A(a) + A(a) → A(a!1).A(a!1) k” 
applied to the set of species {A(a,Y~U), A(a,Y~P)}. 
The following reactions will be generated 

  A(a,Y~U) + A(a,Y~U) → A(a!1,Y~U).A(a!1,Y~U) 
0.5*k 
 A(a,Y~U) + A(a,Y~P) → A(a!1,Y~U).A(a!1,Y~P) k 
  A(a,Y~P) + A(a,Y~P) → A(a!1,Y~P).A(a!1,Y~P) 
0.5*k 

 where the first and third reactions are symmetric and thus 
have a multiplicity of ½, for the reason discussed above in 
 Note    21  . The second reaction has a multiplicity of 1 because 
there is only one way that a bond may be added to join the 
two A molecules.  

   30.    This would not be the case if EGFR had another binding 
partner that could bind through the CR1 domain, such as 
another member of the ErbB family of receptors to which 
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EGFR belongs. Consider a simplified example of the protein 
“A(Y~U,b)”, where the b component is a binding site that 
can bind either to the b site of a kinase B or to the b site of a 
kinase-dead mutant of B called Bi. The rule “A(Y~U,b!+)–> 
A(Y~P,b!+)” would not capture the described mechanism 
because both  A(Y~U,b!1) .B(b!1) and  A(Y~U,b!1) .
Bi(b!1) would generate phosphorylation reactions under 
action of this rule. The most obvious way to address this 
problem is to explicitly specify that B must be present 
for the rule to apply, as in “A(Y~U,b!1).B(b!1)–> 
A(Y~P,b!1).B(b!1)”.  

   31.    Such counters can prevent the steady_state flag of 
simulate_ode from reaching steady state because the 
counter species will increase linearly in time if the steady-
state concentration of the A-containing species is nonzero. 
If one wishes to preserve possible steady-state behavior, the 
concentration of the Trash species should be fixed by pre-
pending a “$” character to its declaration in the seed spe-
cies block ( see   Note    10  ). In other words, Trash should 
be declared as a seed species with fixed value using the line 
“$Trash 0” in the seed species block.  

   32.    Species are compared during network generation by generating 
a string label for the species from a canonical ordering of the 
molecules, components, and edges  (26) . A canonical order-
ing is one that guarantees that two graphs will generate the 
same label if and only if they are isomorphic  (48) . In this way, 
the problem of determining graph isomorphism is reduced to 
string comparison and testing a species found in a new reaction 
for isomorphism with existing species is reduced to looking up 
its label in a hash table. For labeled graphs, such as those used 
in BioNetGen to represent species, the problem of canonical 
ordering is trivial if all labels in the graph are unique (lexical sort-
ing will suffice). More powerful methods are needed if there are 
multiple occurrences of nodes with identical labels  (49) . There 
are three different methods that BioNetGen can use to gener-
ate canonical labels and test species for isomorphism. To spec-
ify a canonical labeling method the command “setOption
(“SpeciesLabel”, method );” is placed anywhere in 
the BNGL file outside of the input blocks and before the 
first action command. In this command  method  is Auto, 
HNauty, or Quasi. Use of this command is optional unless 
overriding the default method, which is Auto. The default 
method used by BioNetGen for generating canonical labels 
is called “Auto,” which works by generating a quasi-canonical 
label that includes all information about the Species except the 
bonds, for which only the bond order of each Component 
is listed. These quasi-canonical labels are quick to generate, 
but they cannot distinguish all nonisomorphic species. Thus, 
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any two species that share a quasi-canonical label must be fur-
ther checked for isomorphism directly, for which BioNetGen 
uses a variant of the Ullmann algorithm  (50) . This method is 
always correct, but may be very slow if the number of iden-
tical Molecules or Components in a complex is greater than 
a handful, because it requires checking of a large number of 
permutations. A second exact method called “HNauty” is 
available that gives more robust performance when species are 
formed that involve substantial numbers of repeated elements. 
HNauty is a generalization of the Nauty algorithm of McKay 
 (49)  developed specifically to handle graphs representing spe-
cies in BioNetGen  (51) . HNauty is slower than Auto when 
most of the species in a network have low stoichiometry, but is 
sometimes required to simulate networks in which substantial 
oligomerization occurs. In some cases, such as when oligomers 
are restricted to linear chains, the quasi-canonical strings used 
as a filter by the Auto method turn out to be canonical. If that 
is the case, the “Quasi” method can be used to turn off the 
additional isomorphism check for species that match an exist-
ing quasi-canonical label, which can significantly accelerate 
network generation. This method should only be used when 
the user can confirm that the quasi-canonical labels are in fact 
canonical; otherwise, failure to resolve nonidentical species will 
result in unpredictable behavior.  

   33.    If a rule set implies a large or unbounded network and a 
user attempts to generate the network, BioNetGen may not 
complete execution in a reasonable amount of time. In such 
cases a user has several options: (1) Restrict network generation 
using arguments to generate_network, as discussed in 
 Subheading    3.6  ; (2) Use the “print_iter 1” option of 
the generate network command to cause BioNetGen 
to dump an intermediate .net file for each iteration of rule 
application and inspect the resulting .net file for indications 
of runaway polymerization that may be unintended; (3) Run 
a stochastic simulation with on-the-fly network generation 
( see   Subheading    3.7.2  ); (4) Wait for the network-free simu-
lation engine(s) to become available ( see   Fig.    2  ). (5) Use the 
macro model reduction module for BioNetGen, which uses 
the algorithms described in  (52–  54)  to reduce the size of the 
network that needs to be generated to calculate the specified 
observables. The module is included in BioNetGen distribu-
tions 2.0.47 and later, and is invoked using the command 
“MacroBNG2.pl --macro  file .bngl”.   

34.    The .net file produced by BioNetGen is a BNGL file with 
the three additional blocks species, reactions, and 
groups, which contain the species, reactions, and observ-
able function definitions that result from network genera-
tion. The syntax for the species block is identical to that 
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of the seed species block in the BNGL file. It contains a 
complete list of the species in the network and their concen-
trations at the current time. The syntax for each line in the 
reactions block is 

   index   reactantListproductList   [ multiplicity *]
 rateLaw  

  where the  reactantList  and  productList  are comma-
separated lists referring to species by index,  multiplicity  
is an optional factor multiplying the rate law, and  rateLaw  
is either a single parameter (for an elementary type) or one 
of the additional types ( see   Note    20  ). An example of a reac-
tion entry is 

  1 1,7 8 2*kp1 

  which specifies that species 1 and 7 undergo a bimolecular 
association to produce species 8 with an elementary rate law 
governed by the rate constant 2*kp1. The syntax for each 
line in the observables groups block is 

   index   group Name speciesList  

  where the  speciesList  is a comma-separated list 
of species indices, each element of which has the form 
[ weight *] speciesIndex . An example of a sum defini-
tion for observable 6 of the example model in  Listing    1   is 

  6 Sos1_act 13,16,18,20,22,2*23 

  In the sum, the population level of Species 23 has a weight 
of two, whereas the population levels of all other species 
have the default weight of one.  

     35.    The prefix command sets the basename to be the value 
of its argument, whereas the suffix command appends 
its argument to the basename. For example, the command 
“prefix⇒test” would set the basename to test, and the 
command “suffix⇒test” would append “_test” to the 
basename. The scope of changes to the basename is local to 
the command in which the prefix or suffix commands 
appear. The basename for subsequent commands reverts to the 
basename of the file unless overriden by additional commands. 
The sole exception to this is the readFile action, which sets 
the global basename to either the value of the prefix com-
mand, if present, or to the basename of the file command.  

   36.    In practice, a modeler should be careful to check by trial 
and error that t_end is sufficiently large to reach steady 
state. Recall that BioNetGen expects model parameters and 
variables to have consistent units, so times specified in simu-
lation commands (e.g., by assigning a value to the t_end 
parameter) should be given in units consistent with those 
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of rate constants, which have units of inverse seconds in all 
examples presented here.  

   37.    In addition to reporting simulation output at evenly spaced 
intervals, as specified using the t_end and n_steps param-
eters, BioNetGen can also report results at any set of times 
specified in the sample_times array. When this option is 
used, values of the t_end and n_steps parameters should 
not be specified. An example of nonuniform time sampling 
specified in this way is the command 

  simulate_ode({sample_times [1,10,100]}); 

  which will result in observables and species concentrations 
being reported at  t  = 0 (the start time), 1, 10, and 100.  

   38.    Rule-based networks tend to be sparse, that is, the vast 
majority of elements of the Jacobian matrix are zero (the 
elements of this matrix are   ∂

∂= ( ) /i

j

f
ij xJ x   , where   =� ( )ix fi x    is 

the ODE describing the kinetics of species  i ). This may not 
be the case for networks involving extensive oligomeriza-
tion. Empirically, we have found that networks with more 
than a few hundred species tend to be accelerated by the use 
of sparse methods, with major gains occurring for networks 
of thousands to tens of thousands of species. The largest 
network that has been simulated with BioNetGen has about 
50,000 species and 100,000 reactions. Above that point, the 
2 gigabytes of memory addressable on 32 bit architectures is 
exceeded.  

   39.    The setConcentration command has the syntax 

 setConcentration( species , value ) 

 where  species  is a valid BioNetGen species specification 
( see   Subheading    3.3  ) and  value  is a number or formula.  

   40.    Note that if the initial concentration of a species is set to a 
parameter or a formula, changing the value of the parameter 
or of parameters in the formula using the setParameter 
after the first simulation is run will not affect the species con-
centrations, which are overwritten following the completion 
of the simulation.  

   41.    It is straightforward to write scripts that utilize these com-
mands to automate such tasks as parameter scans or averaging 
multiple stochastic simulations. The Perl script scan_var.pl, 
which is provided in the Perl2 directory of the BioNetGen 
distrbution, provides a simple example that can be used for 
scanning the value of a single parameter and could be easily 
extended to perform more complex actions.  

   42.    A .net file with the name “ basename .net” is automatically 
generated prior to execution of any simulation command and 
is read by the run_network program, which is executed as 
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a separate process. If a .net file with the same name already 
exists, it is overwritten. If multiple simulation commands are 
given in the same input file, it may be useful to use a different 
basename for each (using either the prefix or suffix 
commands), so that the input network to each simulation can 
be inspected later for information and debugging purposes. 
In the example shown in  Listing    1  , the first simulate_ode 
command produces the file “egfr_simple_equil.net”, 
the second simulate_ode command produces the file 
“egfr_simple.net”, and the simulate_ssa produces 
the file “egfr_simple_ssa.net”.  

   43.    BioNetGen’s simulation engine, Network, has a command 
line interface that can be used directly, bypassing BNG2.pl 
altogether. Details of this interface are provided in the source 
code of run_network.c, which is located in the Network2 
subdirectory of the distribution. A summary is provided by 
running the appropriate run_network executable in the 
bin directory of the distribution. In addition, BNG2.pl 
outputs the exact command used to execute run_network 
following the tag “full_command:”  

   44.    Note that a nearly identical network of species and reac-
tions can be generated by the single rule “R(r)+L(r)<–> 
R(r!1).L(r!1) kp1,km1,” where the difference is that 
in the single-rule network all reactions will have the same rate 
constant. This difference is important physically, because lig-
and that is bound to receptor is restricted to diffuse on the 
surface of the cell, whereas free ligand diffuses freely in three 
dimensions. Although restriction to the cell surface decrease 
the diffusion constant of the ligand, the effective concentration 
of receptor binding sites greatly increases resulting in a strong 
enhancement of the ligand-receptor binding rate  (55) .  

   45.    Rule 3 of  Listing    3   is the simplest ring closure rule that can be 
specified for this system, and permits the formation of all pos-
sible rings in this system, including a monomeric ring in which 
a single receptor binds the same ligand twice. To exclude this 
possibility, which may be sterically unfavorable, one could 
extend the rule to read “L(l!1).R(r!1,r).L(l) <–> 
L(l!1).R(r!1,r!2).L(l!2) kp3,km3,” which forces 
the ring closure to involve a ligand molecule other than the 
one to which the R molecule is bound. It is also possible to 
restrict the range of chain sizes that can undergo ring closure 
by explicitly including all of the molecules that form the ring, 
or by using a combination of include_reactants and 
exclude_reactants commands. For example, the add-
ing the commands “include_reactants(1,R.R)” and 
“exclude_reactants(1,R.R.R.R)” to either ring clo-
sure rule would only allow the formation of rings containing 
two or three R molecules. This is desirable from a biophysical 
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perspective because the rate of ring closure may depend on the 
distance between the two endpoints of the chain that are being 
connected  (56) . In the future, it will be possible to specify such 
relationships in a single rule using rate laws that depend on the 
specific properties of a species matched by a pattern in a rule.  

   46.    Actin, which is one of the major components of the cytoskel-
eton, forms branched structures that play a critical role in many 
cellular processes including motility  (57) . A simple model for the 
formation of branched actin structures is given by the definition 
of an actin molecule as “A(b,p,br),” where the components 
b, p, and br represent the barbed end, the pointed end and the 
branching sites of actin respectively, a rule for chain elongation 
“A(b)+A(p)<–> A(b!1).A(p!1) kp1,km1”, and a rule 
for chain branching “A(br)+A(p)<–> A(br!1).A(p!1) 
kp2,km2.” The first rule generates linear filaments of actin, 
which become branched through the action of the second 
rule. Filaments may be extended either through the addition of 
monomers or by combination with another filament.  

   47.    The basic syntax is “ molecule op number ,” where  mole-
cule  is a molecule name,  op  is one of the comparison operators 
“==,” “<,” “>,” “⇐,” or “>=,” and  number  is a non-negative 
integer. This allows the stoichiometry of a single molecule type 
within a complex to be selected. If the observable is of type 
Molecules (the default), the observable will reflect the total 
number of molecules in species matching the selected stoichi-
ometry. If the observable is of type Species, the observable 
will reflect the total population of species matching the selected 
stoichiometry. The current syntax allows stoichiometry of only 
a single molecule type to be considered at a time.  

   48.    In our experience, the combinatorial explosion becomes a 
major bottleneck to generating and simulating networks in 
any realistic model that considers more than a handful of 
components. A recent model of EGFR signaling by Danos 
et al.  (27)  provides an example. The model considers 13 pro-
teins, a small subset of the proteins that are active in EGFR 
signaling, and is composed of 70 rules that generate about 
10 23  species. Other rule-based models of growth factor sign-
aling have produced similar eye-popping numbers  (58,   59) . 
Even models that consider a few components may exhibit 
polymerization. For example, a simple model of Shp2 regu-
lation constructed in BioNetGen involves only two molecule 
types, and yet must be truncated because the combination of 
binding and enzyme–substrate interactions generates infinite 
chains  (36) . For the trivalent ligand bivalent receptor prob-
lem described in Yang et al.  (31)  there is a phase transition in 
which nearly all of the receptors coalesce into a single giant 
aggregate, which makes accurate truncation of the network 
effectively impossible.          
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      Chapter 6

 Ingeneue: A Software Tool to Simulate 
and Explore Genetic Regulatory Networks       

     Kerry J.   Kim  

      Summary 

 Here I describe how to use Ingeneue, a software tool for constructing, simulating, and exploring models 
of gene regulatory networks. Ingeneue is an open source, extensible Java application that allows users 
to rapidly build ordinary differential equation models of a gene regulatory network without requiring 
extensive programming or mathematical skills. Models can be in a single cell or 2D sheet of cells, and 
Ingeneue is well suited for simulating both oscillatory and pattern forming networks. Ingeneue provides 
features to allow rapid model construction and debugging, sophisticated visualization and statistical tools 
for model exploration, and a powerful framework for searching parameter space for desired behavior. 
This chapter provides an overview of the mathematical theory and operation of Ingeneue, and detailed 
walkthroughs demonstrating how to use the main features and how to construct networks in Ingeneue.  

  Key words:   Software ,  Computer simulation ,  Biological models ,  Gene expression regulation , 
 Genetic models ,  Signal transduction ,  Regulator genes ,  Kinetics .   

 

 Many essential cellular and developmental functions are accom-
plished by groups of genes working together. Both traditional 
and recent high-throughput systems biology approaches have 
greatly expanded our knowledge of the regulatory interactions 
between genes. From this wealth of information, we are begin-
ning to understand higher-level function arises in gene networks. 
However, it is difficult to synthesize the available information to 
produce useful hypotheses and predictions. 

 Computer simulations are useful and powerful tools for 
understanding genetic networks. Reconstituting the network of 

 1. Introduction  
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regulatory interactions between genes into a set of rules or equa-
tions allows computers to predict and explore the consequences 
of those interactions. Computer simulations thus provide a bridge 
between molecular mechanism and network function. A common 
way to build computer models is to translate the biological inter-
actions into a set of differential equations (for examples,  see   refs.  
 1–  6 , for other ways of building models,  see   refs.   7–  12) . In such 
models, the rate of change of each biomolecule concentration is 
determined by adding its production and degradation terms, and 
the computer model calculates how those concentrations change 
over time. 

 The opportunities offered by computer modeling have 
prompted the development of software tools for both building 
and analyzing genetic networks. Specifically, computer simula-
tions of networks are useful for:
  •   Determining sufficiency of understanding . Human intuition 

fails when confronted with a sufficiently complicated system, 
such as a genetic network. Computer simulations provide 
a rigorous and objective way to explore the consequences 
of the known interactions and to determine whether such 
interactions can account for the observed behavior/task. A 
model that reconstitutes all known interactions but that fails 
to reproduce the behavior of the real network indicates that 
there are essential but undiscovered regulatory interactions 
required.  

 •   Prediction and hypothesis generation . With a working model 
of a network, it is easy to simulate various changes or pertur-
bations to the network, to explore “what-if” situations or to 
perform virtual experiments on the model. By doing this, the 
model will generate predictions for the network behavior that, 
if interesting, can be tested experimentally.  

 •   Providing explanatory power and mechanistic insight . A 
mechanistic model allows scientists to work through the 
causal chain of events in the operation of the network, which 
is particularly useful when the network exhibits nonintuitive 
behavior. By exploring the behavior of the model – aided by 
proper visualization tools – users can develop intuition for 
how the network works and fails under different conditions. 
For example, models of the yeast cell cycle show how cell 
cycle progression is tightly coupled to cell growth  (2) . Addi-
tionally, the explanatory power offered by modeling is useful 
in teaching dynamical systems theory and network thinking 
to students.  

 •   Insight into network emergent behavior . Networks are designed 
by evolution rather than an engineer, and general properties 
of networks are beginning to be determined. For example, 
one emerging design principle is that biological networks are 
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robust to quantitative variation: It has been shown that the 
 Drosophila  segment polarity network  (5,   13)  can continue to 
function despite enormous variation (several orders of mag-
nitude) in the kinetics. Such robustness is not a property of 
most human-designed systems, as they often require carefully 
matched components.    

  Ingeneue is a free, open source computer program that provides 
an intuitive and rapid way to build differential-equation-based 
models of genetic networks to tackle the problems listed above. 
It has tools to visualize the model output, systematically explore 
how quantitative changes alter model behavior, and automate 
searches for desired model behavior. Ingeneue was designed to 
be used by biologists without requiring extensive experience in 
programming and mathematics, and can be run on any lab com-
puter with Java installed (Mac, PC, or Unix). To aid new users, 
Ingeneue comes with a manual, several tutorials, in-program 
help, and several networks. Ingeneue can be easily extended and 
modified, and the Ingeneue download contains the documented 
source code. Finally, all input and output files used by Ingeneue 
are human-readable plain text files that can be imported into 
other software packages (such as Mathematica, Excel, Matlab, 
etc.), for specialized analysis. 

  Many programs can solve systems of differential equations rapidly 
and dependably (Mathematica, Matlab, etc.). The most difficult 
and challenging step is translating the known molecular facts, 
and the spatial arrangement of cells, into a system of differential 
equations. Ingeneue was designed to meet this challenge. 
Ingeneue can simulate networks in a single cell or in a 2D sheet 
of interacting cells as depicted in  Fig.   1 .  Figure   1A  shows the 
geometry of Ingeneue models: Each cell is hexagonal with seven 
compartments: one cytoplasmic compartment and six membrane 
compartments representing each side of the cell. Ingeneue models 
track the time evolution of the concentrations of all biomolecules 
in all cells and compartments.  

 Building a computational model from scratch is a significant 
undertaking, requiring one to specify and debug the system of 
equations (which can be thousands of equations in a large network 
with many cells), and also program the computer to solve and display 
the results. Ingeneue greatly simplifies the practice of building 
gene network models. One uses a text editor to write a plain text 
file that lists the important biomolecules (mRNA, proteins, and 
complexes) in the network and the regulatory interactions between 
them. Rather than writing differential equations, one tells Ingeneue 
what qualitative biological interactions occur: phosphorylation, 
translation, transcriptional activation, dimerization, etc., and 
the mathematical forms of these processes are already defined in 

 1.1. Overview of 
Ingeneue 

 1.1.1. Ingeneue Simplifies 
Network Construction 
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Ingeneue. Ingeneue allows users to specify networks in terms of 
predefined building blocks (called affectors), and Ingeneue assembles 
the mathematical system of differential equations. Ingeneue currently 
comes packaged with over 80 affectors (which are formulae for how 
molecules combine or interact), and additional affectors can be 
added easily by anyone familiar with Java programming. 

 This strategy building networks by selecting the right affec-
tor is faster and more intuitive than writing differential equations 
because it allows the model builder to focus on the biology rather 
than algebra. Should one want to modify the network, it is clear 
what interactions are already present and which to modify, bypass-
ing the need to interpret complex lists of equations. Additionally, 
debugging an Ingeneue network is easier because mistakes are 
less likely to be made than typing the equations by hand.  

  After constructing a model, one can explore the behavior of 
the model, and search for desired behavior. The behavior of the 
model depends on the parameters (rate constants, expression levels, 
etc.) and the initial conditions. Ingeneue offers a powerful tool 
for automated searches of parameter space for combinations that 
cause specific network behavior (such as making a particular 
spatial pattern). That is, one can specify the target network 
behavior and have Ingeneue systematically or randomly explore 
parameter values or initial conditions, and simulate the effects 
of various mutations or other perturbations. This is important, 

 1.1.2. Modeling Analysis 
Tools in Ingeneue 

  Fig. 1.    Modeling a cellular layer with Ingeneue. ( A ) Geometry of a 3 × 4 cell Ingeneue model. Ingeneue simulates a two-
dimensional sheet of hexagonal cells, with all cells containing the same genetic network. Cells have one cytoplasmic 
compartment, and six membrane-bound compartments (one for each side of the cell). Models have periodic (toroidal) 
boundary conditions, with the right edge wrapping around to the left, and the top connected to the bottom. ( B ) Schematic 
of a discrete cell Turing network. This is a two-gene network with a membrane-bound inhibitor and a cytoplasmic activator. 
The activator protein turns on transcription of both genes, while the inhibitor blocks the action of the activator. The nine 
nodes in the network are the activator mRNA (act), the inhibitor mRNA (inh), the cytoplasmic activator protein (ACT), and 
the six membrane-bound compartments of the inhibitor protein (INH). The INH can diffuse laterally to different sides of 
the same cell and diffuse across to neighboring cells. All nodes also are degraded at different rates. Legend shows the 
different biological processes corresponding to each  arrow , and the name of the corresponding Ingeneue affector.       
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because in most networks, the parameters have not been experi-
mentally measured, requiring exploration of parameter space  (13,   14)  
to determine whether the model can reproduce the biology.  

  Ingeneue was developed initially to reconstitute the interactions 
between the core genes in the  Drosophila  segment polarity  (5,   13)  
and neurogenic  (6)  networks. In these, the network exists in a  sheet 
of cells that communicate through membrane-bound messenger 
molecules to stabilize spatial patterns of gene expression. The beha-
vior of the model depended on the model parameters (reaction 
rates and other quantitative traits of the network), and Ingeneue 
searched for parameter sets that reproduce the observed pattern of 
gene expression. Each parameter was randomly varied over seve-
ral orders of magnitude and, surprisingly, the model produced 
working behavior over the full range of nearly every parameter, and 
also showed a remarkable robustness to parameter changes. 

 Ingeneue is currently being used to investigate a cell cycle 
oscillator, pattern forming in  C. elegans  vulval development, the 
effects of ploidy (comparison of diploid vs. haploid networks), and 
the robustness of randomly wired networks. It has also been used in 
several courses, and has been a useful tool for teaching students how 
to build models of biological networks. Ingeneue has been freely 
available for download on the Web (with source code) since 2000.    

 

 Ingeneue is written in the object oriented programming language 
Java, and can be modified easily by the scientific community. The 
source code is freely available and included with the Ingeneue 
download. This section describes the main design features under-
lying the mathematical implementation and software framework 
of Ingeneue models. 

  Ingeneue can simulate a network in a single cell or in a two-
dimensional sheet of cells. Ingeneue uses periodic (toroidal) 
boundary geometry with the left edge touching its right edge 
and the top touching the bottom. Ingeneue models are specified 
in a plain-text file that contains all the information to simulate the 
network: the width and height of the sheet of cells, the relevant 
biomolecules (mRNA transcripts, proteins, complexes, etc.), the 
interactions between the biomolecules, initial conditions, and all 
parameters. In Ingeneue networks, Nodes refer to the concentra-
tion of a particular biomolecule in a specific compartment. 

 When Ingeneue reads a network file, it constructs the set of 
differential equations describing the model kinetics ( see   Note    2  ). 
The interactions between biomolecules are defined within a single 

 1.1.3. Development and 
Uses of Ingeneue 

 2. Ingeneue 
Implementation  

 2.1. Network 
Construction 
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cell, or between two neighboring cells, and Ingeneue then repli -
cates the network in all cells in the sheet. To allow for commu ni-
cation between cells, Ingeneue membrane bound nodes can diffuse 
to neighboring cells, or interact with nodes on the opposing cell 
face ( see   Fig.   1B  for an example). 

  For most genetic networks, the differential equation describing 
how a node X (concentration within a particular compartment) 
changes over time is the sum of contributions from several 
biological processes:

= − ± ±d
synthesis degredation conversion fluxes.

d
X
t    

Figure   1B  shows a detailed schematic for a hypothetical 
network. The inh mRNA in a cell depends on its rate of synthesis 
(transcription) and degradation. In terms of the biological processes, 
the inh mRNA concentration [inh] in  Fig.    1B   is given by:

( ) ( )= −M inh

d[inh]
Transcription [ACT], , , Decay [inh], ,

d
K T H

t
n

     

 where the rate of transcription is a function of concentration of 
the transcriptional activator [ACT] and the  K ,   n  , and  T  M   param-
eters described in  Subheading    2.2.1  . Likewise, degradation 
(first-order decay) depends on [inh] and its half-life  H  inh . Inge-
neue has the mathematical form for these processes predefined 
in objects called affectors that encapsulate how a single process 
changes a node. Most processes are independent of each other, 
thus the individual affectors can be added to describe how the 
node changes over time (Ingeneue has advanced features allow-
ing for interactions using metaaffectors, see the Ingeneue docu-
mentation for details).  

  The affectors that come with Ingeneue represent processes either 
with first- or second-order mass action kinetics (such as decay, 
translation, and binding/unbinding), or are built from Hill 
functions to quantify complex processes (such as transcriptional 
regulation or cooperative enzymatic reactions). The mathemati-
cal form to represent many biological processes is unknown, and 
Hill functions are an approximation that captures the qualitative 
behavior of many processes (saturation and monotonicity), and 
can be tuned with few parameters. The Hill functions   F   (rep-
resenting activation) and   Y   (representing inhibition) are math-
ematically defined as:

( )

( ) ( )

=
+

= −

[Node]
[Node], , ,

[Node]
[Node], , 1 [Node], , .

K
K

K K

n

n nF n

Y n F n  

 2.1.1. Mathematical 
Framework 

 2.2. Hill Functions 
and Parameterization 
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   F   varies from 0 to 1.  K  is the value of [Node] for   F   = 0.5, 
and   n   determines the steepness or apparent cooperativity of the 
curve. Use of the Hill equation assumes that the components are 
in pseudo-steady-state equilibrium.  Figure    2   shows a plot of the 
Hill function   F  .  

 More complicated processes such as transcription under the 
control of multiple activators and repressors are constructed 
by combining Hill functions  (15) . For example, consider tran-
scription under the influence of one activator and one inhibi-
tor with the inhibitor titrating away the activator according 
to a Hill function. In this, the remaining effective activa-
tor [EA] = ( )( )−[ACT] 1 [INH], ,I IKF n  and the transcription 
rate is ( )[EA], ,A AKF n . Additional details for these complicated 
affectors can be found in the Ingeneue documentation for Affec-
tors, a tutorial on writing Ingeneue affectors bundled with Inge-
neue, and in  (15) .  

  Most affectors in Ingeneue are nondimensionalized and have a 
different form than one might expect from standard chemical 
reaction kinetics. Nondimensionalization is a standard technique to 
have all variables changed to dimensionless scalar quantities. This is 
not an approximation, but a rescaling that substantially reduces the 
number of free parameters in the model while allowing the model to 
maintain its full dynamical range of behaviors. The cost of this is that 
the meaning of many parameters is altered, as explained below. For 
in-depth discussion of nondimensionalization, see the supplements 
in  (13,   15)  and the dimensional analysis section in  (16) . 

 Ingeneue uses a nondimensionalization strategy where most 
nodes are constrained to the range from 0 to 1. All nodes, time, 

 2.2.1. Nondimension-
alization 

  Fig. 2.    Plots of the Hill function   F   for three different combinations of  K  and   n  . The 
activator concentration is [Act] and   F   varies from 0 to 1. The apparent cooperativity,   n  , 
determines the steepness of activation; high values are switch-like, lower values are 
more shallowly graded.  K  is the value of [Act] when   F   is 0.5; low levels of  K  correspond 
to strong activation (little activator needed for full effect).       
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and parameters become scalar quantities with no units/dimen-
sions by using the following change of variables:

  

o

o

,
( ) ( ),

t t
x t x x

t
t

=
=    

 where  t  and  x ( t ) are the dimensional time and node (concentra-
tion),  t  o  and  x  o  are scaling factors for nondimensionalization, and 
  t   and  x (  t  ) are the nondimensional time and node. The scaling 
factors  t  o  and  x  o  are arbitrary, and so we will set them to values so 
the maximum steady state due to synthesis and first-order decay 
for any node  x  is 1. To do this, one simply solves for the maximal 
steady-state value when synthesis is maximal and degradation is 
minimal. For example, the differential equation governing inh in 
 Fig.    1B   using the equations in  Table    1   is  

  Table 1 
  Mathematical form of affectors    

 Process and 
affector name  Formula 

 Nondimensional 
formula  Parameters 

 Transcription 
activated by 1 
activator (ACT) 
(Txn1AAff) 

 TMF([ACT], K, n)  

ACT

(ACT( ), , )K
H

F t ¢ n
¢

   T  M  = maximum transcription 
rate 

  K  = half maximum [ACT] 
  K¢  = half maximum ACT(  t  ) 
   n   = cooperativity of activation 
 H¢ACT = rate of approach to 

steady state 

 Translation 
of mRNA 
into protein 
(TlnAff) 

 [mRNA]RT 

mRNA

mRNA( )
H

t
¢

  R  T  = maximum translation rate 
 H¢mRNA = rate of approach to 

steady state 

 First-order decay 
of a Node 
(DecayAff) Node

[Node]
H

−
 

Node

Node( )
H

t
¢

−
  H  Node  = mean lifetime of node 
 H¢Node = rate of approach to 

steady state 

 Diffusion of 
membrane-
bound Node to 
neighboring side 
(LMXferEAff) 
or cell 
(MXferOutAff) 

 [Node]D− Node( )D t−   D  = fraction of Node that 
diffuses per unit time 

 Transcription 
regulated by 1 
activator (ACT) 
and 1 inhibitor 
(INH) that can 
completely block 
the activator 
(Txn2aAff) 

( )

( )

M [EA], , ,

[EA] [ACT]

[INH], ,

A A

I I

T K

K

F n
y

n
=

( )

( )

F ¢ n
¢

t Y
t ¢ n

=
ACT

EA, ,

EA ACT( )

INH( ), ,

A

I

A

I

K
H

K

  T  M  = maximum transcription 
rate 

  K   A   = half maximum [ACT] 
K  ¢A   = half maximum ACT(  t  ) 
   n    A  = cooperativity of activation 
  K   I   = half maximum [INH] 
 K  ¢I   = half maximum INH(  t  ) 
   n    I   = cooperativity of inhibition 
 H¢ACT = rate of approach to 

steady state 
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[ ] ( )M
inh

d inh [inh]
[ACT], , ,

d
T K

t H
F n= −

 where [inh] is the dimensional concentration, [ACT] is the 
dimensional concentration of activator protein, and  H  inh  is the 
mean lifetime of the inh mRNA. The maximal steady state of 
[inh], [inh] ss , would occur when d[inh]/d t  = 0:

 

[ ] ( ) ss
M

inh

d inh [inh]
0 [ACT], , .

d
T K

t H
F n= = −

 Solving for [inh] ss  yields:

( )ss M inh[inh] [ACT], , .T K HF n=   
[inh] ss  is maximal when there is saturating [ACT] (when [ACT] 
>>      K , F → 1):

  Max([inh]ss) = TMHinh.   

 Now, if we transform the original equation for [inh] into the 
nondimensional form with inh o  = 1/Max([inh] ss ):

 

( )
inh

ACT( ), , inh( )d inh( )
.

d
K

H
F t ¢  n tt

t ¢
−

=

 In the nondimensionalized equation, one parameter,  T  M  is 
gone, and the nondimensional parameters  K  ¢  and H ¢ inh are now 
dimensionless, scalar quantities.  K  ¢  is the fraction of the nondi-
mensional ACT(  t  ) node for half-maximal activation of transcrip-
tion, and H ¢ inh is the fractional rate at which inh(  t  ) approaches 
steady state. Unitless parameters such as cooperativity,   n  , are 
unchanged by nondimensionalization.  Table    1   shows the nondi-
mensional form of the affectors used in Ingeneue.   

  Ingeneue has a scripting language to search for parameter sets that 
produce some desired behavior. Using this, Ingeneue will assign 
a score to each model run with different parameter sets measur-
ing how far that run was from the desired behavior according to 
selected criteria (correct pattern formation, steady state or oscil-
latory behavior, etc). Ingeneue can then save parameter sets with 
sufficiently good scores and subject them to additional analysis 
(i.e., simulating the effects of mutations or other perturbations).   

 

 This section shows how to use most features and tools in Ingeneue. 
Not all features are discussed here, but most are self-explanatory 
or are discussed in the manual or tutorials that come bundled with 
Ingeneue. 

 2.3. Searching 
Parameters for 
Desired Behavior 

 3. Using Ingeneue  
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     1.    Install Java version 1.4 or higher if it is not on your computer 
( see   Note    2  ).  

   2.    Download the latest version of Ingeneue from 
  http://ingeneue.com.     Follow the instructions on the Web 
site for installing Ingeneue.  

   3.    Read the README.txt file in the Ingeneue root directory 
or from the Ingeneue Web site; this file contains last-minute 
information and details for using Ingeneue.      

  Ingeneue comes with several networks located in the networks 
directory of Ingeneue. This section shows how to load the seg-
ment polarity network  (5,   13)  and how to use the Ingeneue 
interface to alter the model and visualize the results. The same 
procedure can be used for any network:
   1.     Start Ingeneue  following the instructions on the Ingeneue 

Web site or the README.txt file. When Ingeneue starts, you 
will see a large window similar to  Fig.   3 . You can access the 
manual and several tutorials through the help frame on the 

 3.1. Getting Ingeneue 

 3.2. Loading and 
Running the Segment 
Polarity Network 

  Fig. 3.    The Ingeneue window. Your view may be slightly different because of your operating system, Java version, or 
Ingeneue version, but there should be two frames displayed the first time you run Ingeneue: (1) The  Ingeneue Help  frame 
provides access to the Ingeneue manual, tutorials, and detailed documentation. (2) The  output console  displays any mes-
sages or errors generated by Ingeneue. The  menu bar  is at the  top  of the window (“File,” “Viewers,” etc.). Model runs are 
controlled by the “Start,” “Step,” and “Reset” buttons in the  upper right  corner of the Ingeneue window.       
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right side ( see   Note    3  ). Information and error messages are 
displayed in the console frame at the bottom.  

   2.     Load a network file  by clicking on “File → Open” (i.e., click 
on “File” from the menu bar, then click on “Open”). A dialog 
box will appear. From the main Ingeneue directory, navigate to 
the “networks/segmentpolarity” subdirectory, and open the 
file “spg1_01.net.” Two new frames will appear, one labeled 
“Network Viewer” ( Fig.    4A  ) showing a schematic diagram of 
the segment polarity network, and one labeled “Cell Viewer” 
( Fig.    4D  ) showing several black hexagons.  

   3.     Run the network  by clicking on the “Run” button in the upper 
right corner of the screen. When you do this, the system of 
differential equations will be integrated forward in time for 
1,000 min ( see   Note    1  ). The current simulation time (shown 
in the upper right corner in minutes) will rapidly increase, and 
the changing colors of the hexagons in the Cell Viewer show 
the progression of the pattern of gene/protein expression. In 
the Cell Viewer, each hexagon indicates one cell (similar to 
 Fig.    1A  ), and the concentrations of selected Nodes are shown 
in each cell with brighter colors indicating higher concentra-
tion. You may press the Run button again to rerun the model. 
The “Reset” button sets the time to 0, and each time the Step 
button is pressed, the time will advance a small amount (the 
exact amount varies because of the adaptive-step size numerical 
integrator,  see   Note    4  ) and the Cell Viewer will be updated.  

   4.     Change parameter values  by clicking on “Viewers→Network 
Parameters.” A new frame will appear ( Fig.    4C  ) that lists all 
parameters in the model, their current values, and how they 
should be sampled in a random search: the range (minimum 
and maximum), and whether the sampling should be linear or 
logarithmic (low values have a higher probability than high). 
The “step” values are unused. Try changing one or more 
parameters (be sure you change the value, not the low, high, 
or step setting), then click on the “set all” button (parameter 
values you type in are not applied until you click a “set” but-
ton). Rerun the model and note how some changes alter the 
final gene expression pattern, while others do not. Press “reset 
all” before proceeding to the next step; this which will restore 
all parameters to default values (defined in the net file).  

   5.     Change initial conditions  by clicking on “Viewers→Node 
Viewer” or double clicking on any cell (hexagon) in the Cell 
Viewer. A frame will appear ( Fig.   4B ) showing the initial and 
current concentration for all nodes in the selected cell. The 
top of the frame shows a field of hexagons that represent the 
different cells in the network; node values can be viewed for 
any cell by clicking on the cell. Try changing the initial condi-
tions for en and wg in several of the cells to see whether you 
can disrupt the pattern of gene expression.        
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  Fig. 4.    Tools for visualizing network behavior and altering model parameters or initial conditions. These are accessible 
from the Viewers menu after a network is loaded. ( A )  Network Viewer  shows a simplified graphical schematic of the con-
centrations (nodes) and interactions (affectors) in the network. Click on any node or affector for details. Selecting “turn 
on active display” under the active display menu will color-code each node according to its concentration, allowing you to 
visualize the model dynamics in a selected cell during the model run. ( B )  Node Viewer  shows the current and initial value 
of each node in the selected cell. Cells can be selected by clicking on the hexagon at the top of the window. The initial 
and current levels of each node can be changed by entering a new value for init or value, respectively. ( C )  Parameter 
Viewer  shows the current values of all model parameters, and allowed range. Parameters can be changed by entering a 
new value in the “value” column, followed by pressing the “set all” button at the top of the frame. The “reset all” button 
will restore all parameters to the value stored in the net file. ( D )  Cell Viewer  indicates the concentration of selected nodes 
in all cells, with black being 0, and brighter colors meaning higher concentration. During model running, an animation for 
the time progression of the pattern of expression is shown.       
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     1.     Plots of concentration vs. time  are shown by clicking on 
“Viewers → Time graph.” A new frame will appear, as shown 
in  Fig.    5A  , giving you three options for plotting node values 
vs. time:   

   2.     Manual method : To set up plots for one or a few specific nodes:
   (a)    In the Time Graph frame, click on “New,” and a new 

frame will appear ( Fig.   5A ). Click on the cell you wish 
to view in the field of hexagons, then click on the node 
you wish to plot, and select the color for plotting it. Click 
on “add” when you are done. Along the bottom of the 
graph, you will see the color legend for the graph. You 
can add as many nodes to the graph as you wish using this 
procedure.  

   (b)    To delete or alter the nodes in a graph, click on the node 
you wish to change in the legend at the bottom of the 
graph. This will summon the frame you used to choose the 

 3.3. Plots of 
Concentration 
Versus Time 

  Fig. 5.    Time graphs show a plot of node value vs. time for any node in any cell in the network. ( A ) Manual selection of 
node to plot; click on the “New” button on the  left , then in the new frame (shown) click on a  hexagon  to select the cell, 
and choose a node and display color to add to the graph. ( B ) Graph wizard menu for adding multiple nodes to a time plot. 
Accessible by clicking on “Auto Graphs → Graph wizard.” ( C ) After the nodes are selected, click on the “Run” button in 
the  upper right  corner, and the time plot will be displayed. ( D ) Time Graph options frame. Click on the “Opt” button on 
the  left  to the graphing options.       
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node, and you can now either delete the node from the 
plot by clicking on “delete,” or alter the node by select-
ing a different cell, node, or color, followed by pressing 
“Add.” To delete all the nodes from the graph, click on 
the “clr” button.  

   (c)     To make additional graphs, select “Graphs→Add new 
graph.”      

   3.     Automatic : To plot all nodes in all cells, click on “Auto 
Graphs→Quick Graphs.”
   (a)    “All Nodes/All Cells option, one cell per graph” displays 

all nodes grouped into graphs by cell as shown in  Fig.   
5C .  

   (b)     “All Nodes/All Cells, one node per graph” displays all 
nodes grouped into graphs by node.      

   4.     Graph wizard : Use this if you want to plot many nodes, but 
the Auto Graphs do not suit your needs:
   (a)     Click on “Auto Graphs→Graph wizard.” A new frame 

will appear as shown in  Fig.    5B  .  
   (b)     In this new frame you can select multiple nodes and mul-

tiple cells for display. Click on the node names to toggle 
selection of the desired nodes. After making your choices, 
use the buttons in the lower half of the panel to choose 
whether to plot all nodes in the same graph or split them 
into different graphs by node or by cell (similar to the 
automatic method above).      

   5.    After you have set up your graphs, click the “Run” button to 
see the plotted results. Every time you run the model while 
the Time Graphs frame is open, the graphs will be updated.  

   6.    Additional options are available to customize the display of 
the graphs by clicking on the “opt” button next to any graph 
( Fig.    5D  ) that allows you to display grid lines and adjust 
colors.  

   7.    The node values for all cells and time points can be saved to a 
tab-delimited file for analysis in other programs ( see   Note    5  ). 
To save the data for all runs stored in the Time Plots frame, 
click on “File→Save data set” and enter a name for the file.      

  This section demonstrates how to search for parameter sets in the 
segment polarity network that produce the biologically observed 
pattern of en, wg, and hh stripes. To do this, Ingeneue loads an 
iterator file that specifies how to vary parameters and the criteria 
that delineate “good” sets of parameter values. The real segment 
polarity network stabilizes the striped pattern of en, wg, and hh 
gene expression shown in  Fig.   4D . Ingeneue comes with an itera-
tor file that randomizes all parameters over their biological range 
and searches for this pattern of behavior ( see   Note    6  ). 

 3.4. Finding Parameter 
Sets Using Automated 
Searches 
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    1.    There are two ways to use iterator files. Do either of the fol-
lowing and wait until Ingeneue finds at least three parameter 
sets ( see   Note    7  ).
   (a)      Command line : Use this option for a fast search that does 

not use the graphical user interface. Exit Ingeneue and 
access the command prompt on your computer. From 
the Ingeneue root directory, type the following command 
all on one line (do not press enter between lines):        

java main.GeneNet networks/segmentpolarity/ 
spg1_4cell.netnetworks/segmentpolarity/
randomsampler.iter 

  This tells Ingeneue to start by loading the network file “spg1_4cell.
net” and then run the “randomsampler.iter” iterator file. The 
“spg1_4cell.net” network has a 1 × 4 cell array, which is topologi-
cally identical to the 2 × 8 model (because of the toroidal bound-
ary conditions) and will run four times faster. “Good” parameter 
sets ( see   Note    6  ) are saved in the “output” subdirectory, and will 
have a filename with a prefix of “spg,” followed by a timestamp. 
Ignore any warning messages that appear in the console.
   (b)      Using the graphical interface : Choose “File→open” and 

open “spg1_4cell.net.” Next, choose “File→open,” and 
open “randomsampler.iter.” A new frame will appear labeled 
“iterator control,” shown in  Fig.   6A . Click on “Run” in 
the iterator control frame. The model will be repeatedly run 
with randomized parameters, and you can see expression 
patterns changing as the search proceeds. Ingeneue prints a 
message every time a successful parameter set is found.       

  Fig. 6.    Tools for searching and visualizing desired model behavior. These windows are opened when loading an iterator file or 
an iterator output file, and require that a network be loaded first. ( A )  Iterator Control  is displayed when an iterator is loaded. The 
results of the search will be saved to the file name specified here. Click on “run” to begin the search. During the search, the 
successful parameter sets will be shown, as well as the number of attempts (“runs”), the number of successful sets (“passed”), 
and the percent of successful sets (“Rate”). Click on “stop” to halt the search. When halted, clicking on the successful param-
eter sets will load the parameter set into the current model. ( B )  Cam viewer  shows a spoke and wheel plot for all successful 
parameter sets generated by an iterator. This window is displayed when you load an output file generated by an iterator.   
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     1.    In Ingeneue, choose “File→Open,” and open “spg1_4cell.
net.” Then, choose “File→Open,” and navigate to the “out-
put” subdirectory, and open the file that was generated in  Sub-
heading    3.3   (the file will usually be called “spg_XX” where 
XX are numbers indicating the time of the run; alternatively, 
you can load the “spg.params” file from the “networks/seg-
mentpolarity” directory). A new window will appear labeled 
with the name of your file as shown in  Fig.    6B   ( see   Note    8  ).  

   2.    This window contains a wheel plot representing the values 
of all parameters in working parameter sets. Points near the 
center/edge of the wheel correspond to minimum/maximum 
of the range explored in the random parameter search. You 
can view different parameter sets by clicking on the < and > 
buttons. You can view a superposition of all parameter sets by 
clicking on the “Plot all” button.
   (a)     By clicking “load cam,” the displayed parameter values 

will be written to the model for more detailed visualiza-
tion (i.e., you can then run the model to make time plots 
or view the pattern of expression). While the final pattern 
is the same for all parameter sets, the dynamic behavior of 
the model through time is different.      

   3.    The “statistics” menu option has the following options:
   (a)      Summary . Saves the mean, range, and variance for the 

parameter sets.  
   (b)      Param tendencies . Saves the range explored for each 

parameter in the parameter search.  
   (c)      Cross corr . Saves the cross correlation coefficients ( see  

 Note    9  ) for all pairs of parameters. Also prints out a list of 
the pairs of parameters that have the largest absolute value 
cross correlation coefficient.  

   (d)      Dump . Saves all parameter values into a tab-delimited 
plain text file.           

 

 This section is a step-by-step walkthrough showing all steps in 
building a model, from writing the net file, troubleshooting the 
model, and searching for parameter sets using a new iterator. The 
steps outlined here are the same you would follow for building 
any network. 

 The model you will build in this section is the two-gene net-
work shown in  Fig.    1B  , in a 2 × 2 field of cells. This is a modified 
Turing network that is capable of stabilizing spatial patterns of 

 3.5. Analysis and 
Visualization of 
Working Parameter 
Sets Found by Iterators 

 4. Buliding 
Networks in 
Ingeneue  
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gene expression as well as oscillations and propagating waves of 
gene expression  (17,   18) . You can either type in this example as 
you work through this section or find the completed files in the 
networks/turing subdirectory. 

  Ingeneue network files contain all the information necessary to build 
the network in the following order: Name of model, geometry, 
nodes, interactions, parameters, and initial conditions. Each line in 
the network file starts with an ampersand “&” followed by a keyword 
that tells Ingeneue what kind of information the line contains. 
Comments (which are ignored by Ingeneue) begin with “//” ( see  
 Note    10  ). The overall structure of a network file is as follows: 

& Model 
// Information about model geometry 
  & Network networkname 
  & Nodes 
    // Information about nodes 
  & endNodes 
  & Interactions 
    // Information about Interactions 
  & endInteractions 
  & Parameters 
    // Information about parameters 
  & endParameters 
  & InitialConditions 
    // Information about initialconditions 
  & endInitialConditions 
& endNetwork 

 Indentation is not necessary, but makes the file easier to read. 
The various sections of the network file are surrounded by &sec-
tion and &endsection. The sections below describe how to 
write a net file. 

     1.    Start your favorite text editor to begin writing the contents of 
the net file. You will specify the following:
   (a)    &Model indicates the start of an Ingeneue net file.  
   (b)     &width and &height are both set to 2 to indicate a 2 × 2 

array of cells.  
   (c)    &numsides is 6 for hexagonal cells.  
   (d)     &Network turing tells Ingeneue that the name of the 

network is “turing.”      
   2.    To specify a network of a 2 × 2 array of hexagonal cells, type 

the following: 

 &Model 
 &width 2 

 4.1. Writing 
Network Files 

 4.1.1. Model Name and 
Geometry 
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 &height 2 
 &numsides 6 
 &Network turing      

   Figure   1B  shows the four nodes in the Turing network: the 
activator mRNA (act), the inhibitor mRNA(inh), the cytoplasmic 
activator protein (ACT), and the membrane-bound inhibitor 
protein (INH). By convention, names of mRNA are all lowercase, 
and names of proteins are all uppercase. The order in which you 
define the various nodes does not matter, but Ingeneue is case 
sensitive, meaning “act” is different from “aCt” and “ACT.” 
There is no need to have the gene itself (the DNA) in Ingeneue 
models as the DNA concentration is usually unchanging 
(exceptions would be if one were modeling a cell cycle or a cell 
growth process).
   1.    Type the following line to indicate the beginning of the Nodes 

section: &Nodes  
   2.    Give information for each of the nodes in the following format:

   (a)    &Nodename: Name of the node starting with an amper-
sand (&).  

   (b)    &Location: Location in the cell: cytoplasmic (cyto) or 
membrane.  

   (c)    &Color: Color for display in the Cell Viewer. Choices 
are: red, green, blue, cyan, magenta, pink, 
yellow, white, and orange.  

   (d)    &Show: Either on (show by default in the Cell Viewer) or 
off (hidden).  

   (e)    &Scale: Magnification factor for plotting; if a node 
always has a low concentration, set this to a large value 
and the concentration will be multiplied by this factor for 
display. Normally, set this to 1.  

   (f)    &Type: rna for a messenger RNA (mRNA); protein, 
or complex for dimers or other assemblies.  

   (g)    &endNodename: Tells Ingeneue that you have specified 
all the information about the Node.      

   3.    The act node is a cytoplasmic mRNA, and will be displayed in 
the color cyan in the Cell Viewer. To do this, type in the fol-
lowing: 
 &act 
  &Location cyto 
  &Color  cyan 
  &Show  on 
  &Scale  1 
  &Type  rna 
 &endact  

 4.1.2. Nodes 
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   4.    You will specify the other nodes in the same way. For simplicity, 
&Scale will be set to 1 for everything, and we’ll show the 
mRNA the same color as the protein. Type the following: 
 &ACT 
  &Location cyto 
  &Color  cyan 
  &Show  on 
  &Scale  1 
  &Type  protein 
 &endACT 
 &inh 
  &Location cyto 
  &Color  red 
  &Show  on 
  &Scale  1 
  &Type   rna 
 &endinh 
 &INH 
  &Location membrane 
  &Color  red 
  &Show  on 
  &Scale  1 
  &Type  protein 
 &endINH  

   5.    To indicate the end of the nodes section, type in the following 
line: &endNodes      

  The Interactions section specifies what processes affect each of 
the Nodes.  Table    2   shows a summary of the most commonly 
used affectors. Click on the “Help→Detailed Documentation→
Affectors” for instructions on how to use each affector. List the 
affectors that affect each node as follows:
&AffectorName <nodes> <params>  

 Where <nodes> are the nodes that modulate the affector 
and <params> are the parameters that affect the quantitative 
behavior of the affector. Each affector requires different nodes 
and parameters; see the documentation for the affectors to deter-
mine this. The order that you list affectors does not matter, but 
you must follow the order of parameters and nodes given to each 
affector according to the detailed documentation. Parameters can 
be named, however, you like;  Table    3   shows the naming conven-
tions for commonly used parameters.
   1.    Type the following line to indicate the beginning of the inter-

actions section: &Interactions  
   2.    For each node, list all of the affectors that influence it. This 

process is simplified if you have drawn a wiring diagram similar 

 4.1.3. Interactions 
and Affectors 
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to  Fig.    1B   that shows all the processes affecting each node.  See  
 Table    2   and the detailed documentation for the affectors to 
determine what affectors to use for your network. The detailed 
documentation lists what nodes and parameters are required 
by each affector. The following affectors affect the act node:
   (a)    Txn2bAff: act mRNA transcription is activated by ACT, 

and inhibited by INH. To use this affector, first specify the 
inhibitor node (INH) and then the transcriptional activa-
tor (ACT). Next you will give the parameters for activa-
tion (half maximal activation and cooperativity), the half 
life of the act mRNA, and finally the inhibition parameters 
(half maximal inhibition and cooperativity).  

   (b)    DecayAff: the act mRNA undergoes first-order decay. 
This affector requires you to specify the node under decay 
(act) and its half-life.      

  Table 2 
  Commonly used affectors    

 Affector name  Description  Affects 

 DecayAff  First-order decay of a node  All nodes 

 TlnAff  Translation of protein from mRNA  Proteins 

 Txn*Aff  Transcriptional affectors. Many affectors 
available due to wealth of transcriptional 
control logic 

 mRNA 

 LMXfer*Aff  Lateral diffusion of membrane-bound nodes to 
(LMXferEAff) or from (LMXferIAff) 
neighboring faces of same cell 

 Membrane Nodes 

 MXfer*Aff  Diffusion of membrane-bound nodes 
to (MXferOutAff) or from 
(MXferOutAff)facing side of adjacent cell 

 Membrane Nodes 

 Dimerize*Aff  Binding of two nodes to form a complex. 
Different affectors allow for binding within 
and between cells 

 Free monomer nodes 

 Dissociation*Aff  Unbinding of complex into component nodes. 
Opposite of Dimerize affectors above 

 Dimer node 

 Endo*Aff  Endocytosis of membrane-bound node into 
the cytoplasm. EndoEAff is for use on the 
membrane-bound node, EndoIAff for he 
cytoplasmic 

 Membrane and 
cytoplasmic nodes 

 Exo*Aff  Exocytosis of cytoplasmic node to membrane 
(placed on all membranes equally). Opposite 
of endocytosis affectors above. 

 Membrane and 
cytoplasmic nodes 
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   3.    Type the following for the interactions for the act mRNA, 
using the scheme from  Table    3   for naming parameters:  

 &act 
  &DecayAff act H_act 
   &Txn2aAff INH ACT K_ACTact nu_ACTact H_act 
K_INHact nu_INHact 

 &endact  

   4.    The inh mRNA and the ACT protein interactions are pretty 
similar. Both undergo first-order decay (DecayAff). The ACT 
protein is simply translated from the act mRNA (TlnAff), 
and inh mRNA transcription is activated by ACT protein 
(Txn1Aff). Note that some of the parameters appear in more 
than one affector, and that translation is not an affector for 
the mRNA nodes (we assume translation alters the protein 
concentration, not the mRNA). Type the following: 

  Table 3 
  Parameter meaning and naming convention    

 Prefix  Range  Meaning 

 H  1–200, Linear  Half life. Because of nondimensionalization, the time constant over 
which synthesis and decay act. Low values indicate concentration 
changes quickly, high is slowly 

 K  0.01–1, Log  Half maximal concentration of a regulatory node, parameter used in 
Hill functions. Low values indicate a strong activator (little activator 
needed for effect;  see   Fig.   2 ) 

 nu  1–10, Linear  Apparent cooperativity for activation. Low values are linear, high means 
switch-like behavior. Almost always appears in an affector when a  K  
parameter (above;  see   Fig.   2 ) is used 

 Mxfer  0.0001–1, Log  Rate that node diffuses to facing side of opposite cell, somewhat like a 
diffusional permeability. Low values mean slow transfer/diffusion 

 LMXfer  0.0001–1, Log  Rate that node diffuses to adjacent sides of same cell. Low values mean 
slow transfer/diffusion 

 Endo  0.001–1, Log  Rate that membrane-bound node gets endocytosed into cytoplasm. 
Low values mean slow endocytosis 

 Exo  0.001–1, Log  Rate that cytoplasmic nodes get excocytosed into membrane. Low 
values mean slow exocytosis 

 max  1–1,000, Log  Relative stoichiometric amount of node. Needed because 
nondimensionalization normalizes all nodes to a max of 1, but 
stoichiometric consequences remain 
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 &ACT 
  &TlnAff act H_ACT 
  &DecayAff ACT H_ACT 
 &endACT 
 &inh 
  &DecayAff inh H_inh 
  &Txn1Aff ACT K_ACTinh nu_ACTinh H_inh 
 &endinh  

   5.    The INH protein has six affectors: first-order decay, transla-
tion, and two affectors each for lateral membrane diffusion 
and cell–cell diffusion.
   (a)    MXferOutAff and MXferInAff are for diffusion to 

and from the facing side of the opposite cell. These are 
implemented as two separate affectors to allow for the 
possibility of unidirectional transport.  

   (b)    LMXferEAff and LMXferIAff are for diffusion to and 
from adjacent membrane sides of the same cell.      

   6.    Type the following for the INH node: 

 &INH 
  &TlnAff inh H_INH 
  &DecayAff INH H_INH 
  &MxferOutAff INH Mxfer_INH 
  &MxferInAff INH Mxfer_INH 
  &LMxferEAff INH LMxfer_INH 
  &LMxferIAff INH LMxfer_INH 
 &endINH  

   7.    End the interactions section by typing: 

 &endInteractions      

  The parameters section lists all parameters (used by the affec-
tors in the interactions section), their default value, their allowed 
range (maximum and minimum values), and whether random 
searches should explore this range linearly or logarithmically. For 
each parameter, specify these values in the following format: 

 &Paramname DefaultValue MinValue MaxValue Sampling 

 DefaultValue is the value for the parameter when the 
net file is first loaded, and the other fields determine the range 
(MinValue to MaxValue) and sampling (Linear or Loga-
rithmic) for random parameter searches. 
    1.    Type the following line to indicate the beginning of the 

parameters section:  
 &ParameterValues

   2.    Ingeneue requires that you define default values and ranges 
for all parameters you used in the interactions section. When 
building a network for the first time, just guess default values; 

 4.1.4. Parameters 
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in the next section you will write an iterator to search for 
parameter sets producing oscillations. Typical ranges for 
parameters are shown in  Table    3  . Type the following (notice 
the use of comments,  see   Note    11  ): 

    // Mean lifetimes: 
 &H_act 10.0 1.0 100.0 Linear 
 &H_ACT 10.0 1.0 100.0 Linear 
 &H_inh 10.0 1.0 100.0 Linear 
 &H_INH 10.0 1.0 100.0 Linear 
    // Diffusion rates of INH: 
 &Mxfer_INH 0.1 0.0001 1.0 Logarithmic 
 &LMxfer_INH 0.1 0.0001 1.0 Logarithmic 
    // Transcriptional activation: 
 &K_ACTact 0.1 0.01 1.0 Logarithmic 
 &K_ACTinh 0.1 0.01 1.0 Logarithmic 
 &K_INHact 0.1 0.01 1.0 Logarithmic 
 &nu_ACTact 3.0 1.0 10.0 Logarithmic 
 &nu_ACTinh 3.0 1.0 10.0 Logarithmic 
 &nu_INHact 3.0 1.0 10.0 Logarithmic  

   3.    End the parameters section by typing:     

 &endParameterValues  

  The last section in the net file specifies the initial values of all nodes 
in all cells. For the Turing network, we will set the initial values 
for the inh and INH nodes to 0 everywhere, but set act and ACT 
to 0.3 in two cells and 0.7 in two other cells. Ingeneue provides 
a set of objects called InitialConditions that allow you to 
construct spatial patterns of initial conditions.  Table    4   shows the 
most useful InitialConditions; details on how to use them can 
be viewed by clicking on “Help→Detailed Documentation→Initial 
conditions.” 

 4.1.5. Initial Conditions 

  Table 4 
  Commonly used initial conditions    

 Name  Effect 

 CellIC  Allows setting of the concentration for a specific cell 

 RowIC  Sets the node value for a whole row (horizontal line) of cells 

 ColumnIC  Sets the node value for a whole column (vertical line) of cells 

 IncrementingIC  Produces a linear gradient from left to right 

 CenterIC  Sets the node value for a specific cell, and also sets the value in its adjacent 
neighbors 
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   1.    Type the following line to indicate the beginning of the 
parameters section: 
 &InitLevels  

   2.    For each of the nodes, enter the default expression level in all 
cells. We will modify the initial conditions in the next step. To 
set the initial level of act and ACT to 0.3 and the other nodes 
to 0, type: 
 &BackgroundLevel act 0.3 
 &BackgroundLevel ACT 0.3 
 &BackgroundLevel inh 0.0 
 &BackgroundLevel INH 0.0  

   3.    To set act and ACT to 0.7 in the upper left and lower right cells 
(in the grid of 2 × 2 cells), we’ll use the CellIC Initial-
Condition, (see the detailed documentation for CellIC for 
the meaning of its inputs). Type the following: 
 &CellIC // High in upper left cell: 

  &Node act 
  &Value 0.7 
  &XPos 0 
  &YPos 0 

 &endIC 
 &CellIC 

  &Node ACT 
  &Value 0.7 
  &XPos 0 
  &YPos 0 

 &endIC 
 &CellIC // High in lower right cell: 

  &Node act 
  &Value 0.7 
  &XPos 1 
  &YPos 1 

 &endIC 
 &CellIC 

  &Node ACT 
  &Value 0.7 
  &XPos 1 
  &YPos 1 

 &endIC  

   4.    End the parameters section by typing: 
 &endInitLevels  

   5.    Type the following to indicate the end of the model: 
 &endNetwork  

   6.    Save the file to networks directory and call it “turing.net”.       
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  Debugging is almost always a normal step in constructing any 
model, as your initial attempt to make a network will prob-
ably have some errors. Whenever Ingeneue loads a net file, it 
is checked for errors, and Ingeneue will print error messages in 
the output console if any errors are found. If you see any error 
messages or if the network fails to load (i.e., the Network Viewer 
frame does not appear), this is an indication there are mistakes in 
your net file. 

 Fix errors one at a time, starting from the first error message. 
After fixing an error, save the file, and reload it until no errors 
remain (you need not restart Ingeneue). Often, a single error 
in a net file may trigger several error messages, and fixing a sin-
gle mistake may eliminate multiple messages. The most common 
errors are:
   1.    Misspelling (or miscapitalization) of parameter, node, or 

affector names. The error message from Ingeneue will usually 
indicate the misspelled variant of the name. Most commonly, 
these errors appear in the interactions section.  

   2.    Incorrect format for an affector. Each affector requires a dif-
ferent set of nodes and different parameters. Ingeneue will 
report which affector is incorrectly used in the interactions 
section. Check the detailed documentation for affectors to 
verify that the affector has the correct nodes and parameters.  

   3.    Forgetting or misspelling the &endSection tag. Each section 
of the net file (nodes, parameters, etc.) must be ended using 
the &endSection.      

  Iterator files are scripts that instruct Ingeneue to find parameter 
sets that produce some desired behavior. This section describes 
how to write an iterator file that randomly picks values for all 
parameters searching for parameter sets that produce temporal 
oscillations in all four cells of the Turing network. The format of 
iterator files is similar to that of net files (commands begin with 
& and comments with //). It is easier to write iterator files from 
the inside-out – i.e., we will not be writing the iterator file from 
start to finish, but from most specific to most general. 

 Iterator files use stopper objects, which monitor, control, 
and score the results of the model according to different criteria. 
 Table    5   lists the most commonly used stoppers and their behavior. 
A detailed description for using these stoppers can be found 
by clicking on “Help→Detailed Documenation→Stoppers.” By 
convention, lower scores (near 0) indicate a better fit to the 
behavior the stopper searches for, larger scores are worse fits. 
Here, we will use four stoppers (one for each cell) to search for 
temporal oscillations in the act node: 
   1.    In a text editor, make a new empty plain-text file.  

 4.2. Debugging Net 
Files 

 4.3. Writing Iterators 
to Automate Parameter 
Space Searches 
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   2.    The OscillatorStop stopper allows Ingeneue to find tem-
poral oscillations in a single node in a specific cell. Type the 
following to search for act oscillations in the upper left cell of 
the Turing network; see the detailed documentation for the 
OscillatorStop for the meanings of its inputs: 
 &Stopper OscillatorStop 

  &StopTime  1000 
  &Node   act 
  &Position  1 
  &MaxNumPeaks 3 
  &TransientPeriod 250 
  &MinAmplitude 0.1 
  &Tolerance  0.2 
  &NoDamping  True 

 &endStopper  

   3.    The OscillatorStop searches for temporal oscillations in a 
single cell. To search for oscillations in all four cells, copy the 
above code three times, changing the &Position value to 2 
(upper right cell), 3 (lower left), and 4 (lower right) so your 
iterator file contains the following: 

  Table 5 
  Commonly used stoppers    

 Stopper name  Explanation 

 MetaStop  A container that checks for multiple conditions. Almost all models 
will use this. Allows scores to be combined in several ways (sum, 
maximum, etc.) from individual stoppers 

 MetaStopTwo  Similar to MetaStop, offers a few more features 

 SimpleStop  Halts integration after specified time. Does not return a score on the 
pattern 

 OscillatorStop  Detects periodic oscillations in a node. Lower scores indicate more 
regular oscillations. Useful for searching for oscillatory solutions 

 ThresholdStop  Scores a specific node in the specified cell relative to a threshold. Low 
scores indicate the threshold criteria were met and the node is far 
from the threshold. Useful for finding pattern forming solutions 

 OscillatingStripeStop  Looks for a column of cells with a high value of a Node, surrounded 
by columns of cells with low values of that Node. Gives low scores 
for nonoscillatory solutions. Useful for finding stable pattern 
forming solutions 

 NoChangeStop  Halts integration when a node’s rate of change is very slow (i.e., 
when the absolute value of the 1st derivative becomes small) in all 
cells. Score is the derivative normalized to the node value 
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 &Stopper OscillatorStop 
  << copied from above, &Position 1>> 
 &endStopper 
 &Stopper OscillatorStop 
  << copied from above, &Position 2>> 
 &endStopper 
 &Stopper OscillatorStop 
  << copied from above, &Position 3>> 
 &endStopper 
 &Stopper OscillatorStop 
  << copied from above, &Position 4>> 
 &endStopper  

   4.    Each OscillatorStop will return a score from 0 (large, regu-
lar temporal oscillations) to 1000 (no oscillations), based on the 
behavior of the act node. To have Ingeneue save parameter 
sets where all four cells are oscillating, modify your file to that 
shown below: 
 &MetaStop 
  &StopTime 1000 
  &Cutoff 0.2 
  &StopMode And 
  &ValueMode Max 
  << code from above >> 
 &endStopper  

   5.    The above code enclosed the four stoppers within a MetaStop, 
which allows Ingeneue to select for parameter sets meeting 
criteria from many stoppers. The &Cutoff line tells Ingeneue 
to save any parameter sets with an OscillatorStop score of 
less than 0.2 (lower scores mean better parameter sets). The 
&ValueMode line tells Ingeneue to apply the cutoff to the 
largest of the scores; this ensures that all four cells are oscillating. 
For details on the other input values to MetaStop, see the 
detailed documentation.  

   6.    The iterator file also specifies the details of how the model 
should be run, and what information to save. Modify your file 
to that shown below: 
 &Evaluators 
 &Stopper FinalCut StartAtBeginning Savefi-
nalpars Integrator= CashKarp 
  << code from above >> 
 &endEvaluator  

   7.    The &Stopper line specifies how to run the model:
   (a)    FinalCut: The name for the combination of stoppers 

we used. This can be set to anything.  
   (b)    StartAtBeginning: Resets the model time to 0 before 

each run.  
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   (c)     SaveFinalPars: Saves the parameter sets satisfying 
the stoppers.  

   (d)    Integrator= CashKarp: Sets the numerical integrator 
for running the model ( see   Note    4  ).      

    8.    You will need to specify how to randomize parameters and 
where to save the output files:

    (a)     &Iterator: Tells Ingeneue which iterator object to use; 
use UberIterator.  

    (b)     &OutputPathName: The subdirectory within Ingeneue 
where the saved parameter sets should be stored. Enclose 
this in quotation marks.  

    (c)     &ParamsToVary: A list of all parameters, and how to 
randomize them. The format and interpretation of this 
section is identical to the parameters section of the network 
file. You can copy the parameters section from the net file 
into this section.      

    9.    The iterator file will have Ingeneue randomize parameters 
over the same range as in the net file, and save the good 
parameter sets to the output subdirectory. Type the follow-
ing to set up the UberIterator for a random search of the 
Turing network: 
 &Iterator UberIterator 
  &OutpathName “output” 
  &ParamsToVary // Copied from Turing.net 
   &H_act 10.0 1.0 100.0 Linear 
    <<…rest of parameters from section 

 4.1.4 >> 
   &nu_INHact 3.0 1.0 10.0 Logarithmic 
  &endParamsToVary 
  << code from above >> 
 &endIterator  

   10.    Save the file to networks directory and call it “oscillator.iter”.     

 Use this iterator to find parameter sets that produce temporal 
oscillations in the Turing network. The file “Turing.params” in 
the models/Turing directory has several parameter sets that have 
been found. Note differences in the details of the phasing of the 
oscillations between different parameter sets. From this point, 
you are encouraged to explore on your own ( see   Note    12  ).   

 

 Ingeneue is a powerful and useful tool for both building and 
exploring simple or arbitrarily complex genetic networks in order 
to provide valuable insight into how, and how robustly, networks 

 5. Conclusions  
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accomplish pattern-forming, or temporal oscillations tasks. Inge-
neue is extensible and is actively being developed to add addi-
tional features. Future versions of Ingeneue will provide more 
sophisticated graphical tools for constructing networks, a more 
flexible framework for specifying affectors without modifying 
source code, more mechanistically detailed simulation of tran-
scriptional logic, and the ability to simulate evolution of genetic 
networks.  

 

    1.    Ingeneue solves systems of ordinary differential equations in 
which an initial value is specified for every dependent vari-
able (node). The existence and uniqueness of solutions to the 
system of equations hinge on mathematical details we will not 
cover here. The affectors supplied with Ingeneue have been 
constructed so that, given positive parameter values, every 
set of initial conditions determines a unique solution which 
extends indefinitely far into the future. Ingeneue does not 
solve boundary value problems in which target values for dif-
ferent dependent variables are assigned at different times.  

   2.    See the installation instructions on the Ingeneue Web site for 
instructions on how to determine whether your computer has 
Java installed. Ingeneue will work if you have the Java Runtime 
environment (JRE), but you will be unable to make changes to 
the Ingeneue source (i.e., add new affectors); the Java Devel-
opers Kit (JDK) is required if you want to make changes (i.e., 
add affectors or stoppers) to Ingeneue. The JDK is included 
on computers running Mac OS X (be sure that you have all the 
latest updates installed).  

   3.    All help files in Ingeneue are in html format, meaning they can 
be viewed (and printed) from any Web browser. Two versions 
of the Ingeneue manual are in the “manual” subdirectory: 
“manual.html” has the entire manual in a single file for easy 
printing, while “manual00toc.html” will allow you to navigate 
to the different sections of the manual. Tutorials are located in 
the “tutorials” subdirectory.  

   4.    Integrators and the stop time for integration can be set from 
“Run→Options.” Ingeneue has five numerical integrators, four 
of which are standard  (19) . The default Cash-Karp integrator 
is best for most systems; experiment with other integrators if 
you desire faster integration. The integrators differ in accuracy 
and their speed; the semiexplicit APC usually is the fastest but 
has the lowest accuracy – for some models or parameter sets, 

 6. Notes  
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it may produce erroneous results, but it can be useful as a first 
cut to eliminate parameter sets that fail to produce the desired 
behavior. The relative performance and detailed implementa-
tion of the integrators is described in Supplement B of  (15) . 
 See   Note    7   for additional tips on increasing Ingeneue speed.  

   5.    The format of the file is in five columns as follows (1) Data set; 
starts with 0. Multiple runs can be stored by deselecting the 
“overwrite” button. (2) Simulation time in minutes. (3) Cell 
number. Numbering starts with 0 and proceeds sequentially 
rightward and downward (i.e., in same order that you read 
words on a page). (4) The node number (order is same as 
specified in net file). (5) Value of node.  

   6.    The iterator does the following: Randomize all parameters, 
then integrate to 200 min and check whether en, wg, and hh 
have the correct spatial pattern of expression. If the pattern 
is correct, integrate to 1,000 min, and Ingeneue considers a 
parameter set successful if the spatial pattern persists without 
oscillations. About 1 in 200 parameter sets is successful.  

   7.    Searches are substantially faster when Ingeneue is run from 
the command line compared to when Ingeneue is run using 
the graphical interface; however, you will not be able to see 
the details of the search, so the graphical interface may be 
desirable for early searches. To speed up the graphical inter-
face (1) Close any unneeded/unused frames, especially the 
Node Viewer, Cell Viewer, and Time Graphs. (2) Change the 
integration scheme ( see   Note    4  ) and reduce the integration 
time to the minimum necessary. (3) Use the newest Java and 
Ingeneue versions; newer versions usually are faster. (4) Close 
other programs while Ingeneue is running. (5) Reduce the 
dimensions of the model (width and height) to the lowest 
value possible (i.e., for the segment polarity network, a 1 × 4 
field of cells is faster than 2 × 8).  

   8.    Some Ingeneue frames are separate from the main Ingeneue 
window and can get “lost” behind it. If frames are disappear-
ing, try minimizing or moving the Ingeneue window to see 
what is behind it.  

   9.    The cross-correlation coefficient  r   a,b   is mathematically defined as:

( )( )( )
,

( ) ( )
,

Var( ) Var( )a b

E a E a b E b
r

a b

− −
=

 where  a  and  b  are two distributions,  E  is the mean, and  Var  is 
the variance. The cross-correlation coefficient is useful to deter-
mine whether there is compensation between parameters in the 
model – i.e., a large negative  r  indicates parameter  a  usually 
increases when parameter  b  decreases. Because of symmetry,  r   a,b   
=  r   b,a  . All parameters fully correlate with themselves;  r   a,a  = 1.  
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   10.    A tutorial bundled with Ingeneue explains how to write 
your own affectors. This requires knowledge of the Java 
programming language and is beyond the scope of this chap-
ter. Existing affectors are extensively documented, and from 
this documentation it should be clear to Java beginners how 
to code new affectors by modifying existing ones. See the 
file AffectorTemplate in the Affectors directory; it has 
detailed comments to show you how to write your own 
affectors with any mathematical function you desire.  

   11.    I strongly recommend that you use comments liberally in 
your network and iterator files to aid in later understanding 
and debugging. Typical areas to use comments: (1) At the 
very start of the file, identifying your name, the date and ver-
sion of the model, and a brief summary of what the file does. 
(2) Group similar parameters together labeled by category 
(i.e., half-lives). (3) At the start of the initialconditions 
section describing the qualitative pre-pattern. Also, you can 
temporarily delete interactions by adding a “//” to the start 
of the line, causing Ingeneue to ignore that affector.  

   12.    Things to explore: After finding many parameter sets, do 
you notice trends or restrictions on parameters (when visu-
alizing, or using the summary/cross-correlation statistics)? 
How does the model behavior change if you change the 
periodicity of the network from 2 × 2 to 3 × 3? What types 
of striped patterns can the network produce? Try making the 
activator membrane-bound and diffusible as well and inves-
tigate the network dynamics.          
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      Chapter 7

 Microfluidics Technology for Systems Biology Research       

     C. Joanne   Wang  and      Andre   Levchenko      

  Summary 

 Systems biology is a discipline seeking to understand the emergent behavior of a biological system by integrative 
modeling of the interactions of the molecular elements. The success of the approach relies on the quality 
of the biological data. In this chapter, we discuss how a systems biology laboratory can apply microfluidics 
technology to acquire comprehensive, systematic, and quantitative data for their modeling needs.  

  Key words:   Microfluidics ,  Systems biology ,  High-throughput screening ,  Microfabrication ,  Microfluidic 
large-scale integration ,  Cell culture ,  Single cell analysis    .

 

  The last decade has witnessed the rapid development of technol-
ogies enabling the complete sequencing of the human genome. 
Now the challenge is to understand how the identified genes and 
their expressed products dynamically interact with each other 
and respond to environmental cues. A well-accepted, although 
not always adopted, view is genes and the corresponding pro-
teins can and should be considered components of a system. 
Characterizing the properties of a single component is necessary 
but not sufficient for true understanding of the behavior of the 
entire system. A set of principles and methodologies have recently 
been developed to link the actions of individual biological mole-
cules to an integrated physiological response. Unified under the 
name of systems biology, the general framework of the approach 
is to (a) comprehensively perturb and then systematically meas-
ure the temporal responses of all the molecular elements at the 
distinct levels of the biological system, (b) integrate the quan-

 1. Introduction  

 1.1. Systems Biology 
Approach 
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titative  information into a network model to recapitulate the 
systems behavior, (c) formulate new hypotheses and test them 
experimentally, and (d) refine the model to include new findings 
and then repeat the cycle  (1–  3) . The insights generated by this 
emerging field not only change the way biology research is con-
ducted but they can also directly impact human health. Systems 
biology has already revolutionized how one examines diseases 
by exploring the hypothesis that one can distinguish between a 
normal and diseased state by comparing the dynamic expression 
and activity patterns of genes identified as key nodes within the 
network  (1,   4) . Although systems biology is rapidly approaching 
maturity, there still remains several challenges accompanying its 
ambitious vision  (5) . This review will concentrate on a subset of 
these challenges, namely how the needs for comprehensive, sys-
tematic, and quantitative measurements  (6,   7)  can arguably be 
met by new developments in microfluidics technology  (1,   7–  9) . 
We begin by giving an overview of the measurements suitable 
for system level modeling.  

   Biological information is hierarchical in nature: gene and gene 
regulatory networks → protein → signal transduction pathways → 
pathway networks → cell → multicellular organism ( Fig.   1A ). Each 
distinct level in this hierarchy can be viewed as a system. The functions 
of each of these systems reside in the temporal interactions of the 

 1.2. Measurement for 
Systems Biology 

 1.2.1. Single Cell as a 
Basic Response System 

  Fig. 1 .   Single cell is the established fundamental unit of measurement in the realm of 
systems biology. ( A ) Biological information is hierarchical in nature. ( B ) Two possible 
sources of graded response, which is not distinguishable if the measurement is made 
with biochemical assays that average the response       .
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internal components and adjacent systems in the hierarchy  (10) . 
A single cell is the established fundamental unit of measurement in 
the realm of systems biology  (1) . When a cell receives an input from 
the environment, the cell’s internal networks of genes and proteins 
process the information and generate a physiological response. 
Heterogeneity of physiological responses among individual cells is 
often observed, even when the cell population is genetically homo-
geneous. If one extracts the average response from a population 
of cells instead of measuring it individually, one risks neglecting 
responses that can stochastically be significantly different from the 
mean, including all-or-none type behavior  (11,   12) . The differences 
in how individual cells respond to the same perturbation can reveal 
the control mechanism and other system properties ( Fig.   1B ). 
In general, therefore, one cannot reliably generate information 
about the total wealth of regulatory network behavior based solely 
upon measurements of mixed population of cells; cell responses 
should be explored at the single-cell level, if possible and practical.   

  For mammalian cells, single cells can be derived from multiple 
sources. The source of the single cell needs to be determined 
based on the goal of the model. The sources range from (a) biopsy 
samples, (b) monolayer cell culture, and (c) organ-type (or three-
dimensional) culture. Compared with biopsies, cultured monol-
ayer cells undoubtedly allow tighter controls, but their ability to 
reflect physiological functions is often debatable. Extensive cell–cell 
communication can occur in populations of cells, homotypic or 
heterotypic. Cells can communicate by diffusion of their actively 
secreted product, cell–cell contact, or exertion of forces. These 
parameters can influence cellular responses; therefore, it is desirable 
to preserve the spatial relationship of the cells and the surrounding 
fluidic environment. In addition to working with primary cells 
extracted from biopsy samples, a potential attractive practical solu-
tion is to construct an organ-type (or three-dimensional) cell 
culture  (13) . This approach would aim at mimicking in vivo tissue 
geometry by recapitulating the arrangement of heterogeneous 
types of cells in three-dimensional spaces  (14,   15) .  

  To completely describe a system’s response to a particular pertur-
bation, a threshold number of components in the system must 
be measured over time. Eventually the measurements will need 
to be integrated into a coherent model for understanding and 
predicting the behavior of the system. To accomplish this goal, 
ideally multiple measurements should be made simultaneously 
from a single sample  (1) . At the very least, the preparation of the 
samples and the context from which they are obtained need to be 
consistent across all the measurements. Any alterations invariably 
introduce new parameters, making integration of measurements 
more challenging than it already is.  

 1.2.2. Cell Lines Versus 
Heterogeneous Cell 
Populations 

 1.2.3. Context of 
Measurement Needs 
Consistency 
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  Even though the interrogated biological molecules may be differ-
ent in identity, in general the data falls into three main types: 
(1) concentration, (2) kinetic parameters (essentially time-series 
measurement of concentration), and (3) regulatory interactions. 
Specific modeling approaches will have specific data require-
ments. For example, ordinary differential equation (ODE)-based 
dynamics modeling requires highly accurate measurements of 
kinetic parameters and concentrations. Existing high-throughput 
technologies (i.e., DNA microarray, and mass spectrometry with 
isotope-coded affinity tags) have great coverage of nodes and can 
be quantitative, but they are limited to population measurements 
with low temporal resolution. Thus, these data are not suitable for 
ODE-based modeling. Technology for generating high-through-
put measurements meeting the needs of systems modeling has 
yet to be developed. Finally, it is interesting to speculate on how 
many measurements are necessary to reverse engineer a system 
 (16,   17) . The exact number is bound to be staggering, and our 
ability to develop automation technology to meet this quantity 
will be the limiting factor constraining the success achievable by 
the systems biology approach.   

  In addition to introducing truly novel measurement principles, 
ingenious adaptation of existing technologies can also generate 
powerful methods for acquiring the biological data necessary for 
modeling. Earlier, we have established the fundamental meas-
urement scale to be defined by a single cell. The order of magni-
tude estimates of single cell length are 1–10  μ m and a volume of 
several picoliters. However, manual and automated biochemical 
assays are usually performed in microliter to milliliter volumes of 
cellular matter, mainly due to limitations in conventional fluid 
handling techniques. The difficulties of handling small volumes 
of fluid include evaporation, loss during transfer, and high surface 
tension (resulting from the increased surface to volume ratio at 
small volume). 

 Microfluidics refers to an integrated system of miniaturized 
components handling small fluidic volumes on the nanoliter scale 
and below  (8,   18,   19) . Standard components (channels, pumps, 
and mixers) utilized to transport and store reagents are micrometer 
in scale ( Fig.   2A , hence the name of the technology. Because the 
feature size of the operating components is at the same length 
scale as a single cell, microfluidics is poised to meet the  experimental 
needs of systems biology  (1,   7–  9) . Using recently developed micro-
fluidic devices, some of which are described later, one can easily 
move single cells around within a network of tiny channels, change 
the fluidic environment to expose cells to complex spatiotemporal 
perturbation and detect the output, or lyse cells and transfer the 
picoliter volume of the intracellular contents to various “process-
ing stations” on the chip ( Fig.   2B )  (20) . Computer programmable 

 1.2.4. Types 
of Measurements 

 1.3. Why Microfluidics? 
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moving parts (i.e., micromechanical valves) can automate all 
fluidic operations  (21) . The miniaturized nature of microflu-
idics allows multiple parallel runs of typically low-throughput 
biochemical assays, thereby converting them to powerful high-
throughput methods  (8) . Decreasing analyte volume down to 
the detection limit theoretically allows multiple measurements to 
be made simultaneously from the same single cell sample. Micro-
fluidics offers high spatiotemporal resolution in fluidic control, 
and allows more accurate modeling of the in vivo environmental 
context prior to or during a measurement. Furthermore, it can 
be used to model the in vivo spatial relationship between cells 
within a functional multicellular ensemble  (20) . Microfluidics is 
also viewed by many as the ideal technology to steer lysates from 
individual cells to measurement platforms based upon emerging 
nanotechnology-based methods  (1,   7,   22) .    

 

  In this review we highlight a specific subset of microfluidic 
devices fabricated using soft lithography that are characterized 
by their ease of application in a typical laboratory setting and 
suitability for generating data for systems level modeling ( Fig. 
  3 ). Soft lithography produces microscale features by molding 
soft polymer, using microfabricated silicon-based wafer tem-
plates ( Fig.   4A )  (23) . A single wafer allows multiple casting, thus 
significantly reducing the cost of mass production. Polydimeth-

 2. Material and 
Methods: How to 
Set Up Your Wet 
Bench to Use mLSI 
Microfluidics Chip  

 2.1. General Method 

  Fig. 2 .   Integrated microfluidics cell analysis system. ( A ) A high-throughput immunofluorescence staining device imaged 
next to a US quarter  (46) . The fluidic layer is filled with red food dye (appears as gray in the image), and the control layer 
with blue food dye (appears as black in the image). ( B ) Conceptual depiction of how different microfluidic operations can 
be integrated with each other to carry out cell micropatterning, stimulation, sorting, lysis, and finally interrogation on a 
single chip (reproduced from  ref.   20  with permission from Nature Publishing Group)       .
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  Fig. 3 .   Microfluidic devices. ( A ) Analysis of cell chemotaxis using a chip with a Christmas tree design for gradient 
generation (reproduced from  ref.   36  with permission from Nature Publishing Group). ( B ) Diffusion-based and flow-free 
gradient generation (reproduced from  ref.   39  with permission from Royal Society of Chemistry). (C  ) T-step stimulation 
device allowing generation of stepwise gradients (reproduced from  ref.   41  with permission from Nature Publishing 
Group). ( D ) Unit chambers of a high-throughput microfluidic platform on the basis of mechanically trapping the TF-DNA 
binding pairs using micromechanical valves (reproduced from  ref.   56  with permission from AAAS). ( E ) Progressive steps 
in visualization of self-organization of an  Escherichia coli  colony in a microfluidic chamber (reproduced from  ref.   48  under 
the terms of Creative Commons License). (F  ) Single-cell isolation and genome-amplification chip (reproduced from  ref. 
  60  under the terms of Creative Commons License)       .

  Fig. 4 .   Soft lithography. ( A ) Process flow: (a) Photoresist was spin-coated onto a silicon wafer and (b) the mask patterns 
were lithographically transferred onto the photoresist with an UV aligner and following development, (c) results in pre-
cisely fabricated microfeatures on the wafer. (d) This master is used as a mold for casting a  ~ 5-mm-tall PDMS layer. 
(e) The elastomeric layer is released from the mold and laid flat on a clean glass coverslip, resulting in the final device. 
( B ) The NanoFlex ™  valve and its operation (reprinted from  ref.   21  with permission from Royal Society of Chemistry)       .
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ylsiloxane (PDMS) is a widely used polymer for chip construc-
tion. Gas-permeable and optically transparent, PDMS is highly 
appropriate for a variety of cellular studies. A PDMS fabricated 
surface can be chemically tailored to the needs of a specific applica-
tion. The impressive versatility of PDMS microfluidic devices has 
motivated countless applications in various scientific disciplines  
(9,   20) . Such devices will likely make a significant impact on systems 
biology because of the potential to replace conventional  biological 
automation paradigms  (8) . Central to achieving this goal is 
the development of microfluidic large-scale integration (mLSI) 
 technology – a simple fabrication process for constructing chips 
with hundreds to thousands of integrated micromechanical valves 
 (24) . The NanoFlex ™  valve  (25)  is the basic unit of fluidic han-
dling in mLSI, essential for automation and parallel execution 
of multiple picoliter-scale operations ( Fig.   4B ). The NanoFlex ™  
valves stop and start flow on-chip by pneumatically deflecting a 
flexible membrane  (25) , givin one the ability to manipulate fluid 
transport without accounting for the properties of the fluid. Func-
tionality of a microfluidic device is encoded in its fluidic channel 
design, and in the near future, in-chip operation of all existing 
biochemical assays will be demonstrated. An almost infinite variety 
of layouts is possible for performing the same task, and should be 
tailored to the needs of the specific cellular system.    

  The microfluidic devices highlighted in this review generally do 
not possess stand-alone functions and need peripheral equipment 
to support their operation. Fundamentally, one needs to be able to 
actuate the devices through exercising fluidic pressure control 
and image the experimental outcomes generated by various 
cellular labels  (26,   27) . 

 As PDMS-based microfluidic devices are optically transparent, 
they can be used in combination with virtually any type of optical 
microscopy, including epifluorescent, confocal, and multiphoton. 
Optical microscopes are currently a staple of almost any biological 
lab and are commonly available as shared equipment. For increased 
throughput and experimental versatility in using the devices, it is 
desirable to have a microscope equipped with a motorized XYZ 
stage driven by automation software. If on-chip live-cell imaging 
is to be performed, the microscope also needs to be enclosed by 
a temperature and CO 2  incubation chamber  (28) . 

 Pressure-driven flow in a microfluidic device is generally in 
the range of nanoliter per minute. This flow rate can be achieved 
by placing the media reservoirs feeding the inlets and outlets at 
different hydraulic heights. Analogous to Ohm’s law, the pressure 
difference is determined by multiplying the desired volumetric 
flow rate by the channel’s resistance, with the latter frequently 
easily computable using standard hydraulic resistance formulas. 
Alternatively, a syringe pump can be used to maintain a constant 
flow rate if the internal resistance of the device varies over time. 

 2.2. Peripheral 
Equipment 



210 Wang and Levchenko

 Actuation pressure for turning on and off the NanoFlex ™  
valves requires a high external pressure source  ~ 20–80 pounds per 
square inch (psi). This high pressure is fed into an array of mini-
aturized solenoid valves [e.g., available from The Lee Company 
 (29)] , which is interfaced to a computer via a National Instru-
mentation PCI card  (25,   30) . One can write custom programs 
to automate valve switching. Alternatively, one can purchase a 
ready-made control module from Fluidigm  (31) . 

 Micro-to-macro fluid adaptation is often a challenge in tradi-
tional glass- or silicon-based microfluidic devices. The flexible 
nature of PDMS allows easy punching of holes for flow channel 
access. Adaptors slightly larger than the cording tool generate 
tight seals sustaining up to  ~ 40 psi of pressure with no leakage, 
even when no additional adhesive is applied. The hole punching pro-
cedure and the sources of the adaptors and corder are described 
in detail in  (32) .  

  A PDMS microfluidic chip is typically sealed with a glass coverslip 
bottom ( Fig.   4A ). This technique has the advantage of providing 
structural support to the otherwise flexible device. One has the 
option of reversibly bonding the two parts by oven baking at 80°C 
from a few hours to overnight. In our experience, this type of bond 
can withstand up to 10 psi of pressure, a value much greater than 
the pressure differential necessary for driving flow in the device. 
Prior to the operation of most devices, bubbles in the channels 
occasionally created during the initial filling of the device with cell 
medium or a buffer must be removed in a “dead-end priming step,” 
as follows. The permeability of PDMS to nonpolar gases, including 
O 2 , N 2 , and CO 2 , is not only beneficial for the rapid enrichment of 
the medium inside the chip with atmospheric components essen-
tial for cell survival, but can also be used to drive air bubbles out 
of the chip. This is achieved by uniformly increasing the hydro-
static pressure in the chip to higher than atmospheric levels and 
maintaining it at these levels throughout the experiment (note that 
we mean here the absolute hydrostatic pressure; pressure differential 
needed to drive flow can be superimposed on this absolute pres-
sure level). After an experiment, the PDMS chip can be separated 
from the glass and cleaned with Alconox, water, and then with 70% 
ethanol and reused. 

 Irreversible bonding of a PDMS device and glass coverslip 
components can also be accomplished within a vacuum plasma 
chamber or using an inexpensive hand-held corona unit  (33) . A 
vacuum plasma chamber is the established method for creating a 
permanent bond between PDMS and PDMS interfaces, or PDMS 
and glass interfaces. However, it is typically expensive, bulky, and 
requires high maintenance. The inexpensive hand-held corona unit 
is a validated and suitable alternative for the purpose of  bonding 
the chips described in this chapter. Bonding is achieved by plasma 

 2.3. Chip Bonding and 
Bubble Degassing 
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(or corona) treating the cleaned bonding surfaces, and then the 
two surfaces are brought in contact with each other and left undis-
turbed for at least an hour for bonding to take effect. In addition 
to activating surfaces for bonding, plasma treatment has the advan-
tage of temporarily increasing the hydrophilicity of PDMS for  ~ 24 h, 
during which the channel surface is energetically unfavorable for 
bubble formation. Monomer extraction from the PDMS bulk can 
prolong the hydrophilic effect to weeks  (34) . Irreversibly bonded 
devices are usually difficult to reuse after one operation.   

 

   Flow is predominantly laminar in microchannels  (19) . Because 
chemicals in laminar streams flowing in contact with each other 
can only mix by diffusion, different concentrations of a chemical 
of interest present in different parts of the stream can gradually 
blend to create stable and reproducible concentration gradients 
with complex profiles  (35) . On this principle, Jeon et al. dem-
onstrated how one can use a prominent layout, the so-called 
 Christmas tree  structure ( Fig.   3A ), to investigate  gradient sens-
ing and chemotaxis in a neutrophil-like cell line  (36) . This 
novel method filled an important void in the cell biology 
toolbox since previously there was no simple means to gener-
ate instantaneous and stable linear gradients. Armed with this 
technology, one can easily vary chemical concentration gradient 
parameters, such as shape, slope, and mean value to achieve a 
systems  understanding of how single cells sense chemical gradi-
ents and respond to them. This strategy can also be adapted 
to generate gradients of substratum-bound extracellular matrix 
(ECM) components  (37) . Dertinger et al. used this approach to 
investigate axon specification in rat hippocampal neurons, and 
discovered the quantitative threshold value of laminin  gradient 
that biased the orientation of axon specification. Recently, we 
developed a high-throughput chip enabling the creation of 
composite gradients of both diffusible and surface-bound guid-
ance cues to more realistically mimic the conditions growth 
cones encounter in vivo  (38) . Applying this assay to  Xenopus  
embryonic spinal neurons, we demonstrated how the presence 
of a surface-bound ECM gradient can finely tune the polarity of 
growth cone responses to soluble neurotropic factor gradients. 
The data generated from the chip experiments allowed us to 
develop a computational model to explain biochemical mecha-
nisms responsible for converting the multiple gradient inputs 
into a binary turning decision (report in preparation). 

 3. Case Studies  

 3.1. Perturbing 
Single Cells 

 3.1.1. Spatial Concentration 
Gradient 
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 Strategies also exist for exposing nonadherent or shear-
sensitive cells to stable concentration gradients  (12,   39,   40) . 
Paliwal et al. described a microfluidic device capable of testing 
yeast responses to pheromone gradients characterized by different 
mean concentration values and steepness  (12) . Budding yeast, 
a nonadherent type of simple eukaryotic cell, has the ability to 
respond to graded pheromone levels by altering the expression 
of multiple genes and orienting its growth toward higher pherom-
one concentrations. The functional area of the device used in 
these experiments consists of an array of shallow parallel hori-
zontal test chambers of various lengths, and two flow-through 
vertical channels adjacent to the opposite edges of the test cham-
bers. The gradient inside the test chambers is created by diffusion 
between the two flow-through channels, each carrying a high or 
low concentration solution. As the design of the chip allowed 
for various test chamber lengths in a single experiment, the yeast 
cells were exposed to a range of linear pheromone gradients each 
with a different steepness but with the same mean concentration 
values. The rich datasets generated by this high-throughput device 
enabled ODE-based modeling of transcriptional regulation in the 
pheromone response. This integration of modeling and microflu-
idic experimentation revealed how bimodality in gene expression 
allows a cell population to adapt its transcriptional response in 
different pheromone gradients and mean concentrations. 

 A similar diffusion-based strategy can also create stable 
chemical gradients, but requires no active fluid flow ( Fig.   3B ). 
The device embodying this idea has two very large stationary 
reservoirs at the same hydrostatic pressure levels: the diffusion 
sink and source, at the opposite sides of a test channel of a much 
smaller height  (39,   40) . Instability of the gradients in the test 
channel caused by stimuli addition can be eliminated by covering 
the sink and the source with a high fluidic resistance membrane, 
whose pores still allow diffusive transport of chemical species into 
the channel  (39) . This design can be easily arrayed up for the 
screening of multiple soluble factors. In comparison to a con-
ventional Boyden chamber assay, this platform has the advantage 
of better optical accessibility, which allows easier characterization 
of generated gradients as well as extraction of more quantitative 
cellular migration data. However, it is important to note that 
the transient time for gradient generation using a diffusion-based 
strategy is dependent on the molecular weight of the chemical. 
The characteristic diffusion time should be compared to the esti-
mated chemotactic response time to determine whether the effect 
of transient gradient stimulation is negligible in comparison to 
stable gradient stimulation. 

 As described earlier, various microfluidic device designs 
take advantage of constructing a laminar flow with at least two 
 adjacent streams carrying solutions with different concentrations 
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of chemicals of interest. At the initial contact interface between 
the streams, due to the negligible time available for diffusion, 
the gradient profile is step-like ( Fig.   3C ). Very similarly, one can 
create a step-like temperature gradient using streams carrying 
solutions at different temperatures. This phenomenon has been 
exploited to uncover spatial control mechanisms in both intercel-
lular and intracellular signaling networks. For instance, Lucchetta 
et al. used a simple T-shaped device to create a temperature step 
around a live  Drosophila  embryo  (41) . This clever approach to 
investigating the robustness of early embryo patterning to tem-
perature-dependent perturbations suggested that the mechanism 
of compensation during embryo development is not a simple 
reciprocal gradient system. This microfluidic device design can be 
scaled up, and combined with the molecular genetic toolbox of 
 Drosophila  to screen for essential genes involved in regulating the 
compensation mechanism during development. The T-shaped 
channel functional unit can also be integrated with downstream 
cell sorting and single-cell biochemical analysis operations to allow 
generation of cross-level measurements in the biological hierarchy 
( see   Subheading    1.2.1  ). Within this type of integrated device, 
embryos perturbed in the temperature step can be transported 
to the downstream units by fluidic flow to undergo embryo dis-
sociation and cell sorting, followed by lysing the sorted single cell 
individually to release the intracellular content; finally the nucleic 
acids and proteins are transported to the analysis modules for 
quantification. (The biochemical analysis modules are described 
in detail in  Subheading    3.2  ) et al. used the same chip design 
to investigate spatial propagation of signals in single cells  (42) . 
Single cancer cells were partially exposed to a stream carrying 
exogenous growth factor and the extent of spreading of an intra-
cellular fluorescently tagged protein from the location of stimu-
lation was monitored real-time. They discovered the key nodes 
controlling the local and global activation of their pathway of 
interest, receptor density, and endocytosis rate.  

  Perturbing cells with transient or pulsed stimuli is especially 
useful for revealing the presence of feedback interactions  (43,   44) . 
Various proof-of-concept devices have been developed with this 
modality  (45) . Central to performing temporally varying pertur-
bation are the aforementioned NanoFlex ™  valves, which allow 
programmable on-chip switching of fluid access to different parts 
of devices. By using a multiplexed system of valves, stimulations 
of different durations can be delivered to individual subgroups 
of a population of cells ( Fig.   2A ). Subsequent to the resulting 
complex cell stimulation protocols, the intracellular content of 
single cells within each subgroup can be probed with immuno-
cytochemistry to assess the relative changes in protein concentra-
tion in response to stimulation  (46,   47) . This approach is akin to 

 3.1.2. Temporally Varying 
Stimuli Input 
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robotics-based high-content screening, but with the advantage 
of reduced sample consumption and better reproducibility due 
to higher precision in fluid delivery. This technology was used by 
Kaneda et al. to measure the kinetic parameters of a phosphor-
ylated protein in primary cell lines harboring different expression 
levels of an epigenetically imprinted growth factor gene  (47) . 
Signaling analysis revealed an unusual ligand hypersensitivity, which 
could be exploited to propose a novel in vivo chemopreventive 
strategy, primarily targeting colon cancer. Because of its low cell 
number and reagent requirements this chip has the potential to 
analyze primary cells derived from an individual patient, confer-
ring the ability to distinguish between normal and diseased states 
by comparing the dynamic expression and activity patterns of 
the key nodes within the signaling network.  

  The precise nature of microfabrication inherent in creating 
microfluidic devices can afford higher accuracy in approximating the 
natural boundaries surrounding cells and tissues. Thus, one can 
combine the advantages of controlling cellular chemical micro-
environments discussed in the previous sections with the ability 
to specify the mechanical properties and geometries of the cham-
bers enclosing groups of cells. For example, the initial stages of 
developing bacterial biofilms involve embedding cells in small 
naturally occurring cavities  (48) . Cho et al. and Groisman et al. 
developed a series of devices ( Fig.   3E ) to discover and study 
the dynamical self-organization of bacterial cell colonies tightly 
packed in microchambers of different shapes and sizes  (48,   49) . 
A simple mechanical model of cell–cell and cell–wall interactions 
explained the observed colony self-organization, leading to 
important insights on how young biofilms might be spatiotem-
porally organized, maximizing their survival chances. The chip 
permitted real-time microscopy at single-cell resolution, holding 
the promise for deciphering molecular sensing elements respon-
sible for converting inputs from physical forces into physiological 
responses, such as mitosis or cell migration. 

 The close resemblance in length scale and shape of micro-
channels frequently used in various microfluidic devices to the 
body’s own microfluidic transport system, the vasculature, implies 
considerable potential for studying a variety of blood flow-related 
problems, such as the behavior of medium-suspended blood cells 
 (50,   51) . Microfluidic devices allow independent modulation of 
relevant parameters, such as flow rate, channel (vessel) diameter, 
hematocrit, and chemical and gas concentration. Higgins et al. used 
this approach to study sickle cell anemia, a prominent example of 
a single genetic mutation leading to pathology at the organism 
level. Although the molecular pathology of the disease is well char-
acterized, sickle cell patients are heterogeneous in their clinical 
presentations  (52) . The observed heterogeneity is usually attrib-

 3.1.3. Mimicking the 
In Vivo Cell and Tissue 
Boundaries 
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uted to differences harbored by the tissue  microenvironment. 
Data acquired in this well-defined multiscale experimental model 
will likely facilitate further systems-based network analysis of 
the relationship between the cell microenvironment and genetic 
defects. Ultimately, this approach might provide a mechanistic 
basis for predicting the specific pathophysiological patterns in a 
patient-specific manner.   

   Microfluidic digital polymerase chain reaction (PCR)  (53,   54)  
is a powerful method arising from the clever combination of dig-
ital PCR and microfluidics. Digital PCR  (55)  includes the partition-
ing of a complex pooled sample into single molecule templates 
for individual PCR amplifications. The practicality of such separate 
amplifications relies on the accuracy of parallel isolations of single 
molecular templates during the initial steps, which can be greatly 
improved and enhanced by microfluidics. Ottesen et al. applied 
microfluidic digital PCR to perform multigene profiling of the 
genomes of single bacterial cells harvested from the wild, and 
systematically determined the fraction of cells within complex eco-
systems encoding the genes of interest  (53) . An interesting exten-
sion of this technique is to perform microfluidic digital PCR using 
complimentary DNA templates generated from a single-cell-based 
reverse transcriptase (RT) reaction. Microfluidics is proven neces-
sary in this instance because it overcomes the major limitation pre-
venting RT-PCR from achieving its theoretical sensitivity required 
for single cell gene-expression analysis, namely the handling of the 
single cell content and the measurement of the output. Warren 
et al. used the microfluidic chip-based digital RT-PCR assay to 
systematically and quantitatively analyze transcription factor (TF) 
expression within a population of hematopoietic stem cells  (54) . 
The ability to quantitatively characterize the developmental states 
of single cells at snapshots of time can thus bring us a step closer 
toward understanding the transcriptional regulatory networks 
governing the transition from stem cells to diverse terminally dif-
ferentiated states.  

  Quantifying the affinities of molecular interactions in intracellu-
lar environments or in free solutions is critical to understanding 
the collective properties of regulatory networks. The technical 
challenges include systematically measuring the parameter space 
of the governing biochemical processes (e.g., the activities of 
interacting molecules and rate constants of individual reactions 
or transport events) and capturing transient, low-affinity bind-
ing events. In conventional assays, the weakly bound material 
is often rapidly lost during the rigorous washing steps. Maerkl 
and Quake developed a high-throughput microfluidic platform 
based on mechanically trapping TF-DNA binding pairs using 
micromechanical valves ( Fig.   3D ), thereby eliminating the off-

 3.2. Intracellular 
Content Analysis 

 3.2.1. Microfluidic Digital 
PCR and RT-PCR 

 3.2.2. Regulatory 
Interaction Measurement 
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rate problem  (56) . They used a microarray to spot dilute series 
of DNA sequences to achieve a dense array of DNA templates 
coding for the TF and the target DNA. Then, the TF was synthe-
sized in situ in the nanoliter volume microchamber followed by 
incubation with the target DNA. Finally, micromechanical valves 
were brought into contact with the surface, physically trapping 
surface-bound material (the TF-DNA pairs) while the solution-
phase unbound molecules were washed away. Hopefully, their 
success in predicting biological functions by combining purely in 
vitro biophysical measurements with in silico modeling will soon 
become a standard practice as systems biology matures.  

  The microfluidic devices described in the last subheading parti-
tion the pooled intracellular content from externally lysed cells 
into nanoliter portions, where PCR reactions based on single 
molecule templates can take place. This powerful strategy is suit-
able for analyzing entities present at a single copy per cell, but 
many more abundant proteins or metabolites lose the informa-
tion of their cellular origin upon release from membrane encap-
sulation. A microfluidic approach to solving this problem is to 
perform single cell sorting on-chip  (57–  59) , followed by lysing 
the single cells, and then analyzing the content with a high-
affinity reporter system, which in principle does not require the 
size-separation step, e.g., through quantitative PCR for detect-
ing DNA and RNA, antibodies for detecting protein ( Fig.   3F ,  refs. 
60–  62 . The methods proposed by both Fu et al. and Takahashi et 
al. involve computational analysis of digitally acquired images, 
where positive identification of a target triggers a sorting on-chip 
valve to isolate the cell of interest  (57,   58) . Wang et al. switched 
the streams optically to improve throughput  (59) . Any of these 
cell sorters are powerful representative technologies for bridging 
the information acquired from microfluidic chip-based cellular assays 
described in the last section with other single-cell-based intracel-
lular biochemical analyses described in this section.    

 

 In  Subheading    3  , we examined microfluidic devices that have 
immediate applications benefiting systems biology analysis. The 
discussed devices make measurements at a specific level of the 
biological hierarchy. Thus far, integration between modules and 
high-throughput cross-level measurements has not been achieved 
on a microfluidic platform. In the near future we envision the 
introduction of integrated devices capable of performing all opera-
tions simultaneously on one chip. In the first module, micro-

 3.2.3. On-Chip Cell-Sorting 
Followed by Nucleic Acid 
Extraction and Purification 

 4. Conclusion: 
Future Develop-
ment Driven by the 
Needs of Systems 
Biology  



 Microfluidics Technology for Systems Biology Research 217

fabricated multicellular constructs recapitulating physiological 
or pathophysiological function will be subjected to a panel of 
perturbations, such as small molecule inhibitors or growth fac-
tors. Their output responses can be detected by a variety of non-
invasive imaging techniques. Multicellular constructs or single 
cells displaying the target behavior can then be transported to 
the second module where they can be sorted into individual 
cells and lysed independently to release their intracellular con-
tent. Finally, biochemical analysis of the states of the multiple 
nodes, the hypothetical regulators of the output response, will 
be performed at the last device module, thus linking molecular 
interactions to a physiological response at the single-cell level. 
Incorporating nanotechnologies  (22,   63)  capable of interrogat-
ing dynamics of biomolecules in label-free and higher sensitivity 
reactions will further enrich the functionalities of microfluidics. 
Akin to how technology has spearheaded the genome sequenc-
ing project, the multifaceted capabilities offered by the unifying 
platform of microfluidics will help realize the untapped potential 
of systems biology.      

 

 The authors would like to thank Benjamin Lin for reading the 
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 Acknowledgments 

  References 

   1  .      Hood  ,   L.   ,    Heath  ,   J. R.   ,    Phelps  ,   M. E.   , and 
   Lin  ,   B.       (2004)     Systems biology and new tech-
nologies enable predictive and preventative 
medicine  .    Science      306  ,   640  –  643  .  

   2  .      Kitano  ,   H.       (2002)     Systems biology: a brief 
overview  .    Science      295  ,   1662  –  1664  .  

   3  .      Ideker  ,   T.   ,    Galitski  ,   T.   , and    Hood  ,   L.       (2001)   
  A new approach to decoding life: systems 
biology  .    Annu. Rev. Genomics Hum. Genet.    
  2  ,   343  –  372  .  

   4  .      Irish  ,   J.   ,    Hovland  ,   R.   ,    Krutzik  ,   P. O.   ,    Perez  ,   
O. D.   ,    Bruserud  ,   Ø  .   ,    Gjertsen  ,   B. T.   , and 
   Nolan  ,   G. P.       (2004)     Single cell profiling of 
potentiated phospho-protein networks in cancer 
cells  .    Cell      118  ,   217  –  228  .  

   5  .      Levchenko  ,   A.       (2003)     Dynamical and integra-
tive cell signaling: challenges for the new biology  . 
   Biotechnol. Bioeng.      84  ,   773  –  782  .  

   6  .      Szallasi, Z. (2006) Biological data acquisition 
for system level modeling – an exercises in the  

art of compromis  , in system Modeling in Cellular 
Biology: From Concepts to Nuts and Bolts (Szal-
lasi, Z., Stelling, J.R., and Periwal, V., eds.), 
MIT Press, Cambridge, MA,             pp.   201  –  220  .  

 7. Heath, J., Phelps, M. E., and Hood, L. (2003) 
Nanosystems biology. Mol. Imaging Biol. 5, 
312–325

   8  .      Melin  ,   J.    and    Quake  ,   S. R.       (2007)     rofluidic 
large-scale integration: the evolution of design 
rules for biological automation  .    Annu. Rev. 
Biophys. Biomol. Struct.      36  ,   213  –  231  .  

   9  .      Breslauer  ,   D.   ,    Lee  ,   P.   , and    Lee  ,   L.       Mic     Micro-
fluidics-based systems biology  .    Mol. Syst. Biol.    
  2  ,   97  –  112  .  

  10  .      Kholodenko  ,   B.       (2006)     Cell-signalling dynamics 
in time and space  .    Nat. Rev. Mol. Cell Biol.      7  , 
  165  –  176  .  

  11  .      Ferrell  ,   J. J.    and    Machleder  ,   E.       (1998)     The bio-
chemical basis of an all-or-none cell fate switch 
in  Xenopus  oocytes  .    Science      280  ,   895  –  898  .  



218 Wang and Levchenko

  12  .      Paliwal  ,   S.   ,    Iglesias  ,   P.   ,    Campbell  ,   K.   ,    Hilioti  , 
  Z.   ,    Groisman  ,   A.   , and    Levchenko  ,   A.       (2007)   
  MAPK-mediated bimodal gene expression 
and adaptive gradient sensing in yeast  .    Nature    
  446  ,   46  –  51  .  

  13  .      Nelson  ,   C.   ,    Vanduijn  ,   M. M.   ,    Inman  ,   J. L.   , 
   Fletcher  ,   D. A.   , and    Bissell  ,   M. J.       (2006)     Tissue 
geometry determines sites of mammary 
branching morphogenesis in organotypic cultu-
res  .    Science      314  ,   298  –  300  .  

  14  .      Desai  ,   T.       (2000)     Micro- and nanoscale struc-
tures for tissue engineering constructs  .    Med. 
Eng. Phys.      22  ,   595  –  606  .  

  15  .      Bhatia  ,   S.    and    Chen  ,   C.       (1999)     Tissue engi-
neering at the micro-scale  .    Biomed. Microdevices    
  2  ,   131  –  144  .  

  16  .      Andrec  ,   M.   ,    Kholodenko  ,   B.   ,    Levy  ,   R.   , and 
   Sontag  ,   E.       (2004)     Inference of signaling and 
gene regulatory networks by steady-state per-
turbation experiments: structure and accuracy  . 
   J. Theor. Biol.      232  ,   427  –  441  .  

  17  .      Sontag  ,   E.   ,    Kiyatkin  ,   A.   , and    Kholodenko  ,   B.     
  (2004)     Inferring dynamic architecture of cellu-
lar networks using time series of gene expression, 
protein and metabolite data  .    Bioinformatics    
  20  ,   1877  –  1886  .  

  18  .      Whitesides  ,   G. M.       (2006)     The origins and the 
future of microfluidics  .    Nature      442  ,   368  –  373  .  

  19  .      Beebe  ,   D. J.   ,     Mensing  ,    G. A.   , and     Walker  ,    G. M.     
  (2002)     Physics and applicaitons of microflu-
idics in biology  .    Annu. Rev. Biomed. Eng.      4  , 
  261  –  286  .  

  20  .      El-Ali  ,   J.   ,    Sorger  ,   P. K.   , and    Jensen  ,   K. F.     
  (2006)     Cells on chips  .    Nature      442  ,   403  –  411  .  

  21  .      Haeberle  ,   S.    and    Zengerle  ,   R.       (2007)     Micro-
fluidic platforms for lab-on-a-chip applica-
tions  .    Lab Chip      7  ,   1094  –  1110  .  

  22  .      Helmke  ,   B. P.    and    Minerick  ,   A. R.       (2006)   
  Designing a nano-interface in a microfluidic 
chip to probe living cells: challenges and per-
spectives  .    Proc. Natl. Acad. Sci. USA      103  , 
  6419  –  6424  .  

  23  .      Xia  ,   Y.    and    Whitesides  ,   G. M.       (1998)     Soft lithog-
raphy  .    Annu. Rev. Mater. Sci.      28  ,   153  –  184  .  

  24  .      Thorsen  ,   T.   ,    Maerkl  ,   S. J.   , and    Quake  ,   S. R.     
  (2002)     Microfluidic large-scale integration  . 
   Science      298  ,   580  –  584  .  

  25.        Unger  ,   M. A.   ,    Chou  ,   H.-P.   ,    Thorsen  ,   T.   , 
   Scherer  ,   A.   , and    Quake  ,   S. R    .   (2000)     Mono-
lithic microfabricated valves and pumps by mul-
tilayer soft lithography  .    Science      288  ,   113  –  136  .  

  26  .      Meyer  ,   T.    and    Teruel  ,   M. N.       (2003)     Fluores-
cence imaging of signaling networks  .    Trends 
Cell Biol.      13  ,   101  –  106  .  

  27  .      Xie  ,   X. S.   ,    Yu  ,   J.   , and    Yang  ,   W. Y.       (2006)     Living 
cells as test tubes  .    Science      312  ,   228  –  230  .  

28. Goldman, R.D. and Spector, D.L. (eds.) 
(2004) Live Cell Imaging. Cold Spring 

Harbor Laboratory Press, Cold Spring Har-
bor, NY.

29. The Lee Company (http://www.theleeco.com).
  30  .   National Instrumentation ( http://www.ni.com ).  
  31  .   Fluidigm Corporation, USA ( http://www.

fluidigm.com ).  
  32  .      Kartalov  ,   E. P.    and    Quake  ,   S. R.       (2004)   

  Microfluidic device reads up to four consecutive 
base pairs in DNA sequencing-by-synthesis  . 
   Nucleic Acids Res.      32  ,   2873  –  2879  .  

  33  .      Haubert  ,   K.   ,    Drier  ,   T.   , and    Beebe  ,   D.       (2006)   
  PDMS bonding by means of a portable, low-
cost corona system  .    Lab Chip      6  ,   1548  –  1549  .  

  34  .      Vickers  ,   J. A.   ,    Caulum  ,   M. M.   , and    Henry  , 
  C. S.       (2006)     Generation of hydrophilic poly
(dimethylsiloxane) for high-performance 
micro chip electrophoresis  .    Anal. Chem.      78  , 
  7446  –  7452  .  

  35  .      Jeon  ,   N. L.   ,    Dertinger  ,   S. K. W.   ,    Chiu  ,   D. T.   , 
   Choi  ,   I. S.   ,    Stroock  ,   A. D.   , and    Whitesides  ,   G. M.
      (2000)     Generation of solution and surface 
gradients using microfluidic systems  .    Lang-
muir      16  ,   8311  –  8316  .  

  36  .      Jeon  ,   N. L.   ,    Baskaran  ,   H.   ,    Dertinger  ,   S. K.   , 
   Whitesides  ,   G. M.   ,    Van de Water  ,   L.   , and 
   Toner  ,   M.       (2002)     Neutrophil chemotaxis in 
linear and complex gradients of interleukin-8 
formed in a microfabricated device  .    Nat. Bio-
technol.      20  ,   826  –  830  .  

  37  .      Dertinger  ,   S. K.   ,    Jiang  ,   X.   ,    Li  ,   Z.   ,    Murthy  , 
  V. N.   , and    Whitesides  ,   G. M.       (2002)     Gradi-
ents of substrate-bound laminin orient axonal 
specification of neurons  .    Proc. Natl. Acad. Sci. 
USA      99  ,   12542  –  12547  .  

  38.        Wang  ,   C. J.   ,    Li  ,   X.   ,    Lin  ,   B.   ,    Shim  ,   S.   ,    Ming  , 
  G.-L.   , and    Levchenko  ,   A    .   (2008)     A micro-
fluidics-based turning assay reveals complex 
growth cone responses to integrated gradients 
of substrate-bound ECM molecules and dif-
fusible guidance cues  .    Lab Chip      8  ,   227  –  237  .  

  39  .      Abhyankar  ,   V. V.   ,    Lokuta  ,   M. A.   ,    Huttenlocher  , 
  A.   , and    Beebe  ,   D. J.       (2006)     Characterization of 
a membrane-based gradient generator for use in 
cell-signaling studies  .    Lab Chip      6  ,   389  –  393  .  

  40  .      Taylor  ,   A. M.   ,    Blurton-Jones  ,   M.   ,    Rhee  ,   S. W.   , 
   Cribbs  ,   D. H.   ,    Cotman  ,   C. W.   , and    Jeon  ,   N. L.     
  (2005)     A microfluidic culture platform for 
CNS axonal injury, regeneration and trans-
port  .    Nat. Methods      2  ,   599  –  605  .  

  41  .      Lucchetta  ,   E. M.   ,    Lee  ,   J. H.   ,    Fu  ,   L. A.   ,    Patel  , 
  N. H.   , and    Ismagilov  ,   R. F.       (2005)     Dynamics 
of  Drosophila  embryonic patterning network 
perturbed in space and time using microfluidics  . 
   Nature      434  ,   1134  –  1138  .  

  42  .      Sawano  ,   A.   ,    Takayama  ,   S.   ,    Matsuda  ,   M.   , and 
   Miyawaki  ,   A.       (2002)     Lateral propagation of 
EGF signaling after local stimulation is depend-
ent on receptor density  .    Dev. Cell      3  ,   245  –  257  .  



 Microfluidics Technology for Systems Biology Research 219

  43  .      Bhalla  ,   U. S.   ,    Ram  ,   P. T.   , and    Iyengar  ,   R.     
  (2002)     MAP kinase phosphatase as a locus of 
flexibility in a mitogen-activated protein kinase 
signaling network  .    Science      297  ,   1018  –  1023  .  

  44.        Krishnan  ,   J.    and    Iglesias  ,   P. A    .   (2004)  Uncover-
ing directional sensing: where are we headed?   
Syst. Biol.   1  ,  54  –  61 . 

  45  .      King  ,   K. R.   ,    Wang  ,   S.   ,    Jayaraman  ,   A.   ,    Yar-
mush  ,   M. L.   , and    Toner  ,   M.       (2008)     Micro-
fluidic flow-encoded switching for parallel 
control of dynamic cellular microenviron-
ments  .    Lab Chip      8  ,   107  –  116  .  

  46  .   Cheong, R., Wang, C. J., and Levchenko, 
A. (2008) High-content cell screening in a  
microfluidic device. Mol Cell Proteomics, in 
press.  

  47  .      Kaneda  ,   A.   ,    Wang  ,   C. J.   ,    Cheong  ,   R.   ,    Timp  ,   W.   , 
   Onyango  ,   P.   ,    Wen  ,   B.   ,    Iacobuzio-Donahue  , 
  C. A.   ,    Ohlsson  ,   R.   ,    Andraos  ,   R.   ,    Pearson  ,   M. A.   ,    
Sharov  ,   A. A.   ,    Longo  ,   D. L.   ,    Ko  ,   M. S.   , 
   Levchenko  ,   A.   , and    Feinberg  ,   A. P.       (2007)   
  Enhanced sensitivity to IGF-II signaling links 
loss of imprinting of IGF2 to increased cell pro-
liferation and tumor risk  .    Proc. Natl. Acad. Sci. 
USA      104  ,   20926  –  20931  .  

  48  .      Cho  ,   H.   ,    Jönsson.  H  .   ,    Campbell  ,   K.   ,    Melke  ,   P.   , 
   Williams  ,   J. W.   ,    Jedynak  ,   B.   ,    Stevens  ,   A. M.   , 
   Groisman  ,   A.   , and    Levchenko  ,   A    .   (2007)     Self-
organization in high-density bacterial colonies: 
efficient crowd control  .    PLoS Biol   .   5  ,   e302  .  

  49  .      Groisman  ,   A.   ,    Lobo  ,   C.   ,    Cho  ,   H.   ,    
Campbell  ,   J. K.   ,    Dufour  ,   Y. S.   ,    Stevens  ,   A. M.   , 
and    Levchenko  ,   A.       (2005)     A microfluidic 
chemostat for experiments with bacterial and 
yeast cells  .    Nat. Methods      2  ,   685  –  689  .  

  50  .      Higgins  ,   J. M.   ,    Eddington  ,   D. T.   ,    Bhatia  ,   S. N.   , 
and    Mahadevan  ,   L.       (2007)     Sickle cell vasooc-
clusion and rescue in a microfluidic device  .    Proc. 
Natl. Acad. Sci. USA      104  ,   20496  –  20500  .  

  51  .      Runyon  ,   M. K.   ,    Johnson-Kerner  ,   B. L.   , and 
   Ismagilov  ,   R. F.       (2004)     Minimal functional 
model of hemostasis in a biomimetic micro-
fluidic system  .    Angew. Chem. Int. Ed. Engl.    
  43  ,   1531  –  1536  .  

  52.        Loscalzo  ,   J.   ,    Kohane  ,   I.   , and    Barabasi  ,   A.-L    . 
  (2007)     Human disease classification in the 
postgenomic era: a complex systems approach 
to human pathobiology  .    Mol. Syst. Biol   .   3  ,   124  .  

  53  .      Ottesen  ,   E. A.   ,    Hong  ,   J. W.   ,    Quake  ,   S. R.   , and 
   Leadbetter  ,   J. R.       (2006)     Microfluidic digital PCR 
enables multigene analysis of individual environ-
mental bacteria  .    Science      314  ,   1464  –  1467  .  

  54  .      Warren  ,   L.   ,    Bryder  ,   D.   ,    Weissman  ,   I. L.   , and 
   Quake  ,   S. R.       (2006)     Transcription factor pro-
filing in individual hematopoietic progenitors 
by digital RT-PCR  .    Proc. Natl. Acad. Sci. USA    
  103  ,   17807  –  17812  .  

  55  .      Vogelstein  ,   B.    and    Kinzler  ,   K. W.       (1999)   
  Digital PCR  .    Proc. Natl. Acad. Sci. USA      96  , 
  9236  –  9241  .  

  56  .      Maerkl  ,   S. J.    and    Quake  ,   S. R.       (2007)     A sys-
tems approach to measuring the binding energy 
landscapes of transcription factors  .    Science      315  , 
  233  –  237  .  

  57  .      Fu  ,   A. Y.   ,    Chou  ,   H.-P.   ,    Spence  ,   C.   ,    Arnold  ,   F. H.   , 
and    Quake  ,   S. R    .   (2002)     An integrated microfab-
ricated cell sorter  .    Anal. Chem   .   74  ,   2451  –  2457  .  

  58  .      Takahashi  ,   K.   ,    Hattori  ,   A.   ,    Suzuki  ,   I.   ,    Ichiki  ,   T.   , 
and    Yasuda  ,   K.       (2004)     Non-destructive on-chip 
cell sorting system with real-time microscopic 
image processing  .    J. Nanobiotechnol.      2  ,   5  .  

  59  .      Wang  ,   M. M.   ,    Tu  ,   E.   ,    Raymond  ,   D. E.   , 
   Yang  ,   J. M.   ,    Zhang  ,   H.   ,    Hagen  ,   N.   ,    Dees  ,   B.   , 
   Mercer  ,   E. M.   ,    Forster  ,   A. H.   ,    Kariv  ,   I.   , 
   Marchand  ,   P. J.   , and    Butler  ,   W. F.       (2005)   
  Microfluidic sorting of mammalian cells by 
optical force switching  .    Nat. Biotechnol.      23  , 
  83  –  87  .  

  60  .      Marcy  ,   Y.   ,    Ishoey  ,   T.   ,    Lasken  ,   R. S.   ,    
Stockwell  ,   T. B.   ,    Walenz  ,   B. P.   ,    Halpern  ,   A. L.   , 
   Beeson  ,   K. Y.   ,    Goldberg  ,   S. M.   , and    Quake  ,   S. R.     
  (2007)     Nanoliter reactors improve multiple dis-
placement amplification of genomes from single 
cells  .    PLoS Genet.      3  ,   1702  –  1708  .  

  61  .      Hong  ,   J. W.   ,    Studer  ,   V.   ,    Hang  ,   G.   ,    Anderson  , 
  W. F.   , and    Quake  ,   S. R.       (2004)     A nanoliter-
scale nucleic acid processor with parallel archi-
tecture  .    Nat. Biotechnol.      22  ,   435  –  439  .  

  62  .      Marcus  ,   J. S.   ,    Anderson  ,   W. F.   , and    Quake  ,   S. R.     
  (2006)     Microfluidic single-cell mRNA isolation 
and analysis  .    Anal. Chem.      78  ,   3084  –  3089  .  

  63  .      Burg  ,   T. P.   ,    Godin  ,   M.   ,    Knudsen  ,   S. M.   ,    Shen  ,   W.   ,    
Carlson  ,   G.   ,    Foster  ,   J. S.   ,    Babcock  ,   K.   , and 
   Manalis  ,   S. R.       (2007)     Weighing of biomol-
ecules, single cells and single nanoparticles in 
fluid  .    Nature      446  ,   1066  –  1069  .     



Chapter 8      

 Systems Approach to Therapeutics Design       

     Bert J.   Lao and       Daniel T.   Kamei      

  Summary 

 A general methodology is described for improving the therapeutic properties of protein drugs by engineering 
novel intracellular trafficking pathways. Procedures for cellular trafficking experiments and mathematical 
modeling of trafficking pathways are presented. Previous work on the engineering of the transferrin traffick-
ing pathway will be used to illustrate how each step of the methodology can be applied.  

  Key words :  Drug design ,  Protein drugs ,  Trafficking ,  Mathematical model ,  Transferrin .    

 

 Drug design has traditionally emphasized improving drug/receptor 
binding at the cell surface. Following receptor binding, however, 
many protein drugs are endocytosed into a cell and trafficked to 
various cellular destinations  (1) . An internalized protein drug may 
be sorted to a degradative lysosome, for example, or recycled back to 
the cell surface where it can continue to function and exert its thera-
peutic effects. Such sorting decisions can have a significant impact 
on drug half-life and bioactivity  (2) . 

 A focus on trafficking may be a promising approach for advanc-
ing drug design, since the trafficking pathways of protein drugs can 
limit their therapeutic function. This is because intracellular traf-
ficking has evolved to suit the functions of physiological proteins 
naturally present in the body, not protein drugs. By modifying the 
molecular properties of a protein drug, however, the trafficking 
pathway of the drug can be manipulated in a rational manner so as 
to better suit its therapeutic function. 

 1. Introduction  
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 This chapter describes a broad methodology for modifying 
intracellular trafficking pathways to increase the potency of pro-
tein drugs. The methodology is organized into four steps: (1) 
perform a systems-level analysis of protein drug trafficking to 
establish a trafficking design goal, (2) apply a mathematical model 
of protein drug trafficking to identify molecular design criteria, 
(3) engineer the protein drug according to the most promising 
molecular design criteria identified from the mathematical model, 
and (4) experimentally validate the new trafficking pathway and 
improved protein drug properties. 

 In previous work, we have demonstrated that creating a new 
intracellular trafficking pathway for transferrin (Tf) increases its effi-
cacy as a drug carrier  (3) . This work will be used as a case study to 
demonstrate how each step of the methodology can be applied.  

 

     1.    Transferrin (Sigma-Aldrich, St. Louis, MO).  
    2.    HeLa cells (American Type Culture Collection, Manassas, VA).  
    3.    Na 125 I (MP Biomedicals, Irvine, CA).  
    4.    IODO-BEADS (Pierce Biotechnology, Rockford, IL).  
    5.    Sephadex G-10 column (Sigma-Aldrich, St. Louis, MO).  
    6.    35-mm Dishes (Becton Dickinson and Company, Franklin 

Lakes, NJ).  
    7.    MEM supplemented with 2.2 g/L sodium bicarbonate 

(Invitrogen, Carlsbad, CA).  
    8.    Fetal bovine serum (Hyclone, Logan, UT).  
    9.    Sodium pyruvate (Invitrogen, Carlsbad, CA).  
   10.    Penicillin (Invitrogen, Carlsbad, CA).  
   11.    Streptomycin (Invitrogen, Carlsbad, CA).  
   12.    Cell incubator (VWR, West Chester, PA).  
   13.    WHIPS: 20 mM HEPES, pH 7.4 containing 1mg/mL poly-

vinylpyrrolidone (PVP), 130 mM NaCl, 5 mM KCl, 0.5 mM 
MgCl 2 , 1 mM CaCl 2  (all components from Sigma-Aldrich, 
St. Louis, MO).  

   14.    Acid strip solution: 50 mM glycine–HCl, pH 3.0 containing 
100 mM NaCl, 1 mg/mL PVP, 2 M urea (all components 
from Sigma-Aldrich, St. Louis, MO).  

   15.     Mild acid strip solution: 50 mM glycine–HCl, pH 3.0 containing 
100 mM NaCl, 1 mg/mL PVP (all components from Sigma-
Aldrich, St. Louis, MO).  

 2. Materials  
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   16.    Z2 Coulter counter (Beckman Coulter, Fullerton, CA).  
   17.    Packard Cobra Auto-Gamma counter (Packard Instrument 

Co., Downers Grove, IL).  
   18.    NaOH (Sigma-Aldrich, St. Louis, MO).  
   19.    Incubation medium: MEM supplemented with 20 mM 

HEPES, pH 7.4 containing 1% sodium pyruvate, 100 units/
mL penicillin, 100  μ g/mL streptomycin (all components 
from Sigma-Aldrich, St. Louis, MO).      

 

  In the first step of the methodology, a systems-level analysis is 
performed to establish a goal for how the trafficking of a pro-
tein drug can be modified to improve its therapeutic properties. 
Formulation of this trafficking goal can be aided by identifying 
features of the trafficking pathway that influence its therapeutic 
function. Depending on the state of knowledge regarding the 
trafficking of the protein drug, it may also be useful to conduct 
cellular trafficking experiments to obtain further information. 

  Key considerations for the selection of a protein drug are the extent 
to which the drug undergoes intracellular trafficking and the degree 
to which this trafficking affects its therapeutic function. For example, 
some cytokines possess a significant trafficking component in that 
they can be internalized by a cell via receptor-mediated endocytosis 
following receptor binding, and then sorted to either a degradative 
lysosome or recycled to the cell surface  (4) . Lysosomal degradation 
can have a substantial impact on protein half-life. Therefore, adjust-
ing the balance of the endosomal sorting decision represents one 
method for modulating cytokine half-life. In fact, the trafficking 
of granulocyte colony-stimulating factor (GCSF) has previously 
been engineered to promote cellular recycling over lysosomal 
degradation, leading to an extension of GCSF half-life  (2) . 

 We selected the serum iron transport protein Tf for trafficking 
modification, since the trafficking that Tf undergoes when it 
binds the Tf receptor (TfR) is integral to its therapeutic function. 
Tf has been studied extensively as a drug carrier because TfR is 
overexpressed in cancer cells, allowing the possibility of specific 
targeting of therapeutics to tumors and minimization of expo-
sure of noncancerous cells to the therapeutic  (5) . Tf undergoes 
receptor-mediated endocytosis upon binding to TfR, and is then 
trafficked to an endosomal compartment. The acidic pH of the 
endosome promotes iron release from Tf, and iron-free Tf is then 
recycled back to the cell surface  (6) . Notably, iron-free Tf has 

 3. Methods  

 3.1. Systems-Level 
Analysis of Protein 
Drug Trafficking 

 3.1.1. Selection of Protein 
Drug for Trafficking 
Modification 



224 Lao and Kamei

little to no affinity for TfR at bloodstream pH, and must rebind 
iron in order to reenter the TfR trafficking pathway. This traffick-
ing pathway can be exploited for drug delivery by conjugating 
therapeutics to Tf, which allows the therapeutics to access the 
interior of cells that overexpress TfR.  

  To obtain information about the trafficking pathway of the pro-
tein drug, cellular trafficking experiments can be performed. 
Radiolabeling the protein is an established approach, allowing 
one to obtain quantitative rate constants that characterize indi-
vidual steps of the trafficking pathway. This information can be 
incorporated into a mathematical model of protein trafficking, 
which is discussed further in  Subheading   3.2.  Later, methods 
for performing cellular trafficking experiments to obtain rate 
constants for the Tf trafficking pathway ( Fig.   1 ) are presented.  

    To determine the association rate constant ( k  FeTf,TfR ) and dissocia-
tion rate constant ( k  FeTf,TfR,r ) for iron-loaded Tf (FeTf) binding to 
TfR, two in vitro cell-surface binding studies can be performed. 
To isolate the binding events and minimize the trafficking processes, 
both of these experiments are conducted with HeLa cells on ice.
   1.    Iodinate iron-loaded Tf proteins with Na 125 I using IODO-

BEADS. Purify radiolabeled Tf using a Sephadex G-10 column 
with bovine serum albumin present to block nonspecific binding 
( see   Note   1 ).  

   2.    Seed the HeLa cells on 35-mm dishes in MEM supplemented 
with 2.2 g/L sodium bicarbonate, 10% FBS, 1% sodium pyruvate, 

 3.1.2. Cellular Trafficking 
Experiments 

3.1.2.1. Measurements of 
Association ( k  FeTf,TfR ) and 
Dissociation ( k  FeTf,TfR,r ) Rate 
Constants

  Fig. 1 .   Schematic of the Tf/TfR trafficking pathway       .
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100 units/mL penicillin, and 100  μ g/mL streptomycin at a 
pH of 7.4.  

   3.    Incubate cells overnight at 37°C in a humidified atmosphere 
with 5% CO 2  to a final density of 4×10 5  cells/cm 2 .  

   4.    Incubate cells with radiolabeled Tf in serum-free media at 
concentrations of 10, 30, 100, 300, and 1,000 ng/mL for a 
few hours to allow equilibrium to be obtained.  

   5.    Take an aliquot of the medium to determine the concentration 
of Tf in the bulk media ( L  eq ) at equilibrium.  

   6.    Aspirate the remainder of the media, and wash the cells with 
WHIPS to remove most of the nonspecifically bound Tf. Then, 
wash cells with acid strip solution to dissociate Tf from TfR. 
This collected sample will correspond to the number of cell-
surface Tf/TfR complexes at equilibrium ( C  eq ) ( see   Note   2 ).  

   7.    The equilibrium dissociation constant ( K  D ), as well as the total 
number of cell-surface TfR molecules ( R  T ), can be determined 
as follows. Since trafficking is minimized, the total number of 
cell-surface TfRs remains constant at its initial value, and we 
have the following relation:

 
T eq eq ,R R C= +    (1)  

  where  R  eq  is the number of free cell-surface TfRs at equilibrium. 
Solving the previous equation for  R  eq  and substituting into the 
following definition for  K  D , we have the following equation:

 eq eq
D

eq

.
L R

K
C

≡    (2)  

  Performing some algebraic manipulation yields the follow-
ing equation:

 eq T
eq

eq D D

1
.

C R
C

L K K
= − +    (3)  

  A Scatchard analysis can then be performed, where a plot 
of  C  eq  /L  eq  vs.  C  eq  will yield a straight line with the slope equal 
to −1/ K  D  and the ordinate intercept equal to  R  T  /K  D .

Since the equilibrium dissociation constant is also equal to 
the ratio of the FeTf dissociation rate constant ( k  FeTf,TfR,r ) to 
that of the FeTf association rate constant ( k  FeTf,TfR ), we have 
the following relationship between these two rate constants:

   FeTf ,TfR ,r D FeTf ,TfR .k K k=  (4)         

 The second binding experiment, which will now be 
described, will then be used to provide a second relationship 
between these two constants that can be solved for the two 
unknowns,  k  FeTf,TfR  and  k  FeTf,TfR,r .
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   1.    Seed the HeLa cells onto 35-mm dishes and incubate them 
with radiolabeled Tf in serum-free media at the concentration 
equal to the  K  D  found earlier.  

   2.    At 0, 3, 6, 9, 12, and 15 min, obtain an aliquot of the bulk 
media to determine the concentration of Tf in the bulk media 
( L ) for a given time point.  

   3.    Aspirate the media and perform WHIPS washes and acid strips 
to determine the number of cell-surface Tf/TfR complexes 
( C ) for the same time point.  

   4.    Since this experiment is not at equilibrium and there is only 
binding occurring, we have the following relationship that 
applies based on mass-action kinetics:

 
FeTf ,TfR FeTf ,TfR ,r

d
.

d
C

k LR k C
t

= −    (5)  

  Combining  Eqs.   1 ,  4 , and  5  yields the following equation:

 ( )FeTf ,TfR T FeTf ,TfR D

d
,

d
C

k L R C k K C
t

= − −    (6)  

  where  R  T  and  K  D  were determined from the first experiment. 
 Equation  6 can be used to fit  k  FeTf,TfR  to the experimental data, 
and the  k  FeTf,TfR  value can then be substituted into  Eq. 4  to 
yield the  k  FeTf,TfR,r  value. These association and dissociation rate 
constants correspond to those at 0°C, and not at 37°C, since 
the cells were placed on ice to minimize trafficking.     

 In both of these experiments, the number of cells on each 
dish is determined by using control dishes that do not contain 
radiolabeled Tf and counting the number of cells on these 
dishes with a Coulter counter ( see   Note   3 ).  

  Unlike the two binding experiments described in  Subheading  
 3.1.2.1 , this experiment is performed with the cells incubated at 
37°C to allow internalization to occur.
   1.    Seed the HeLa cells onto 35-mm dishes and incubate them 

with radiolabeled Tf in serum-free media at the concentra-
tion equal to the  K  D  found from the experiment described in 
 Subheading   3.1.2.1.   

   2.    At short time periods (e.g., 0, 2, 4, 6, and 8 min), obtain the 
number of cell-surface Tf/TfR complexes ( C ) by performing 
the acid strip sampling described earlier ( see   Note   4 ).  

   3.    At these same time points, obtain values for the amount of inter-
nalized Tf ( C  i ) by solubilizing the cells with 1M NaOH and 
placing the resulting solution in a tube to be placed in a gamma 
counter to quantify the total amount of Tf inside the cells.  

   4.    The species balance on the number of internalized complexes per 
cell at any given time ( C  i ) is given by the following equation:

 3.1.2.2. Measurement 
of Internalization Rate 
Constant ( k  int ) 
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 i
int

d
,

d
C

k C
t

=    (7)  

  where  k  int  is the internalization rate constant. Integrating this 
ordinary differential equation (ODE) yields the following 
equation:

 
i int 0

d .
t

C k C t= ∫    (8) 

   Since  C  i  and  C  can be measured at each time point,  C  i  can be 
plotted vs. the integral of  C  to yield a line that has  k  int  as the 
slope.      

     1.    Seed the HeLa cells onto 35-mm dishes at 37°C and incubate 
them with radiolabeled Tf in serum-free media at the concen-
tration equal to the  K  D  found from the experiment described 
in  Subheading   3.1.2.1.   

   2.    Allow the trafficking processes to reach steady state by sam-
pling  C  and  C  i  at 30-min intervals over a period of 3 h to 
determine when these quantities begin to plateau. Typically, 
trafficking processes associated with receptor-mediated endo-
cytosis will attain steady state in a couple of hours.  

   3.    Following achievement of steady state, wash the cells with ice-
cold WHIPS and mild acid strip solution.  

   4.    Add serum-free media containing an excess of Tf to prevent 
recycled Tf from rebinding to TfR. Incubate cells at 37°C, 
and obtain aliquots of the bulk solutions at different time 
points (0, 3, 6, 9, 12, and 15 min). Each aliquot will be passed 
through a filter, where the radioactivity associated with the 
retentate (i.e., stuck on the filter) will correspond to the radio-
activity of the recycled Tf in the bulk solution ( see   Note   5 ).  

   5.    For each time point, perform WHIPS and acid strip washes 
followed by 1M NaOH solubilization to determine  C  i .  

   6.    As in the case of the internalization rate constant, the recycling 
( k  rec ) rate constant can be found by generating plots based on 
the following integral:

 = ∫rec rec c i0
d ,

t
N k N C t    (9)   

 where  N  c  is the number of cells on a dish, and  N  rec  is the total 
number of recycled Tf molecules.       

    When formulating the trafficking design goal, it is helpful to iden-
tify features of the protein drug trafficking pathway that may affect 
its therapeutic function. For example, degradative lysosomes are a 
common destination of intracellular protein trafficking pathways, 
and this may reduce the half-life of protein drugs  (1) . Thus, 
routing protein drugs out of the lysosomal pathway to extend 

 3.1.2.3. Measurement 
of Recycling Rate 
Constant ( k  rec ) 

3.1.3. Trafficking Design 
Goal
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protein half-life has been a trafficking design goal for previous 
proteins where trafficking modification was pursued  (2,   7) . 

 For the Tf system, cellular trafficking experiments indicated 
that Tf is trafficked rapidly through a cell  (8,   9) . The rapid traf-
ficking of Tf aids the physiological function of Tf because it allows 
iron to be delivered efficiently. However, the rapid trafficking also 
hinders the efficacy of Tf as a drug carrier, since it limits the time 
frame in which the drug can be delivered. For example, it has 
been estimated that for Tf conjugates of the gelonin cytotoxin 
that for every ten million conjugates that are recycled, only one 
molecule of gelonin is actually delivered into the cell  (9) . 

 Therefore, our trafficking design goal for the Tf system was to 
extend the time frame in which drug delivery could be achieved 
by establishing a new Tf trafficking pathway, such that the time 
Tf spent associated with a cell was increased. This may raise the 
probability that Tf achieves its intended purpose by delivering the 
drug to a cell, increasing its efficacy as a drug carrier.   

    In the second step of the methodology, a mathematical model 
of protein drug trafficking is used to help determine how the 
trafficking design goal can be achieved. Mathematical models of 
cellular trafficking have previously been used to aid analysis and 
interpretation of experimental trafficking data  (8, 9,   10,   11) . In 
establishing these models, the principles of mass action kinetics are 
applied to derive a system of ODEs that account for the binding, 
internalization, recycling, and degradation steps that make up the 
different elements of a trafficking pathway. Quantitative informa-
tion obtained from cellular trafficking experiments, such as those 
described in  Subheading   3.1.2 , can be used to parameterize the 
individual steps of the trafficking pathway within the model. 

 A sensitivity analysis of the model may assist in formulating 
molecular design criteria for the protein drug. These design crite-
ria specify how the drug can be engineered to alter its trafficking 
pathway so as to achieve the trafficking design goal. 

    Each ODE in the model is written as a species balance that 
describes the change in number over time of the protein drug in a 
given state within the trafficking pathway. For example, the pro-
tein drug in the extracellular medium that is bound to a receptor 
at the cell surface and internalized within the cell would consti-
tute three different states of the protein drug, so three separate 
ODEs would be written accounting for those states. Each of the 
terms in an ODE represents a specific step within the trafficking 
pathway that affects the change in number of the species over 
time ( see   Note    6  ). Individual trafficking steps in the model are 
characterized by constants, which describe the rate at which a 
trafficking step occurs. 

3.2. Mathematical 
Model of Protein Drug 
Trafficking

3.2.1. Formulation of ODEs
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 For the Tf model, species balances were written for the fol-
lowing: (1) extracellular FeTf in the bulk media, (2) extracellular 
iron-free Tf in the bulk media, (3) cell-surface TfR, (4) cell-sur-
face complexes of FeTf and TfR, (5) cell-surface complexes of 
Tf and TfR, (6) internalized TfR, (7) internalized complexes of 
FeTf and TfR, and (8) internalized complexes of Tf and TfR. 
Rate constants were obtained from cellular trafficking studies 
in which radiolabeled Tf ligand was used to obtain quantitative 
information on individual steps of the trafficking pathway ( Table   1  ). 
The equations of the model are presented here:

Species balance for bulk extracellular FeTf

 ( ) FeTf ,TfR bulk surfbulk cell

FeTf ,TfR ,r surf bulk A

FeTf Tfd FeTf
.

FeTf _ Tfd

k R n
k Rt V N

−⎛ ⎞
= ⎜ ⎟+⎝ ⎠

   (10)   

 Species balance for bulk extracellular Tf
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   (11)   

  Table 1 
  Model parameters    

 Parameter  Description  Value  Ref. 

  k  FeTf,TfR   Association rate of FeTf for TfR  4×10 7  M–1min–1   (9)  

  k  FeTf,TfR,r   Dissociation rate of FeTf from TfR  1.3 min–1   (9)  

  k  Tf,TfR   Association rate of iron-free Tf for TfR  0 M–1min–1   (12)  

  k  Tf,TfR,r   Dissociation rate of iron-free Tf from TfR  2.6 min–1   (8)  

  k  int   Internalization rate  0.38 min–1   (9)  

  k  rec   Recycling rate  0.15 min–1   (10)  

  k  Fe,rel   Tf iron release rate  100 min–1  Est. a  

  n  cell   Cell number  4 × 10 5  cells 

  V  b   Bulk media volume  1 × 10 −3  L 

  N  A   Avogadro’s number  6.02 × 10 23  mol   

   a  The estimation of the iron release rate value was based on the observation that iron is com-
pletely released from internalized Tf prior to it being recycled to the cell surface  .
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 Species balance for surface TfR
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 Species balance for surface FeTf/TfR complex

 
( )

= + −
−

+

surf
FeTf ,TfR bulk surf FeTf ,TfR ,r

surf int surf

rec int

d FeTf _ Tf
FeTf Tf

d
FeTf _ Tf FeTf _ Tf

FeTf _ Tf .

R
k R k

t
R k R

k R

 
  (13)   

 Species balance for surface Tf/TfR complex 
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 Species balance for internalized TfR 
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 Species balance for internalized FeTf/TfR complex
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 Species balance for internalized Tf/TfR complex
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    Systems of ODEs can be readily solved using several mathemati-
cal software packages, such as MatLab, Maple, and Berkeley 
Madonna. Numerical solution of the ODEs allows simulation of 
the protein drug trafficking pathway and predictions of how lev-
els of the molecular species change over time. 

 Since we were interested in increasing the amount of Tf associ-
ated with a cell, it was helpful to formulate the ODE solutions in a 
way that allowed us to focus on FeTf_TfR int  and Tf_TfR int . Together, 
these two species comprise the amount of intracellular Tf in the model. 
Plotting the sum of FeTf_TfR int  and Tf_TfR int  vs. time allowed the 
evolution of internalized Tf to be visualized graphically ( Fig.    2  ).   

      A sensitivity analysis can be performed to identify molecular design 
criteria by varying the parameters of the model that correspond 
to the molecular properties of the protein drug. For example, to 

3.2.2. Solving the System 
of ODEs

3.2.3. Sensitivity Analysis
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simulate the effects of increasing the binding affinity of a protein 
for its receptor, the association rate of the protein for its receptor 
within the model can be increased to observe how this changes 
the predicted levels of each molecular species. Molecular design 
criteria can be identified by observing which changes in protein 
molecular parameters lead to alterations of the trafficking pathway 
that are consistent with achieving the systems-level design goal. 

 Five different parameters were varied by several orders of 
magnitude within the Tf/TfR trafficking model to assess their 
impact on the level of cell-associated Tf. The five parameters 
varied were as follows: (1)  k  FeTf,TfR , the association rate of FeTf 
for TfR, (2)  k  FeTf,TfR,r , the dissociation rate of FeTf from TfR, (3) 
 k  Tf,TfR , the association rate of iron-free Tf for TfR, (4)  k  Tf,TfR,r , the 
dissociation rate of iron-free Tf from TfR, and (5)  k  Fe,rel , the Tf 
iron release rate. 

 To compare levels of intracellular Tf for different parameter 
values, it was useful to quantify intracellular Tf with a single value 
by taking the area under the curve (AUC) of internalized Tf vs. 
time ( Fig.    3  ). To address the trafficking design goal of increasing 
cellular association, we looked for changes in molecular parame-
ters that increased the AUC value of internalized Tf vs. time. The 
results of the sensitivity analysis showed that cellular association 
of Tf was predicted to increase under the following three condi-
tions: (1) the association rate of iron-free Tf for TfR is increased, 
(2) the dissociation rate of iron-free Tf from TfR is decreased, 
and (3) the iron release rate of Tf is decreased. These three condi-
tions constitute our molecular design criteria.    

    In the third step of the methodology, the protein drug is engi-
neered according to molecular design criteria ascertained from 
the mathematical model. It may be prudent to balance the selec-
tion of promising design criteria against considerations of cost 
and feasibility. 

3.3. Molecular 
Engineering of 
Protein Drug

  Fig. 2.    Plot of internalized Tf vs. time, as predicted by solution of the mathematical model, for various values of the iron 
release rate,  k  Fe,rel        .
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 For example, when examining the three molecular design 
criteria for Tf, increasing the affinity of Tf for TfR was predicted 
to result in substantially greater increases in cellular association 
than decreasing the iron release rate. However, increasing the 
affinity of a protein for its receptor is generally considered to be 
challenging. If such a criterion is pursued, one may be aided by the 

  Fig. 3.    Sensitivity analysis results for ( A )  k  FeTf,TfR , ( B )  k  FeTf,TfR,r , ( C )  k  Tf,TfR , ( D )  k  TfTfR,r , and ( E )  k  Fe,rel . Cellular association, as indi-
cated by the AUC of internalized Tf vs. time, is plotted on the  y -axis, and the value of the model parameter is plotted on 
the  x -axis. The default value of the model parameter is shown by the vertical dashed line. Note the change in scale for 
( C ) and ( D ).       
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use of a high-resolution crystal structure of the protein/receptor 
complex. These complexes can be used to locate protein residues 
near the binding interface, which could potentially be mutated 
to increase affinity, without disrupting key residues essential for 
binding. This strategy has previously been used to identify three 
residues on the Fc region of IgG close to its neonatal Fc receptor 
(FcRn) binding region  (7) . These residues were then randomly 
mutated to identify mutations, which increased the affinity of Fc 
for FcRn, leading to an extension of Fc half-life. 

 Application of modeling techniques to crystal structures 
has also been used in some instances to reduce the burden of 
experimental screening techniques by computationally identify-
ing mutations that increase protein binding affinity for a receptor. 
This approach was used to successfully engineer a tenfold increase 
in the affinity of cetuximab, a therapeutic antibody used for treat-
ment of colorectal cancer, for its epidermal growth factor target 
 (13) . In general, however, the requirement of a high-resolution 
crystal structure of the protein/receptor complex makes the rou-
tine use of such modeling techniques prohibitive. 

 Since a high-resolution crystal structure of the Tf/TfR com-
plex is not yet available, we decided instead to pursue lowering the 
Tf iron release rate as our molecular design criterion. An estab-
lished methodology for lowering the Tf iron release rate by replac-
ing its synergistic carbonate anion with oxalate was used  (14) . 

 Unlike the more general trafficking and modeling procedures 
described earlier, the oxalate replacement procedure is specific to 
the Tf case study. Since this method is not applicable to other 
protein systems, it is not presented here.  

      Finally, in the fourth step of the methodology, in vitro cellular traf-
ficking experiments with radiolabeled protein ligands will be per-
formed to validate the new trafficking pathway. In addition, assays 
are conducted to assess whether the new trafficking pathway trans-
lates into the desired improvement in therapeutic properties. 

      To see if inhibiting the iron release of Tf increased its cellular 
association, the amount of internalized Tf within HeLa cells was 
monitored over a 2-h period by performing cellular trafficking 
experiments with radiolabeled Tf.
   1.    After aspirating seeding medium from the HeLa cells, add 

incubation medium containing varying concentrations of 
radiolabeled iron-loaded Tf to each dish.  

   2.    After 5, 15, 30, 60, 90, or 120 min, aspirate the incubation 
medium and wash the dishes five times with ice-cold WHIPS 
to remove nonspecifically bound Tf.  

   3.    Add ice-cold acid strip solution to each dish. Place dishes on 
ice for 8 min and then wash again with an additional mL of 
the acid strip solution.  

3.4. Experimental 
Validation of Modified 
Trafficking Pathway 
and Improved Drug 
Properties

3.4.1. Experimental Valida-
tion of Modified Trafficking 
Pathway
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   4.    Following the removal of the specifically bound Tf on the cell 
surface by the acid strip washes, add NaOH (1 mL of 1 M) 
to the dishes for 30 min to solubilize the cells. After addition 
of another mL of NaOH, collect the two basic washes and 
measure the radioactivity with a gamma counter to determine 
the amount of internalized Tf.     
 Oxalate Tf was found to associate with HeLa cells an average 

of 51% greater than native Tf at ligand concentrations of 0.1 and 
1 nM  (3) . This suggests that inhibiting Tf iron release alters the 
Tf trafficking pathway so as to increase its cellular association.  

      To address whether the increased cellular association of Tf 
improved its efficacy as a drug carrier, Tf was conjugated to diph-
theria toxin (DT) and administered to HeLa cells in varying con-
centrations. Both native Tf and oxalate Tf conjugates were tested. 
Cell survivability was assessed using the MTT assay. Conjugates 
of oxalate Tf were found to be significantly more cytotoxic than 
conjugates of native Tf over a 48-h period. The IC 50  value, the 
concentration of conjugate at which 50% inhibition of cellular 
growth was achieved, was found to be 0.06 nM for the oxalate Tf 
conjugate, compared with 0.22 nM for the native Tf conjugate 
 (3) . This suggests that increasing the cellular association of Tf 
raises the likelihood of DT being delivered to HeLa cells in our 
in vitro cytotoxicity assay. 

 Like the oxalate replacement procedure, the cytotoxicity 
assay protocol is specific to the Tf case study, and is not presented 
here.    

    

    1.    Since iodine-125 covalently binds tyrosines in this procedure, the 
presence of tyrosines at the receptor binding interface can have 
some effect on the binding affinity. If possible, visual inspection 
of a crystal structure can aid in identifying tyrosines at the recep-
tor binding interface. If there are tyrosines, make sure that the 
mutants also preserve those residues to allow comparison.  

   2.    Since the WHIPS washes may leave some nonspecifically 
bound ligand on the cell surface, another binding experi-
ment generally needs to be performed in the presence of 
excess ligand to determine the number of remaining nonspe-
cifically bound ligand molecules. Under these conditions, the 
unlabeled ligand will saturate the ligand receptors, and the 
amount of bound labeled ligand will correspond to the level 
of nonspecific ligand binding.  

3.4.2. Assaying Improved 
Drug Properties

4. Notes
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   3.    A hemacytometer may also be used. Once you choose the 
method (Coulter counter or hemacytometer), the key point is 
to be consistent for all of the experiments.  

   4.    Tf recycles back to the cell surface in about 10 min. However, 
this experiment can be performed for a longer period of time 
as long as the ligand has not recycled back to the cell surface 
or has been degraded and exocytosed.  

   5.    Other approaches for determining recycled vs. degraded lig-
and are the phosphotungstic acid assay and the trichloroacetic 
acid assay. In these assays, the radioactivity associated with the 
precipitate represents the recycled ligand.  

   6.    Occasionally, it may be helpful to add ODE terms that repre-
sent trafficking steps that do not occur in the original traffick-
ing pathway, but allow the protein drug to be simulated with 
modified properties. For example, to enable the simulation of 
iron-free Tf with an increased association rate for TfR, a term 
describing the association of Tf for TfR was added to the spe-
cies balance of the Tf/TfR surface complex. This step does 
not occur in the original Tf trafficking pathway, since iron-free 
Tf does not naturally bind TfR.          

   

 This work was supported by the Sidney Kimmel Scholar Award.  
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Chapter 9      

 Rapid Creation, Monte Carlo Simulation, and Visualization 
of Realistic 3D Cell Models       

     Jacob   Czech      , Markus   Dittrich      , and Joel R.   Stiles        

  Summary 

 Spatially realistic diffusion-reaction simulations supplement traditional experiments and provide testable 
hypotheses for complex physiological systems. To date, however, the creation of realistic 3D cell models 
has been difficult and time-consuming, typically involving hand reconstruction from electron micro-
scopic images. Here, we present a complementary approach that is much simpler and faster, because the 
cell architecture (geometry) is created directly in silico using 3D modeling software like that used for 
commercial film animations. We show how a freely available open source program (Blender) can be used 
to create the model geometry, which then can be read by our Monte Carlo simulation and visualization 
software (MCell and DReAMM, respectively). This new workflow allows rapid prototyping and develop-
ment of realistic computational models, and thus should dramatically accelerate their use by a wide variety 
of computational and experimental investigators. Using two self-contained examples based on synaptic 
transmission, we illustrate the creation of 3D cellular geometry with Blender, addition of molecules, 
reactions, and other run-time conditions using MCell’s Model Description Language (MDL), and sub-
sequent MCell simulations and DReAMM visualizations. In the first example, we simulate calcium influx 
through voltage-gated channels localized on a presynaptic bouton, with subsequent intracellular calcium 
diffusion and binding to sites on synaptic vesicles. In the second example, we simulate neurotransmitter 
release from synaptic vesicles as they fuse with the presynaptic membrane, subsequent transmitter diffu-
sion into the synaptic cleft, and binding to postsynaptic receptors on a dendritic spine.  

  Key words:   Blender ,  MCell ,  DReAMM ,  MDL ,  Cell modeling ,  Cell architecture ,  Cell geometry , 
 Stochastic ,  Diffusion-reaction .    

    

 A quantitative understanding of cell and tissue function requires 
detailed models through which hypotheses may be generated and 
tested. As models become more complex, computer simulations 
provide tests of important questions that are beyond simple intuition 

1. Introduction
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and are inaccessible to current experimental methods. In the best 
case, a tight coupling between models, simulations, and experi-
ments can lead to breakthroughs in understanding. 

 Model development and simulation involve a number of dis-
tinct steps carried out with different software tools, similar to the 
different steps, methods, and equipment used in an experimental 
protocol. Realistic physiological models are particularly challeng-
ing because they encompass complex biochemistry taking place 
in small complex 3D spaces, and the different software tools 
required at each step can present steep learning curves. Neverthe-
less, it is increasingly necessary to develop and use such models 
to understand the physiology of disease, drug effects, and pheno-
typic changes produced by genetic manipulations. 

 Creation of a spatially realistic model begins with the definition 
of its cellular architecture, or geometry, followed by the addition 
of biochemical species and interactions within the geometry. The 
methods chosen for these initial steps depend in large part on the 
simulation approach to follow. For example, while some models 
may represent an entire cell as a single well-mixed compartment, 
we focus on stochastic diffusion and reactions within arbitrar-
ily complex intra- and extracellular spaces. Triangulated surface 
meshes are used to represent cell and organelle membranes, and 
thus the meshes also define different volumes of intervening solu-
tion. To build a model, one must somehow create the surfaces 
and then define how many molecules of what types are present 
in different spatial regions. One must also provide the diffusion 
coefficient for each molecular species and define the network of 
biochemical interactions and associated rate constants. Having 
done so, one can investigate such problems as diffusion of neuro-
modulators and neurotransmitters through tortuous extracellular 
space in brain  (1–  3) , or neurotransmitter release (exocytosis) and 
synaptic transmission  (4–  11) . Simulations of exocytosis involve 
voltage- and/or calcium-triggered release of signaling molecules 
from synaptic or endocrine vesicles. The released molecules subse-
quently diffuse through some extracellular space and are detected 
by receptor protein molecules on the downstream cell or cells. 
Our program MCell (Monte Carlo Cell;  refs.   4,   6,   7,   12)  was 
designed for such simulations, although it now is very general 
and can be used for a wide variety of diffusion-reaction models 
(e.g.,  refs.  13,   14) . The companion program DReAMM is used to 
visualize and animate the simulation results  (9,   12,   15) . 

 In this chapter we present a protocol for development of an 
MCell model and simulations, providing step-by-step instruc-
tions for an example based on signal transduction at synaptic 
boutons. Creation of the initial 3D geometry has been a long-
standing bottleneck for all such projects, especially when synaptic 
geometries are extracted (segmented) from electron microscopy 
data and subsequently converted into surface meshes for use in 
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simulations  (6,   9,   10) . Recently, however, we have developed a 
complementary and much faster approach based on the use of 
Blender  (16) , open-source 3D modeling software ( see   Note    1  ), 
as well as plug-ins that we have developed to link Blender to 
MCell and DReAMM. As we illustrate here, arbitrary cell-like 
geometry can be designed directly  in silico  using Blender, and the 
resulting meshes can be exported to MCell and DReAMM for 
simulation and visualization. This time-saving approach makes 
detailed simulations and investigations available to virtually any 
laboratory in relatively short order. 

 Specifically, we show how to do the following:
   1.    Create the model geometry using Blender. In  Subheading  

  3.1  , a synapse is created on one of several dendritic spines 
( Fig.   1 ), similar to actual dendrite and spine ultrastructure 
( Fig.   1 , inset). A synaptic cleft space separates the presynaptic 
bouton from the spine head, and the bouton contains two 
docked synaptic vesicles ( see   Fig.   4E ). Particular regions of 
the vesicle membrane and pre- and postsynaptic membranes 
( see   Fig.   4F, G ) are defined for subsequent addition of calcium 

  Fig. 1.    Three-dimensional model of a spiny dendrite illustrates some of the structures 
to be created and used in simulations in this chapter. The model dendrite was cre-
ated with Blender and visualized with DReAMM. Postsynaptic receptor regions ( light 
gray ) are located at the ends of the spine heads. One of the spine heads forms a 
synapse with a presynaptic bouton ( upper left ). For comparison, the inset shows 
a dendrite reconstructed from serial electron micrographs of rat brain. The data for 
the reconstruction were obtained as a publicly available VRML file from  ref.  17 . The 
VRML data were subsequently imported into DReAMM and visualized as illustrated 
by the inset image.       



240 Czech, Dittrich, and Stiles

binding sites, voltage-gated calcium channels (VGCCs), or 
ligand-gated neurotransmitter receptors, respectively, using 
MCell’s MDL ( Subheadings    3.3   and   3.5  ). In  Subheading  
  3.2  , the synaptic vesicles are modified with Blender to include 
an expanding fusion pore ( see   Fig.   4H, I ), and the model is 
subsequently used for MCell simulations of neurotransmitter 
diffusion through the pore ( Subheading    3.5  ).  

   2.    Use Blender plug-ins to export the model geometry as trian-
gulated surface meshes with region annotations for use with 
MCell and DReAMM.  

   3.    Use MCell’s MDL to specify ( Subheadings    3.3   and   3.5  ) the 
following:
   (a)    The types of molecules in the model (calcium ions, cal-

cium binding sites on proteins, neurotransmitter mol-
ecules, postsynaptic receptor proteins), their diffusion 
constants, and their initial locations.  

   (b)    The stoichiometry, rates, and directionality of the sto-
chastic reactions that can occur during simulations (con-
formational changes of calcium channels, calcium entry 
from open channels, calcium binding to protein sites on 
synaptic vesicles, neurotransmitter binding to postsyn-
aptic receptors, channel opening and closing of bound 
receptors).  

   (c)    The reaction data to be saved when the simulations are 
run. This includes counts of molecules and reactions 
in specific compartments as a function of time, and the 
resulting text (ASCII) files can be analyzed or plotted 
using common graphing software and/or scripts.      

   4.    Save MCell visualization data for DReAMM so that the model 
can be rendered (displayed) and checked. The importance of 
this step cannot be overemphasized, especially for complex 
models. For efficiency, the visualization files are written in a 
structured binary format that minimizes disk space and maxi-
mizes interactive speed and simplicity of use with DReAMM.  

   5.    Run complete MCell simulations and visualize the results 
with DReAMM. In  Subheading    3.3  , we simulate a voltage-
clamped presynaptic bouton in which calcium channels open 
stochastically, allowing calcium ions to enter. The ions then 
diffuse and bind to sites on the synaptic vesicles, simulating 
the presence of calcium-binding proteins (e.g., synaptotag-
min) and some of the events leading to calcium-dependent 
neurotransmitter release (exocytosis). In  Subheading    3.5  , we 
simulate expansion of fusion pores between the vesicles and 
presynaptic membrane, with subsequent diffusion of neuro-
transmitter molecules into the synaptic cleft. Within the cleft, 
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neurotransmitter binds reversibly to the postsynaptic receptors. 
Receptors that reach a double-bound state can undergo a 
reversible conformational change to an open channel state 
(ligand-dependent channel gating).  

   6.    Use DReAMM to animate simulation results.      
 The projects illustrated in this chapter are completely self-con-
tained and can be used without reference to additional material. 
Many modeling features are illustrated, although spatial and bio-
chemical details have been simplified for the sake of space and 
readability. Thus, the chapter provides an efficient introduction 
to development and use of spatially realistic stochastic cellular 
models and simulations, and, where necessary, provides links and 
citations to further discussion and examples.  

  

 Building and simulating the models described in this chapter 
requires a computer with the programs Blender, MCell, and 
DReAMM installed. Like many open source programs, Blender, 
MCell, and DReAMM are available in precompiled binary exe-
cutable form for a limited set of computer architectures and oper-
ating systems. This can dramatically simplify installation for users 
who have access to those particular systems and do not have expe-
rience in compiling (“building”), installing, and administering 
(large) programs obtained as source code. However, it is not pos-
sible to “prebuild” for all possible systems, and for this and other 
reasons it may be necessary or preferable to obtain the source 
code and build it “from scratch”. This is generally not a problem 
for a UNIX user with experience in code development or system 
administration, but it can be challenging for a novice. Part of the 
difficulty is simply dealing with a command line interface (typ-
ing commands at a prompt in a window), understanding where 
system files are located (in which directories or “folders”), and 
understanding how directory and file access is granted or denied 
to different users on a multiuser system. This is a very real issue, 
especially as more and more experimental biologists are becom-
ing more and more interested in using computational models 
and simulations to complement their wet lab work. Although the 
basics are straightforward, entire books are dedicated to the use 
and care of UNIX systems. In this chapter our focus is on build-
ing and using spatially realistic models. Hence, we assume a basic 
knowledge of UNIX and a command line interface, just as an 
experimental protocol must assume a basic knowledge of solu-
tions, gels, radiochemicals, etc. 

2. Materials

2.1. Preliminary Issues
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  The computer to be used can have either a 32- or 64-bit archi-
tecture (single or multiple cores), and should have some form of 
a UNIX operating system that includes developer features (C/
C++ compiler, OpenMotif libraries, standard image tool librar-
ies, etc.). A fully configured Linux or similar system should work 
without problem. Mac OS X is in fact a form of UNIX, so it also 
works well, but it must be installed with the developer libraries 
( see   Note    2  ). The difference between a 32- or 64-bit system is 
unimportant unless very large MCell simulations are to be run, 
in which case a 64-bit system with a very large amount of physi-
cal memory (RAM) may be required. At the upper extreme for 
large models, the simplest present solution is to run MCell on a 
large shared memory architecture (hundreds of GBytes), and if 
no such local computers are available one can use a shared mem-
ory computer available at the Pittsburgh Supercomputing Center 
or other national facility. In practice, however, many models and 
simulations (including those for this chapter) can be run quite 
easily on present-day desktop computers with typical amounts of 
memory (e.g., 2–8 GB). 

 Efficient and high-quality visualization is critically important 
to spatially realistic modeling, and so the computer should have at 
least one high-resolution display (1,600 × 1,200 or higher). We 
routinely use two such displays configured as one 3,200 × 1,200 
workspace, driven by a professional-level OpenGL graphics card 
(e.g., NVidia Quadro 3xxx or 4xxx series at present). Disk stor-
age is generally not a problem in current desktop systems, where 
capacities approaching a terabyte or more are common. In prin-
ciple, many projects can also be run on a laptop, although limited 
display space can be an inconvenience.  

     1.    Download and install Blender from   http://www.blender.org.     
This is the Blender development site, so the most recent ver-
sion will be available. As an alternative, you may download 
all the software required for this chapter from   https://www.
mcell.psc.edu/download.html,     in order to obtain the spe-
cific versions that match those illustrated here. This chapter is 
based on Blender version 2.45, and more recent versions may 
have changes to hot key (and other) functions. In addition, 
different versions of UNIX may assign different functions to 
particular keys (such as the Alt key), so there may be some 
inevitable differences from what is described in the following 
sections.  

   2.    After installation, make sure that your path environment vari-
able is set so that Blender can be started from any command 
line (type “blender” and hit  Enter  at a command line).  

   3.    Download the two Blender plug-ins from   https://www.mcell.
psc.edu/download.html     if you have not already done so. One 

2.2. Computer 
Hardware and 
Operating System

2.3. Download and 
Install Blender and 
Blender Plug-Ins
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plug-in will be used to generate MCell MDL files (.mdl) from 
meshes created with Blender. The other can be used to gener-
ate DX files (.dx) for use with DReAMM ( see   Note    3  ). The 
DX format is also the default visualization file format output 
by MCell for use with DReAMM.  

   4.    To make the Blender plug-ins functional, create a directory and 
copy or move both plug-ins into it. Start Blender and mouse 
over the lower edge of the top menu bar ( Fig.   2A ). Left click 
and pull down to uncover several button fields including one 
labeled “File Paths”. Click on it and then locate the “Python” 
text box ( Fig.   2B ), which has two buttons next to it. Click 
the rightmost button, navigate to the plug-in directory you 
just created, and then select it as the default script location. 
Then click on the left button to make the scripts available to 
Blender. If desired, hide the pull down button fields.   

   5.    Hit  Ctrl-u  to save these settings for future use.  
   6.    Verify that on the Blender menu bar, “File –> Export” now 

shows entries for MCell (.mdl) and DReAMM (.dx).      

  Fig. 2.    Screen capture of Blender’s main window. By default, the Blender interface consists of three areas (A, C, and E).   
At the top (A) is the “User Preferences” window, which is hidden initially. It allows the user to adjust Blender’s appear-
ance, performance, and file paths, including the location of the Python plug-ins directory (B). The “3D View” (C) is used 
for manipulation and visualization of mesh objects. The “Buttons Window” (E) offers a variety of operations that can be 
performed on the mesh objects. At the top left of the “Buttons Window” is a drop-down list (D) providing access to all of 
the available window areas.       
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     1.    Download and install MCell from   https://www.mcell.psc.
edu/download.html.     Throughout this chapter we assume the 
use of MCell version 3, or MCell3  (12) .  

   2.    After installation, make sure that your path environment vari-
able is set so that MCell can be started from any command 
line. To do so, enter the name of your executable for MCell 
at a command line (e.g., “mcell3”; the actual name may vary 
depending on your installation) and verify that MCell starts 
running and prints out a number of default start-up messages 
in the command window. In the absence of any command line 
arguments/options (as in this case), the start-up messages will 
include an error message stating that no MDL filename has 
been specified. This is normal and can be ignored.      

     1.    To use DReAMM you must first download and install PSC_
DX, a visual programming, imaging, and data manipulation 
environment on which DReAMM is built. PSC_DX is a cus-
tomized and improved version of OpenDX, or Open Data 
Explorer, originally developed by IBM. Note that DReAMM 
requires PSC_DX and will not run with OpenDX. Both PSC_
DX and DReAMM can be downloaded from   https://www.
mcell.psc.edu/download.html.     This chapter is based on PSC_
DX and DReAMM version 4.1.  

   2.    Compile (if necessary) and install PSC_DX.  
   3.    To verify the installation, enter “dx” at a command line. A 

PSC_DX (Data Explorer) start-up menu and DReAMM 
splash image should appear.  

   4.    Quit PSC_DX (click on the Quit button in the start-up 
menu).  

   5.    Install DReAMM. Make sure that the start-up script 
(“dreamm”) or a link to the start-up script is accessible in 
your path.  

   6.    To verify the installation, enter “dreamm” at a command line. 
The DReAMM start-up menus ( Fig.   3 ), splash image, and 
“DReAMM Image Window” should open. Click the Play 
button on the “Sequence Control” menu ( Fig.   3B ) to see a 
default time series in the “Image Window”. Change the pop-
up “Keyframe Mode” button (bottom of “Quick Controls” 
menu, labeled  8  in  Fig.   3A ) from “All Interactive” to “Key-
frames” and then replay the time series to see it with animated 
camera positions. To quit DReAMM, go to the “DReAMM 
Image Window” menu bar and click on “File –> Quit”. When 
prompted to save the project, click “No”.        

2.4. Download and 
Install MCell

2.5. Download and 
Install DReAMM
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  Fig. 3.    Screen captures of start-up DReAMM controls. (A) The “Quick Controls” window organizes DReAMM’s menus into 
task-based subsets that can be customized to suit user preferences. (1) Open menus to import data and select objects. 
(2) Open menus to assign rendering properties to objects. (3) Open menus to make an animation using keyframes. (4) 
Open a list of all menus that can be opened one-by-one. (5) Close the menus opened by (1). (6) Close the menus opened 
by (2). (7) Close all previously opened menus. (8) By default, the “Keyframe Mode” is set to “All Interactive”, meaning 
that the camera can move about the 3D space freely. When set to “Keyframes”, however, the camera will be locked into 
positions (keyframes) that were set using “Make Animation” menus. (B) “Sequence Control” for animations. Bottom row 
of buttons, left to right: Play in reverse, Play forward, Stop, Pause. Top row, left to right: Loop while either Play button is 
pressed, Palindrome (play to end or beginning and then reverse direction while either Play button is pressed), Single-step 
play mode, Frame number (pressing this button opens a “Frame Control” window that allows particular frames to be 
played). Note that Loop, Palindrome, and Single-step may all be used in combination.       

  

     In this section we will create a spine head by removing the upper 
portion of a sphere and then closing the opening ( Fig.   4A, B ). 
In later sections, the spine head will be copied and modified to 
create additional objects.
   1.     Start Blender : Enter “blender” at a command line. You will see two 

view ports, a large central “3D View” and a “Buttons Window” 

3. Methods

3.1. Create Pre- and 
Postsynaptic Geom-
etry with Blender

3.1.1. Create a Spine Head
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widget at the bottom ( Fig.   2 ). By default, the start-up 3D view 
shows the XY-plane parallel to the screen ( see   Note    4  ).  

   2.     Delete the default Blender start-up object : At start-up, Blender 
creates a simple cube object. Delete this by hitting  x  ( see   Note  
  5  ), which will bring up a dialog box prompting to “Erase 
selected Object(s)”. Click to confirm.  

   3.     Create a sphere : Hit the  spacebar.  In the pop-up menu, mouse 
over “Add”, then “Mesh”, and click on “UVSphere” ( Fig.   4A , 
 Note    6  ). In the new pop-up menu titled “Add UV Sphere”, 
make sure that “Segments” and “Rings” are set to “16”, 
“Radius” is set to “0.25” ( see   Note    7  ), and then click “OK”.  

  Fig. 4.    Blender screen captures at key stages during mesh creation. A UV sphere ( A ,  see   Note    6  ) is cut nearly in half 
and closed off to create a dendritic spine head ( B ). The spine head then is duplicated, rotated, and manipulated to create 
a presynaptic bouton ( C ). Portions of the bouton and spine head are extruded to create axonal membrane and the spine 
neck ( D ). Two small spheres are added within the bouton and serve as synaptic vesicles ( E ). Regions on the presynaptic 
bouton and vesicle meshes are defined for voltage-gated calcium channels and calcium binding sites, respectively ( F ). A 
region on the spine head is defined for postsynaptic receptors ( G ). A fusion pore is extruded from each synaptic vesicle 
( H ,  left ) and joined to the presynaptic bouton mesh ( H ,  right ). Finally, the fusion pore is scaled to the desired initial ( I , 
 left ) and final ( I ,  right ) diameters.       
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    4.     Name the sphere : Under the “Link and Materials” tab in the 
“Buttons Window”, click in the text box that says “OB:Sphere” 
and change it so that it reads “OB:SpineHead”.  

    5.     Change view : Hit  1  ( on the number pad ) to switch to the XZ-
view ( see   Notes    8   and   9  ).  

    6.     Deselect the sphere and make it semitransparent : Hit  a  then  z .  
    7.     Select the vertices to be removed : Hit  b , which will bring up a 

pair of cross-hairs used for selecting vertices. Clicking and 
dragging will create a rectangular area that follows the cross-
hairs. Any vertices within this rectangle will be selected. 
Click and drag over all the vertices  above  (but not including) 
the equator of the sphere (the  XY -plane in this view).  

    8.     Remove the faces that make up the top of the sphere : Hit  x  
and click on “Faces” in the “Erase” menu. The “3D View” 
should now show only the remaining lower portion of the 
sphere.  

    9.     Close the opening : As shown in  Fig.   4B , the desired result 
includes a set of new adjoining faces that will meet at a cen-
tral vertex and close the opening ( see   Note    10  ). Begin by 
selecting the topmost vertices. Hit  b  and select the vertices 
by clicking and dragging the selector rectangle over the top 
edge. Next, hit  e  to extrude and click “Only Edges” in the 
“Extrude” pop-up menu. Hit  0  as the distance to extrude 
and hit  Enter  to confirm. Hit  s  to scale the extrusion, next 
hitting  0  to obtain the desired new radius, and then hit  Enter . 
In the “Buttons Window” under “Mesh Tools”, hit “Rem 
Double”. This will remove all but one of the duplicated ver-
tices and reconnect the triangles. Blender should inform you 
that 15 vertices have been removed, and the object should 
now be closed by a flat top.  

   10.     Subdivide the triangles that close the top : At this point we 
need to create a set of concentric rings to be used in sev-
eral subsequent operations (defining a region and creating 
an invagination). Hit  b  and once again select the topmost 
vertices, which now will also include the new central vertex. 
Next hit  7  ( on the number pad ) to change back to the  XY -
view (overhead view of the spine head). Hit  k  and, in the 
pop-up “Loop/Cut Menu”, click “Knife (Multicut)”. In the 
“Number of Cuts:” pop-up menu, click the right arrow until 
it reads “8” and then click “OK”. In a clockwise motion, 
click and drag the knife-shaped cursor over all of the spoke-
like edges radiating from the center point. All of the edges 
(spokes) need to be crossed; it does not matter where or in 
which order. After crossing all the edges, hit  Enter.  Blender 
will subdivide each edge into eight segments of equal length 
and create new coplanar faces arranged in concentric rings 
( Fig.   4B ).  
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   11.     Save your current mesh object : Hit  F2  and save the mesh ( see  
 Note    11  ).       

  In this section we will duplicate the existing spine head and morph 
the copy into an invaginated presynaptic bouton.
   1.     Reset the view : Hit  1  ( on the number pad ) to switch again to 

the  XZ -view. If you are continuing from the previous section 
and some vertices are currently selected, hit  a  once to deselect 
everything. Then hit  a  (again) to select all the vertices.  

   2.     Duplicate the spine head and rotate the copy : Hit  Shift-d  to 
duplicate the existing spine head. After it is duplicated, Blender 
will automatically select only the new portion, which at this 
point is still considered part of the original object. Hit  r , then 
type  180 , and hit  Enter  to rotate the new portion by 180° 
around the  Y -axis (the current view axis). Hit  p  and click on 
“Selected” in the “Separate” menu to make the new rotated 
portion a separate object.  

   3.     Select and name the new object : Hit  Tab  to switch to “Object 
Mode” and right click on the new object so that it is high-
lighted in pink ( see   Note    12  ). In the “Link and Materials” 
tab in the “Buttons Window”, name the object by clicking in 
the text box containing the string “OB:SpineHead.001” and 
changing it to “OB:PresynapticBouton”.  

   4.     Shift and scale the bouton : Hit  g  to grab the object,  z  to con-
strain the shift (move) operation to the  Z -axis, then type  0.15 , 
and hit  Enter  to confirm. This will move the bouton 0.15 
units along the positive  Z -axis. Hit  s  to scale the bouton, type 
 1.2 , and hit  Enter  to confirm. This will increase the size of the 
bouton by 20%.  

   5.     Create an invagination in the bouton : Hit  Tab  again to switch 
to “Edit Mode”. Hit  a  to deselect everything. Select the lower-
most vertices of the bouton by hitting  b  and then clicking and 
dragging around them. Next, hit  Ctrl-Minus  ( on the number 
pad ) to perform a “Select Less” operation. In this case the 
outermost ring of vertices will be deselected. Hit  e  to extrude, 
click “Region” in the “Extrude” menu,  z  to constrain it to the 
 Z -axis, type  0.075 , and hit  Enter . This will move the remain-
ing selected vertices 0.075 units in the positive  Z  direction, 
producing an invagination into which the postsynaptic spine 
head will fit ( Fig.   4C ).  

   6.     Save the current mesh objects : Hit  F2  to save the current meshes 
( see   Note    11  ).      

 We now add cylindrical extensions to the rounded ends of both 
objects, to create a length of axonal membrane for the presynap-
tic bouton and a dendritic spine for the spine head.

3.1.2. Create a Presynaptic 
Bouton

3.1.3. Add Axonal and 
Dendritic Extensions
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   1.     Confirm that you are in “Edit Mode” : If you are continu-
ing from the preceding step, you should already be in “Edit 
Mode”. If necessary, hit  Tab  to switch from “Object Mode” 
to “Edit Mode”.  

   2.     Confirm the view : The operations to be performed in this step 
are most safely accomplished using a “side view”, so if neces-
sary hit  1  ( on the number pad ) for the  XZ -view.  

   3.     Create a cylindrical axon segment on the presynaptic bouton : 
If necessary, hit  a  to deselect all objects, then zoom in ( see  
 Note    8  ) on the upper pole of the presynaptic bouton until 
the top vertex is clearly visible. Select the vertex by right click-
ing on it. Now perform two “Select More” operations by hit-
ting  Ctrl-Plus  ( on the number pad ) twice, until two concentric 
rings of vertices are highlighted. Hit  x  and click “Faces” on 
the “Erase” menu. This will remove the mesh faces selected at 
the pole of the presynaptic bouton, leaving an opening. Hit  b  
and then select the vertices that line the opening by clicking 
and dragging around them. Next hit  e,  click “Only Edges” 
on the “Extrude” menu, then hit  z , type  3.0 , and hit  Enter.  A 
cylindrical axon segment should now extend from the top of 
the bouton ( Fig.   4D ).  

   4.     Select the spine head : Hit  Tab  to go into “Object Mode”. Right 
click on the spine head (bottom) mesh to select it. Hit  Tab  to 
go back into “Edit Mode”.  

   5.     Create a cylindrical spine on the spine head : As in earlier  step 2 , 
zoom in and select the bottommost vertex (at the pole) by right 
clicking on it. Hit  Ctrl-Plus  ( on the number pad ) two times. Hit 
 x  and click “Faces” on the “Erase” menu. Hit  b  and then click 
and drag around the vertices that line the hole in the bottom of 
the mesh. Hit  e , click “Only Edges” on the “Extrude” menu, hit 
 z , type  −2.0 , and hit  Enter.  A cylindrical spine should now extend 
from the bottom of the spine head ( Fig.   4D ).  

   6.     Save the current mesh objects : Hit  F2  to save the current meshes 
( see   Note    11  ).     

  We will now create two small spheres to represent synaptic vesicles 
inside the presynaptic bouton. We will also define a region on each 
vesicle to contain calcium binding sites ( Fig.   4E, F ). In Blender, 
we define regions simply by assigning each one a uniquely named 
material. If desired, the regions can then be visualized by giving 
them separate colors. The regions assigned with Blender will be 
accessible automatically with MCell and DReAMM.
   1.     Create the first synaptic vesicle : New objects always appear at the 

position of the 3D cursor. Make sure that the cursor is now posi-
tioned at the origin by hitting  Shift-c . If you are continuing from 
the previous section, hit  Tab  to enter “Object Mode”. Hit the 

3.1.4. Add Synaptic 
Vesicles with Regions for 
Calcium Binding Sites
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 spacebar,  mouse over “Add”, then “Mesh”, and click on 
“UVSphere”. In the “Add UV Sphere” menu, change “Seg-
ments” to “12”, “Rings” to “8”, “Radius” to “0.02”, and then 
click “OK”. This creates a small sphere centered at the origin.  

   2.     Rotate the vesicle into a more convenient orientation : Hit  r,  
then  x , type  90 , and hit  Enter  to rotate the sphere 90° around 
the  X -axis .   

   3.     Define the region for calcium binding sites : Under “Link and 
Materials”, click “New” (the rightmost option) to assign 
material properties to the whole vesicle. Default settings and 
a default name will be used automatically. Next hit  a  to dese-
lect everything and then right click on the bottommost vertex 
of the vesicle to select only that vertex. Hit  Ctrl-Plus  ( on the 
number pad ) two times to select two additional concentric 
rings of vertices. Again click “New” under “Links and Materi-
als” to create a second material. The words “2 Mat 2” appear 
in a box directly above. Click in the gray square to the left of 
these words, and a color selector will appear. The color selec-
tor includes a horizontal color bar and a larger saturation-
value gradient box. Click in the upper right-hand corner of 
the gradient box so that a reddish shade is selected. Now click 
“Assign” to apply this red material to the selected faces.  

   4.     Name the new region : Hit  F5  to change to the “Shading” sec-
tion of the “Buttons Window”, and, under “Links and Pipe-
line” in the text box titled “Link to Object”, change the field 
that reads “MA:Material.002” ( see   Note    13  ) to “MA:CaBS_
Reg” for the calcium binding sites region. Hit  F9  to return to 
the “Editing” section of the “Buttons Window”.  

   5.     Move the vesicle : Hit  Tab  to change into “Object Mode”. Hit  g  to 
grab the entire vesicle ,  then  x , type  −0.108 , and hit  Enter  to move 
the vesicle  − 0.108 units along the  X -axis. Hit  g,  then  z,  type  0.105 , 
and hit  Enter  to move it 0.105 units along the  Z -axis.  

   6.     Duplicate the vesicle and move the copy : Hit  Shift-d  to duplicate 
the vesicle. Hit  g , then  x , type  0.216 , and hit  Enter  to move the 
copy 0.216 units along the  X -axis away from the original.  

   7.     Rotate the vesicles into their final positions : We want each vesicle 
situated above a single quadrangular face (quad) of the presyn-
aptic mesh, so that the two quads can be defined as a region for 
VGCCs ( see   Subheading    3.1.5   later). Thus, we now rotate the 
vesicles around the  Z -axis. With the vesicle copy still selected, 
hold  Shift  and right click on the other vesicle to select it. Hit  r , 
then  z , type  11.25 , and hit  Enter  to confirm.  

   8.     Name the two vesicles : Select the left vesicle by right clicking 
on it. To name it, look under “Link and Materials”, click 
in the text box that reads “OB:Sphere”, and change it to 
“OB:Vesicle1”. To name the vesicle on the right, right click 
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on it and change the text box from “OB:Sphere.001” ( see  
 Note    13  ) to “OB:Vesicle2”.  

   9.     Save the current mesh objects : Hit  F2  to save the current meshes 
( see   Note    11  ).      

  We now define a presynaptic membrane region in which VGCCs 
will be located. This region will include two noncontiguous areas 
that underlie the synaptic vesicles. To expedite this operation, 
we will temporarily “clip” the existing meshes, i.e., make por-
tions of them invisible. This will make it easier to see the par-
ticular remaining mesh faces that we want to include in the new 
regions.
   1.     Clip the existing mesh objects : Select the mesh for the presy-

naptic bouton by right clicking on it, and then hit  Tab  to 
change into “Edit Mode”. Hit  Alt-b  to bring up cross-hairs 
for defining a clipping box. To define the box, click and drag 
a rectangle around both vesicles and the vertices on the presy-
naptic membrane directly beneath them. The rectangle will 
project through the plane of the screen to create a clipping 
box. Everything outside of the box will be invisible until  Alt-b  
is hit again.  

   2.     Change the view : Hit  7  ( on the number pad ) to switch to the 
 XY -view (overhead). You should now be looking down on 
the synaptic vesicles above the presynaptic membrane. Hit 
 Ctrl-Tab  and select “Faces” in the “Select Mode” box that 
appears. Hit  z  to make the mesh opaque, so that subsequent 
color changes for regions will be easily visible.  

   3.     Define the region for VGCCs : Click “New” under “Link and 
Materials” to assign a default material to the entire object. 
Then right click on the face directly below one of the vesicles 
( Fig.   4f ; the face will extend beyond the vesicle’s diameter). 
While holding  Shift , right click on the corresponding face 
under the other vesicle (as noted earlier, the faces in a region 
do not need to be contiguous). Again, click “New” under 
“Link and Materials”. Click in the gray box beside the words 
“2 Mat 2”. Click in the green area of the horizontal color bar 
that appears, and then click near the upper right hand cor-
ner of the saturation-value gradient box above it. Now click 
“Assign”, and the faces under the vesicles will change to a 
green color.  

   4.     Name the region : Hit  Tab  to change into “Object Mode”. Hit 
 F5  to change to the “Shading” section of the “Buttons Window” 
and, under “Links and Pipeline” in the text box titled “Link to 
Object”, change the field that reads “MA:Material.003” ( see  
 Note    13  ) to “MA:VGCC_Reg”. Hit  F9  to return to the “Edit-
ing” section of the “Buttons Window”.  

   5.     Cancel the clipping box : Hit  Alt-b.   

3.1.5. Define Region for 
VGCCs
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   6.     Save the current mesh objects : Hit  F2  to save the current meshes 
( see   Note    11  ).      

  Similar to  Subheading    3.1.5  , we now define the region on the 
spine head (postsynaptic) membrane that will hold the ligand-
gated neurotransmitter receptors ( Fig.   4G ).
   1.     Reset view : Hit  1  ( on the number pad ) to switch back to the 

 XZ -view. If you are continuing from the previous section, the 
presynaptic bouton is still selected. Hit  h  to hide it.  

   2.     Define the postsynaptic receptor region : Right click on the spine 
head mesh to select it and then hit  Tab  to switch to “Edit 
Mode”. Then click “New” under “Link and Materials” to 
apply a default material to the entire mesh. Select the top row 
of faces by hitting  b  and then clicking and dragging a rectangle 
around them. Then hit  Ctrl-Minus  ( on the number pad ) three 
times to perform three “Select Less” operations, and thus 
deselect the three outermost rings of vertices. Click “New” 
under “Link and Materials”. Click the gray color selector box 
and choose a blue shade. Click “Assign” to apply this material 
to the selected faces.  

   3.     Name the region : Hit  Tab  to change into “Object Mode”. Hit  F5  
to change to the “Shading” section of the “Buttons Window” 
and, under “Links and Pipeline” in the text box titled “Link 
to Object”, change the field that reads “MA:Material.004” 
( see   Note    13  ) to “MA:Receptor_Reg”. Hit  F9  to return to 
the “Editing” section of the “Buttons Window”.  

   4.     Save the current mesh objects : Hit  F2  to save the current meshes 
( see   Note    11  ).      

  In this section we create a dendritic shaft from a cylinder and then 
join it to the existing dendritic spine mesh. We then create repli-
cated spines at different positions along the dendrite, and outline 
ways to change the dimensions of the spines to make a biologi-
cally realistic model similar to that shown in  Fig.   1 . Note that 
the presynaptic bouton mesh remains hidden throughout these 
operations since it will not be replicated. Thus, for the sake of 
subsequent illustrative simulations, we will end up with a single 
synapse onto one spine head, although the model dendrite will 
include multiple spines similar to those illustrated in  Fig.   1 .
   1.     Create the dendritic shaft:  Hit  1  ( on the number pad ) for the 

 XZ -view. Hit  Tab  to go into “Object Mode”. Hit  Shift-c  to 
center the cursor at the origin. Hit the  spacebar , mouse over 
“Add”, then “Mesh”, and click on “Cylinder”. In the “Add 
Cylinder” menu that appears, set “Vertices” to “16”, “Radius” 
to “1.00”, “Depth” to “1.00”, make sure that “Cap Ends” is 
deselected, and then click “OK”. Hit  r , type  11.25 , and hit 
 Enter . This final rotation step around the axis of the cylinder 

3.1.6. Define a Region for 
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will align one of the cylinder faces with the base of the spine 
object.  

   2.     Assign material properties to the dendritic shaft : In  step 8  later, 
the shaft will be joined to the dendritic spines, but we want 
the shaft to be a separate mesh region rather than an exten-
sion of the spine region. Thus, we need to apply new material 
properties to the shaft. Simply click “New” under “Link and 
Materials” to apply a new set of default material properties.  

   3.     Subdivide the faces along the length of the shaft : For subsequent 
joining of spines to the shaft, it is preferable to subdivide the 
cylinder faces along their length. Hit  7  ( on the number pad ) 
for the  XY -view. Click “Beauty” under “Mesh Tools”. Hit  w  
and, in the “Specials” menu, select “Subdivide Multi”. In the 
“Number of Cuts” menu, select “2” and hit “OK”. Each of 
the faces that made up the sides of the cylinder should now 
have been subdivided into three faces. Hit  1  ( on the number 
pad ) to change back to the  XZ -view.  

   4.     Move the shaft to the end of the dendritic spine : Hit  Tab  to go 
into “Object Mode”. Hit  g , then  z , type  −3.0 , and hit  Enter  to 
confirm.  

   5.     Create multiple spines : Hit  Shift-s  and click “Cursor −> Selec-
tion” in the “Snap” pop-up menu. Right click on the “Spine-
Head” object to select it (from the current view the cylinder 
may seem to have disappeared, but it is still present). Hit  Tab  
to go into “Edit Mode”. Hit  a  and verify that the entire object 
is selected. Under “Mesh Tools” in the “Buttons Window”, 
set “Degr” to “270.00”, “Steps” to “3”, and “Turns” to “1”. 
Directly above these text boxes, click “Spin Dup”. This will 
create three copies of the original spine head and place them 
at 90° increments around the cursor, which lies on the axis of 
the cylinder.  

   6.     Join the spines to the shaft : Hit  Tab  to go into “Object Mode”. All 
of the spines will be selected automatically following the preced-
ing step. Hold  Shift  and right click on the shaft (cylinder) object 
to add it to the selected set of objects. Hit  w  and click “Union” in 
the “Boolean Tools” pop-up menu. This will perform a Boolean 
operation and merge the spine objects with the shaft object to 
create a new object ( see   Note    14  ). However, at this stage the 
original objects are still present and are still selected. Instead of 
deleting them, move them to another layer in case any changes 
are necessary later. This is done by hitting  m  (move), followed 
by  2  ( not on the number pad ), and clicking “OK”. The original 
objects have now been moved to layer 2.  

   7.     Name the object created by the union operation : Right click 
on the new merged object to select it. To name it, look 
under “Link and Materials”, click in the text box that reads 
“OB:Tube.001”, and change it to “OB:Dendrite”.  
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    8.     Replicate, extend, and merge the entire object : Hit  Ctrl-a  
and select “Apply scale and rotation” ( see   Note    15  ). Under 
the “Modifiers” tab in the “Buttons Window”, click “Add 
Modifier” and select “Array”. Change “Count” to “3”. 
Change the “Relative Offset” of “ X ” to “0.000” and “ Y ” 
to “1.000”. Click the “Merge” button. This operation will 
replicate the object twice (for a total count of 3), move the 
replicates along the  Y -axis to the end of the previous piece, 
and then merge all of the pieces together. To see the result, 
change back to the  XY -view [hit  7  ( on the number pad )] and 
note how the shaft extends along the  Y -axis.  

    9.     Generate a preliminary rotation of the spines : Hit  1  ( on the 
number pad ) to change back to the  XZ -view. Hit the  space-
bar , mouse over “Add”, and select “Empty”. This will create 
and select an empty object to which we will add a rotational 
transformation. First, hit  Alt-r  and click “Clear Rotation” to 
negate any preexisting rotations applied because the object 
was created using a certain view ( XZ -view in this case). Next, 
hit  r , type  45.0 , and hit  Enter  to rotate the empty object 45° 
around the current view axis. Now, right click on the den-
dritic shaft to select it. In the “Modifiers” tab, click “Object 
Offset” and then type “Empty” in the text box below. This 
will add the rotation of the “Empty” object to the dendritic 
shaft segments created in the preceding step. The amount of 
rotation is the product of the segment index and the speci-
fied 45°. The segment indices are (0, 1, 2), and so the first 
segment is not rotated, the second is rotated by 45°, and the 
third is rotated by 90° (and thus is realigned with the first 
segment).  

   10.     Finalize the rotation of the spines (array extensions) : At this 
point we can view the preliminary rotation of the array exten-
sions, but the rotation has not yet been finalized. Until it is 
finalized, we cannot make changes to the individual faces 
and vertices when in “Edit Mode”. To finalize the rotation, 
click “Apply” in the “Array” modifier.  

   11.     Apply optional changes to the spine dimensions : At this stage, 
each of the spine necks can be lengthened or shortened, 
and the spine head dimensions can be modified as well. For 
example, to lengthen a particular spine, hit  Tab  to go into 
“Edit Mode”. Hit  b  and drag the select marquee around 
the vertices of the spine head. Then, along the bottom of 
the “3D View” pane, change the drop-down “Orientation” 
button from “Global” to “Normal”. Hit  g , then  z twice  ( see  
 Note    16  ), and then type in a positive value to lengthen the 
spine or a negative value to shorten it. Hit  Enter  to apply 
the change. In a similar fashion, individual spine heads can 
be scaled by selecting them, hitting  s , and then entering a 
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value between 0 and 1 (shrink) or greater than 1 (expand). 
Finally, similar operations could be used to shrink or expand 
the diameter of the spine neck, or move the presynaptic bou-
ton together with the postsynaptic spine head.      

  Sharp angles between mesh faces can cause inaccuracies and/or 
instabilities for many computational algorithms (e.g., comput-
ing a gradient on the mesh), and hence it is often desirable or 
necessary to smooth or otherwise “optimize” the mesh. In effect 
this amounts to low-pass filtering of the mesh to remove sud-
den (high-frequency) changes in shape (curvature). Smoothing 
is considerably less important for MCell simulations, because 
diffusing molecules in MCell move as discrete particles between 
meshes (volume molecules in solution) or on meshes (surface 
molecules in membranes), and the mesh  per  se is not used for 
gradient or other calculations. Nevertheless, here we illustrate 
smoothing in Blender to achieve a more “biological” appearance 
of the geometry (compare the objects in  Fig.   4  to the smoothed 
version in  Fig.   1 ).
   1.     Smooth the new mesh object that includes the dendrite and spines : 

If you are continuing from the previous section, hit  Tab  and 
make sure you are in “Edit Mode”. If necessary, hit  a  to select 
the entire new object that includes the dendritic shaft and all 
of the spines (the presynaptic bouton is still hidden). In the 
“Buttons Window”, under “Mesh Tools”, click “Smooth” five 
times. This will iteratively soften sharp edges between faces by 
moving edge vertices, but will not change the total number of 
vertices and faces.  

   2.     Unhide and select the presynaptic bouton mesh : Hit  Tab  to go 
into “Object Mode”. Hit  Alt-h  to make the “PresynapticBou-
ton” reappear. Right click on the “PresynapticBouton” to 
select it.  

   3.     Smooth the presynaptic bouton mesh : Hit  Tab  again to go into 
“Edit Mode”. If necessary, hit  a  to select all of the presynaptic 
bouton mesh and, under “Mesh Tools”, click “Smooth” five 
times. Hit  Tab  to go back into “Object Mode”.  

   4.     Save the current mesh objects : Hit  F2  to save the current meshes 
( see   Note    11  ).      

  To complete this section we export the current mesh objects in 
MDL format for use in MCell simulations of presynaptic calcium 
influx and binding ( Subheading    3.3  ). Export of MDL files uti-
lizes the MDL plug-in for Blender that was installed in  Subhead-
ing    2.3  .
   1.    Click “File –> Export MCell (.mdl)”. In the top text box that 

appears, navigate to the desired directory (folder) in which to 

3.1.8. Smooth the Meshes
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store the new files (you can create a new directory first if neces-
sary). In the text box for the filename enter “Synapse.mdl”.  

   2.    Click “Export MDL” and click “OK”. This will create five 
new MDL files in your specified directory. “Synapse.mdl” is 
the main file and will be read when the MCell simulation is 
started. It contains MDL statements that specify initial values 
for some important simulation parameters ( see   Note    17  ). It 
also includes statements for default visualization output for 
use with DReAMM ( Subheading    3.4  ), and lists the remain-
ing four files that also must be read (included) when the 
simulation is initialized. These remaining files are “Synapse_
PresynapticBouton.mdl”, “Synapse_Dendrite.mdl”, “Syn-
apse_Vesicle1.mdl”, and “Synapse_Vesicle2.mdl”, and they 
all contain mesh geometry and region information ( see   Note  
  18  ). Note that the names of the files correspond to the names 
of the mesh objects defined in the preceding sections.       

  In  Subheading    3.5   we will illustrate MCell simulations of neu-
rotransmitter release and binding to postsynaptic receptors. 
The neurotransmitter molecules will diffuse through expanding 
fusion pores that connect the synaptic vesicles to the presynaptic 
membrane, so here we show how Blender can be used to create 
and scale the expanding pore structures. In brief, we create the 
pores with their initial and final dimensions (radius) and then 
morph between those limits to generate a set of intermediate 
pore structures. In a more realistic diffusion simulation project 
there might be several hundred intermediate structures, but in 
this simple example we will use only ten configurations including 
the initial and final. Each configuration will be written to a set 
of MDL files separate from those exported in the preceding sec-
tion, and then in  Subheading    3.5   MCell will be used to read the 
succession of new mesh files using a feature called checkpointing 
( see   Note    19  ).
   1.     Join the meshes of both vesicles : Hit  1  ( on the number pad ) for the 

 XZ -view. Pan and zoom in on the presynaptic bouton so that the 
vesicles are clearly visible. Hit  z  to make the faces transparent. 
Now the vesicles should be visible inside the presynaptic bouton. 
Right click on the left vesicle to select it, and then, while holding 
 Shift , right click on the other vesicle to select it as well. Next hit 
 Ctrl-j  and click “Join Selected Meshes” when prompted by the 
“OK?” dialog box. Hit  Tab  to go into “Edit Mode”.  

   2.     Remove the bottom faces of each vesicle : By removing the bot-
tommost faces of each vesicle, we will create holes that can be 
extruded to create cylindrical pores, similar to the way that the 
axon and spine neck extensions were extruded in  Subhead-
ing    3.1.3  . Hit  Ctrl-Tab  and click “Vertices” in the “Select 
Mode” menu. Hit  a  to deselect everything. Right click on the 
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bottommost vertex of the left vesicle and, while holding  Shift,  
right click the bottommost vertex of the right vesicle (use 
zoom and pan if necessary). Hit  Ctrl-Plus  ( on the number pad ) 
once to select one ring of vertices. Hit  x  and click “Faces” in 
the “Erase” menu.  

   3.     Extrude the pores : Hit  b  and then click and drag the select mar-
quee around the vertices remaining at the bottom of the left 
vesicle. Then hit  b  again and repeat for the right vesicle. Hit  e , 
click “Only Edges”, then hit  z , type  −0.03 , and hit  Enter . You 
should now see the extruded pores passing through the presy-
naptic bouton ( Fig.   4H , left). The diameter of these tempo-
rary pores is approximately 0.015 units ( see   Note    20  ).  

   4.     Merge the fusion pores with the presynaptic membrane : Hit  Tab  
to go into “Object Mode”. The vesicles should already be 
selected, so, while holding  Shift , right click on the surround-
ing presynaptic bouton mesh. Now hit  w  and click “Differ-
ence” from the “Boolean Tools” menu. The vesicles, pores, 
and presynaptic bouton membrane should now form a con-
tinuous mesh ( see   Note    14   and  Fig.   4H , right).  

   5.     Save the original meshes : The original objects are still present 
after performing the Boolean difference operation in the pre-
ceding step. Rather than delete them, move them to another 
layer for later use if any changes are required. Hit  m , followed 
by  2  ( not the number pad ), and then click “OK”.  

   6.     Name the object created by the difference operation : Right click on the 
new object to select it. To name it, look under “Link and Materi-
als”, click in the text box that reads “OB:PresynapticBouton.001”, 
and change it to “OB:PresynapticBouton”.  

   7.     Scale the pores to their desired initial diameter : The desired 
initial diameter for the pores is about 13.3% of the current 
diameter (compare  Fig.   4I , left, with  Fig.   4H ). In the subse-
quent MCell simulation, this initial diameter will correspond 
to about 2 nm. Hit  Tab  to enter “Edit Mode”. Hit  Ctrl-Tab  
and click “Faces”, so that we can now select faces rather than 
vertices as in preceding sections. Hit  b  and then click and drag 
the rectangular select marquee over the middle of a pore, but 
do not include the upper and lower vertices of the pore. This 
will select only the faces of the pore. Hit  7  ( on the number pad ) 
to change to the  XY -view (overhead). Hit  s  and then  Shift-z  
to simultaneously scale along the  X - and  Y -axes. Type  0.133  
and hit  Enter.  Hit  1  ( on the number pad ) to change back to the 
 XZ -view. Hit  a  to deselect. Repeat the selecting and scaling 
steps for the second pore.  

   8.     Take a snapshot of the initial pore configurations : This snap-
shot subsequently will be used in  step 9  later when we morph 
the pores between their initial and final configurations. Hit
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   Tab  to enter “Object Mode”. Select the presynaptic mesh by 
right clicking on it. On the “Shapes” panel in the “Buttons 
Window”, click “Add Shape Key”. We have now defined a 
“Basis Key” that corresponds to the initial pore configura-
tion. All subsequently defined “Shape Keys” will be relative 
to the “Basis Key”.  

    9.     Take another snapshot to be modified for the final pore configu-
ration : Click “Add Shape Key” again. Now we will rescale 
the pore dimensions to their final diameter ( Fig.   4I , right; 
about 10 nm in the subsequent MCell simulation). Hit  Tab  
to enter “Edit Mode”. Hit  b  and then click and drag the 
rectangular select marquee over the middle of a pore as in 
earlier  step 6 . Hit  7  ( on the number pad ) to change to the 
 XY -view (overhead). Hit  s , then  Shift-z , type  5.0 , and hit 
 Enter.  Hit  1  ( on the number pad ) to change back to the  XZ -
view. Repeat for the second pore. At this point the first snap-
shot contains the initial pore configuration, and the second 
snapshot contains the final pore configuration.  

   10.     Interpolate between the snapshots : Hit  Tab  to enter “Object 
Mode”. Click on the icon in the upper left-hand corner of 
the “Buttons Window” ( Fig.   2D ) and select the “Action 
Editor” from the drop-down list. Click on the arrow beside 
the word “Sliders” near the bottom of the window, and slid-
ers for the list of available “Shape Keys” will appear. In this 
simple case, only “Key 1” is present. Now we must map the 
final pore configuration (Key 1) to the endpoint of a timeline, 
and the “Basis Key” to the beginning of the timeline. Iden-
tify the vertical green line to the right of the “Shape Key” 
slider. Click on the line, drag it to the right, and then release 
it at the point marked 10 (requesting ten snapshots). Now 
move the slider next to “Key 1” from “0.00” to “1.00”, and 
a diamond-shaped marker will appear at position 10 on the 
timeline. Next drag the green line back to 1 and then drag 
the slider from “1.00” back to “0.00”. A diamond marker 
will now appear at position 1 on the timeline. Hit  Shift-Alt-a  
to see an animation of the interpolated pore configurations. 
Hit  Esc  to stop playback.  

   11.     Save the current mesh objects : Hit  F2  to save the current 
meshes ( see   Note    11  ).  

   12.     Save the interpolated mesh snapshots as MDL files : We will now 
export MDL files for use with MCell in  Subheading    3.5  . 
As in earlier  Subheading    3.1.9  , click “File –> Export –> 
MCell (.mdl)”. Navigate to the desired directory (folder) in 
which to store the new files (use a different directory from that 
used in  Subheading    3.1.9  ). In the text box for the filename 
enter “VesicleFusion.mdl”. Click “Export MDL”, then “Ena-
ble Anim.”, and “Iterate Script”. Also change “Stop” to “10”. 
Once these changes have been made, click “OK” ( see   Note    21  ).  
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   13.     Save the current mesh objects and quit Blender : Hit  F2  to save 
the current meshes ( see   Note    11  ) and quit Blender by click-
ing on the X in the upper right-hand corner of the window.      

  In  Subheading    3.1   we used Blender to create a set of pre- and 
postsynaptic meshes and then exported the meshes as MDL files 
for use with MCell. As outlined in  Subheading    3.1.9  , five files 
were created: the main file “Synapse.mdl” and the four geome-
try files “Synapse_PresynapticBouton.mdl”, “Synapse_Dendrite.
mdl”, “Synapse_Vesicle1.mdl”, and “Synapse_Vesicle2.mdl”. In 
Blender the meshes were composed of quadrangular faces ( Fig.  
 4 ), and the absolute spatial dimensions were arbitrary. In MCell, 
however, the spatial units will be interpreted as microns. In addi-
tion, MCell’s collision detection algorithms require triangular 
faces, so each quadrilateral face in Blender was automatically 
split into two triangles when the meshes were exported. We will 
now supplement the exported MDL files in order to populate 
the meshes with molecules, define reactions between molecules, 
and provide commands that control how the MCell simulations 
will be run. For convenience we will use separate MDL files for 
many of these distinct operations. The final simulations then will 
be controlled from the main file that reads or “includes” all the 
subordinate files in the proper order when the simulation is ini-
tialized. 

  We first create a new MDL file to describe the molecules included 
in the model. It will specify whether they exist in solution (a “vol-
ume” molecule) or on a surface (a “surface” molecule), and their 
diffusion coefficients.
   1.    At a command line, change into the directory where you 

exported the MDL files in  Subheading    3.1.9  .  
   2.    Create a new file called “Molecules.mdl” ( see   Note    22  ).  
   3.    Define the molecules: Enter the following block of text ( see  

 Notes    23   and   24  ):
DEFINE_MOLECULES {

Ca {DIFFUSION_CONSTANT_3D = 1E-6}

VGCC_C {DIFFUSION_CONSTANT_2D = 0}

VGCC_O {DIFFUSION_CONSTANT_2D = 0}

CaBS {DIFFUSION_CONSTANT_2D = 0}

CaBS_Ca {DIFFUSION_CONSTANT_2D = 0}

} 
 This simple model includes only diffusing calcium ions, 

VGCCs, and calcium binding sites that might, for example, be 
based on synaptotagmin molecules located on the synaptic vesi-
cles. In MDL statements like those above, the names of the 
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molecules are specified by the user and thus are usually chosen 
to be easily recognizable. The only (obvious) restriction is that a 
user-specified name may not be an exact match of an MDL key-
word. In this example, the calcium ions are simply named “Ca”, 
and since they are to be diffusing volume molecules they are given 
a nonzero 3D diffusion coefficient (cm 2 /sec). We require both 
a closed and open state for the VGCCs, named “VGCC_C” and 
“VGCC_O”, respectively. The channels will be stationary surface 
molecules and so are given a 2D diffusion coefficient with a value 
of 0. Finally, we require unbound and bound states for the cal-
cium binding sites, named “CaBS” and “CaBS_Ca”, respectively. 
Similar to the channels, the binding sites will be considered part 
of static surface molecules, and hence are given a 2D diffusion 
coefficient with a value of 0.  
   4.    Save the file and quit.      

    The only molecules that are to be present when the simulation 
begins are the closed VGCCs (“VGCC_C”) and the unbound 
calcium binding sites (“CaBS”). The remaining molecules or 
states will be generated by reactions during the simulation. We 
add ten “VGCC_C” molecules to the presynaptic mesh region 
“VGCC_Reg” that was defined in  Subheading    3.1.5   ( Fig.   4F ). 
Similarly, we add ten “CaBS” molecules to the “CaBS_Reg” 
region defined on the synaptic vesicles in  Subheading    3.1.4  . 
The actual locations of the molecules within these regions will 
be randomized by MCell when the simulation is initialized ( see  
 Note    25  ).
   1.    Create a new file called “RegionModifications.mdl” ( see   Note  

  22  ).  
   2.    Define the numbers and locations of molecules present at sim-

ulation start-up ( see   Note    26  ): 
MODIFY_SURFACE_REGIONS {

PresynapticBouton[VGCC_Reg] {

MOLECULE_NUMBER { VGCC_C, = 10 }

}

Vesicle1[CaBS_Reg] {

MOLECULE_NUMBER { CaBS’ = 10 }

}

Vesicle2[CaBS_Reg] {

MOLECULE_NUMBER { CaBS’ = 10 }

}

} 
 These MDL statements modify (add molecules to) the preexist-

ing mesh regions defined automatically when the “Synapse_Presyn-

3.3.2. Add Molecules to 
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apticBouton.mdl”, “Synapse_Vesicle1.mdl”, and “Synapse_Vesicle2.
mdl” files were exported from Blender. The comma or apostrophe 
that follows the molecule’s name specifies how the molecule is ori-
ented when it is added to the surface (a surface molecule may have 
a reactive domain, e.g., a binding site, on the front and/or back of 
the surface;  see   Note    17  ).  
   3.    Save the file and quit.      

     1.    Create a new file called “Reactions.mdl” ( see   Note    22  ).  
   2.    Define the reactions: Enter the following block of text: 

DEFINE_REACTIONS {

VGCC_C’ –> VGCC_O’ [5E5]

VGCC_O’ -> VGCC_C’ [500]

VGCC_O’ -> VGCC_O’ + Ca’ [1E3]

Ca’ + CaBS’ -> CaBS_Ca’ [1E7]

CaBS_Ca’ -> Ca’ + CaBS’ [500]

} 
 These MDL statements specify the stoichiometry, rates, and 

directionality for the reactions in the simulation. In the first line, 
closed VGCCs are able to undergo a conformational change 
to the open state with a first-order mass action rate constant of 
5E5 s−1. The reverse transition occurs in the second line, albeit 
at a much slower rate. A channel in the open state is also able to 
generate diffusing calcium ions in the presynaptic bouton (third 
line). Hence, in any given simulation time step, an open channel 
may close, generate one or more calcium ions, or simply remain 
open, all based on relative probabilities. This method for gener-
ating diffusing calcium ions from open channels is far more effi-
cient than explicitly simulating separate pools of extracellular and 
intracellular calcium ions that pass through the open channel. In 
the fourth line, calcium ions bind to the calcium binding sites 
with a bimolecular mass action rate constant of 1E7M–1s–1. The last 
line specifies calcium unbinding with a first-order rate constant 
of 500 s–1. 

 In all of these reactions, the apostrophes again specify the direc-
tionality of the reactions with respect to the orientation of the surface 
molecules. This is why calcium ions produced by an open channel 
enter the presynaptic bouton rather than the synaptic cleft space ( see  
earlier  Subheading    3.3.2  ,  step 2  and  Note    17  ).  
   3.    Save the file and quit.      

    MCell is able to count and save many different types of events 
during a simulation. In this simple example, we will just count the 
number of molecules present during each time step throughout 
the entire simulation space (world). The results for each molecule 

3.3.3. Add Reactions

3.3.4. Specify Reaction 
Data Output
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will be written to a separate ASCII file containing two columns. 
The first gives the simulation time in seconds, and the second 
gives the counted quantity.
   1.    Create a new file called “ReactionData.mdl” ( see   Note    22  ).  
   2.     Specify the desired reaction data output : Enter the following 

block of text: 
REACTION_DATA_OUTPUT {

{COUNT[VGCC_C, WORLD]} => “./reaction_data/VGCC_C.dat”

{COUNT[VGCC_O, WORLD]} => “./reaction_data/VGCC_O.dat”

{COUNT[CaBS, WORLD]} => “./reaction_data/CaBS.dat”

{COUNT[CaBS_Ca, WORLD]} => “./reaction_data/CaBS_Ca.dat” 

{COUNT[Ca, WORLD]} => “./reaction_data/Ca.dat”

} 
 In this case, each file (.dat suffix) will be created automati-

cally in a subdirectory called “reaction_data”.  
   3.    Save the file and quit.      

  During a simulation, diffusing molecules follow random walk 
steps that must be traced to detect possible collisions with sur-
faces and other molecules. This becomes very time-consuming 
unless each molecule looks only in its local environment first, and 
continues into adjoining space only if necessary. To define the 
local environments, the simulation world is partitioned into sub-
volumes. In effect, the partitions are transparent planes along the 
 X -,  Y -, and  Z -axes, and the subvolumes are the cuboidal spaces 
created between the partitions.
   1.    Create a file called “Partitions.mdl” ( see   Note    22  ).  
   2.     Specify the locations of partitions along each axis : Enter the fol-

lowing block of text: 
PARTITION_X = [[-1.25 TO 1.25 STEP 0.1]]

PARTITION_Y = [[-1.25 TO 1.25 STEP 0.1]]

PARTITION_Z = [[0 TO 1 STEP 0.1]]  
   3.    Save the file and quit.      

  We now add all the pieces together by referencing (“including”) 
the newly created MDL files in the main simulation file “Synapse.
mdl”. Thus, when the simulation is started using the main file, all 
of the subordinate MDL files will be read in the proper order.
   1.    Open the main file “Synapse.mdl” in a text editor ( see   Note  

  22  ).  
   2.     Reference the subordinate MDL files using INCLUDE state-

ments : Before the first preexisting INCLUDE statement add 
the following text: 

3.3.5. Add Spatial 
Partitions to Speed 
Computation

3.3.6. Add the Include Files 
and Set the Number of 
Iterations
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INCLUDE_FILE = “Partitions.mdl”

INCLUDE_FILE = “Molecules.mdl”

INCLUDE_FILE = “Reactions.mdl” 

 Now, after the last preexisting INCLUDE statement add:

INCLUDE_FILE = “RegionModifications.mdl”
INCLUDE_FILE = “ReactionData.mdl”  

   3.     Change the iteration number : By default, the simulation is set to 
run for only one iteration with a default time step of one micro-
second. This will generate visualization output for the start-up 
conditions, and thus would allow verification of initial mesh 
and molecule placement using DReAMM ( see   Subheading    3.4   
later). This is an extremely useful step for large models that take a 
long time to simulate. In this case, however, we will increase the 
number of iterations so that we can see the appearance of diffus-
ing calcium ions and occupation of calcium binding sites at later 
times. Change the first line of the file from: 

 iterations = 1
to
iterations = 5000  

   4.    Save the file and quit.      

  Assuming that you have installed MCell with the name “mcell3”, 
run the simulation simply by entering:

 mcell3 Synapse.mdl  

 at the command line in the directory where you created the MDL 
files. MCell will start and display initialization messages, display 
updates as iterations complete, and then display a variety of run-
time summary statistics when the simulation is finished.   

  It is crucial to check any MCell model visually using DReAMM to 
verify that all components (location of molecules, reactions, geom-
etry, etc.) have been set up properly ( see   Note    27  ). Here, we outline 
the essential steps for the model created in the preceding section. 

     1.     Start DReAMM : Enter “dreamm” at a command line. 
The “DReAMM Image Window”, “Quick Controls”, and 
“Sequence Control” should all appear. In principle you can 
start DReAMM from within any directory and then navigate 
to the visualization files output by MCell. To simplify this 
example, however, start DReAMM from the same directory in 
which you ran the MCell simulation in  Subheading    3.3  .  

   2.     Import visualization data : Click the “Import & Select” but-
ton near the top of the “Quick Controls” window (labeled 

3.3.7. Run the Simulation
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Results with DReAMM 
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 1  in  Fig.   3a ). Two menus (windows) should open. In the 
“Import & Select Objects” menu, click the ellipsis (“…”) in 
the “Viz Data File” text box. Navigate to the “Synapse_viz_
data” directory that was created by MCell and select the file 
named “Synapse.dx”. Click “OK”. DReAMM will automati-
cally read the visualization files referenced by “Synapse.dx”, 
display the names of available objects, and import the data for 
the first time step. By default, however, DReAMM will not 
display any data until it is selected.  

   3.     Select all meshes to be displayed : The lower left-hand side of the 
“Imported Objects” menu will now display the names of the 
meshes we created previously in Blender and used in MCell: 
“World.Dendrite”, “World.PresynapticBouton”, etc. These 
objects thus are available to be rendered (displayed) and for 
other operations. In the lower center section locate the field 
named “Choose Operation”, click on “Add All”, and then 
click the “Apply Operation” button to select all of the meshes. 
All of the object names should now appear in the “Current 
Objects” list to the right, and all of the mesh objects now 
will be displayed in the “DReAMM Image Window” using 
DReAMM’s default mesh colors and “Software Rendering 
Mode” ( see   Note    28  ).  

   4.     Select all volume molecules : Click “Volume Molecules” in the 
central “List” field of the “Import and Select” menu, and the 
“Imported Objects” list will change to show the volume molecules 
in the model. In this case only “Ca” is present. Hit the “Apply 
Operation” button, and “Ca” will appear in the list of “Current 
Objects”. However, no calcium ions are yet visible in the “Image 
Window” because no calcium ions are present at the beginning of 
the simulation, and we are currently viewing the first time step.  

   5.     Select all surface molecules : Click “Surface Molecules” under 
“List” and the “Imported Objects” list will change again, 
this time showing all surface molecules in the model (calcium 
channels and binding sites). Click “Apply Operation”, and all 
the surface molecule names will appear in the list of “Cur-
rent Objects”. At this point the surface molecules present 
at the beginning of the simulation are being rendered using 
DReAMM’s default molecule rendering properties (white pix-
els). This may be difficult to see if there are few molecules or 
they are sparsely distributed but is the least expensive display 
option. In the following section we will customize the display 
properties so that the molecules can be seen easily.  

   6.     Center the view : Select the “DReAMM Image Window” and 
hit  Ctrl-f  to center the view of the displayed objects. To see 
the synapse from a side view, hit  Ctrl-v  to bring up the “View 
Control” menu and then select “Bottom” under “Set View” 
( see   Note    29  ).  
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   7.     Close menus : Click the “Close” button to the right of the 
“Import & Select” field on the “Quick Controls” menu 
(labeled  5  in  Fig.   3A ).      

     1.     Open the rendering properties menus : Click “Set Rendering 
Prop”. under “Quick Controls” (labeled  2  in  Fig.   3A ). Four 
separate menus should appear.  

   2.     Turn on the preview window : In the “Rendering Properties” 
menu, click on the “Enable Preview” button in the center and 
the “Rendering Preview” window will appear. It displays the 
current rendering properties that can be applied to selected 
objects, including color (separate front and back colors for 
mesh objects), lighting, and shading ( see   Note    30  ).  

   3.     Make the presynaptic bouton semitransparent : By default, the 
“Rendering Properties” menu will display the names of the 
imported mesh objects, and the first will be highlighted. Click 
on “World.PresynapticBouton” to select it, and then, if neces-
sary, click on any others that remain highlighted to deselect 
them. In the lower left-hand corner, change “Opacity” from 
“1.0” to “0.3” ( see   Note    31  ) and then click on the “Once” 
button next to “Apply Operation” in the center of the menu. 
In the “DReAMM Image Window”, the mesh for the “Pre-
synapticBouton” will now be semitransparent, revealing the 
vesicles within it. Furthermore, the change in opacity is also 
reflected in the “Rendering Preview” window.  

   4.     Visualize the mesh regions using a colormap : In order to distin-
guish different mesh regions in DReAMM, we use a colormap 
to render and display the object. When a region is defined 
in Blender, each mesh face within the region is automatically 
assigned a unique numerical metadata tag (value). The tag 
values begin with 0 for the first region, and are incremented 
thereafter. Similarly, in MCell’s MDL, triangles that belong to 
a particular region can be assigned a numerical VIZ_VALUE. 
Meshes exported from Blender to MCell automatically inherit 
region VIZ_VALUEs from the metadata tags assigned by 
Blender. DReAMM subsequently uses the VIZ_VALUEs 
and colormaps to visualize regions. The default colormap vis-
ible in the “Colormap Editor” menu uses a stair-step pattern 
ranging from purple to red for tag values within the indicated 
numerical limits. We will now change the upper limit so that 
the default colormap will work for our mesh regions. To do 
so, click in the upper box that displays a numerical value, type 
“1.4”, and then hit  Enter  ( see   Note    32  ).  

   5.     Apply the colormap to the synaptic vesicles : In the “Render-
ing Properties” menu, select “World.Vesicle1”, then “World.
Vesicle2”, and finally deselect “World.PresynapticBouton”. 
Change “Use Color and Opacity Map” from “No” to “Yes” 

3.4.2. Visualize the 
Calcium Binding Site 
Regions
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and “Color Dependence” from “Vertices” to “Elements” ( see  
 Note    33  ). Then click “Apply Operation Once”. The bottom 
of the vesicles, i.e., the region “CaBS_Reg”, should now be yel-
low because it was assigned a VIZ_VALUE of 1. The remainder 
of each vesicle is purple because it has a VIZ_VALUE of 0. 
You may need to zoom in to see this clearly ( see   Note    29  ).      

  By default, the visualization data for each simulation time step 
(frame) has been saved, and DReAMM will automatically read 
and display the selected data for each frame in sequence. Dur-
ing playback calcium ions will appear and diffuse, and calcium 
binding sites will become occupied. For maximum speed they 
will all be rendered as white pixels under default conditions, so 
in the later step we will change the rendering properties for each 
molecule so that they may be distinguished clearly. We will also 
change the color of the postsynaptic mesh (dendrite and spines).
   1.     Play the time series data : Simply press the Play button on the 

“Sequence Control” menu (right arrowhead,  Fig.   3B ) to 
begin playback of the MCell simulation time series. No visible 
changes will be evident until several hundred frames have been 
displayed, so skip ahead if desired by clicking on the “Sequence 
Control” button that displays the frame number. Then use the 
pop-up “Frame Control” menu to select a subset of the avail-
able frames, and/or change the interval between the displayed 
frames.  

   2.     Reset the opacity : In the “Rendering Properties” menu, change 
“Opacity” back to “1.0”. This change will be visible in the 
“Rendering Preview” window but will not affect any objects 
until we assign properties to them.  

   3.     Choose a color from the Color Library : In the “Color Library” 
or “Rendering Properties” menu, toggle the “Source” selec-
tor from “Rendering Properties” to “Color Library”. This 
will change the source of the colors displayed in the “Render-
ing Preview” window from the color fields of the “Rendering 
Properties” menu to the color selected in the “Color Library” 
menu. In the “Display List Filter” text box of the “Color 
Library” menu, change the search string from “*” to “*yel-
low*” and hit  Enter  ( see   Note    34  ). Select “lightyellow3” from 
the list and hit the “Load” button. The RGB (Red, Green, 
Blue) values for “lightyellow3” are now listed in the “Front 
Color” and “Back Color” (half intensity) fields of the “Ren-
dering Properties” menu, and the corresponding hue is also 
visible in the “Colormap Editor”.  

   4.     Assign the new color to the dendrite : In the “Rendering Prop-
erties” menu select “World.Dendrite”, deselect “World.Vesi-
cle1” and “World.Vesicle2”, and then click “Apply Operation 
Once”. The dendrite mesh, which includes the spines and 
spine heads, will now be rendered with “lightyellow3”.  

3.4.3. Highlight Different 
Molecules and Visualize 
the MCell Time Series
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   5.     Assign a yellow spherical glyph to the calcium ions : In the “Ren-
dering Properties” menu, click on “Molecules” in the upper 
middle section by the word “List”. The list of object names 
will switch to all of the molecules (volume and surface) in 
the model. In the lower right-hand corner change “Glyph” 
from “pixel” to “sphere (simple)” and both “Height” and 
“Radius” to “0.0025”. At the lower left manually change 
“(Front) Color” to yellow by entering RGB values of 1, 1, 
and 0, respectively (“Back Color” is ignored for glyphs). Make 
sure that only “Ca” is highlighted in the list of object names. 
Assign the yellow glyph properties to calcium ions by clicking 
“Apply Operation (Once)”.  

   6.     Assign a black arrow glyph to the unbound calcium binding 
sites : Surface molecules have an XYZ location that lies on a 
surface mesh element, and they also have an orientation with 
respect to the plane of the mesh element. Thus, to visualize 
surface molecules we will use a directional (asymmetric) glyph 
( see   Note    35  ). First, in the “Rendering Properties” menu, 
select “CaBS” and deselect any other highlighted molecules. 
Change the glyph to “arrow (simple)”. Change the “Height” 
to “0.01” and the “Radius” to “0.0025”. To make the arrow 
glyphs black, change all of the “(Front) Color” RGB values to 
0. Click “Apply Operation Once”. Outward pointing arrows 
should now be visible at the position of the CaBS molecules 
within the CaBS_Reg of each synaptic vesicle ( Fig.   5A ). The 
precise number will depend on the time step that you are 
viewing. At the beginning of the simulation (frame 1) there 
are ten unbound calcium binding sites. Later, the number will 
change as calcium ions bind and unbind.  

   7.     Assign a cyan arrow glyph to the bound calcium binding sites : 
In the “Rendering Properties” menu, select “CaBS_Ca” and 
deselect “CaBS”. Change the front RGB values to 0, 1, and 1, 
respectively. Click “Apply Operation Once”. The bound cal-
cium binding sites will now be visible as cyan, outward point-
ing arrows. As outlined in the preceding step, the number will 
depend on the time step that you are viewing ( Fig.   5B ).  

   8.     Assign a red arrow glyph to the closed VGCCs : In the “Ren-
dering Properties” menu, select “VGCC_C” and deselect 
“CaBS_Ca”. Change the front RGB values to 1, 0, 0, respec-
tively. Click “Apply Operation Once”. The VGCCs (in the 
presynaptic membrane beneath the synaptic vesicles) that 
currently are closed will now appear as red arrows pointing 
toward the interior of the presynaptic space ( Fig.   5A ).  

   9.     Assign a green arrow glyph to the open VGCCs : Similar to the 
preceding step, select “VGCC_O” and deselect “VGCC_C”. 
Change the front RGB values to 0, 1, 0, respectively, and click 
“Apply Operation Once”. The VGCCs that currently are open 
will now appear as green arrows ( Fig.   5B ).  



  Fig. 5 .   Screen captures from simulations as visualized with DReAMM. (Note that addition of colors to objects is described 
in the text, whereas this image has been converted to grayscale and is described here accordingly). ( A ) At the beginning 
of the first simulation ( Subheading    3.3.7  ), the bottom of the synaptic vesicle is populated with unbound calcium 
binding sites ( black downward pointing arrows ). Closed voltage-gated calcium channels ( black upward point-
ing arrows ) are located directly underneath the vesicle on the presynaptic membrane. ( B ) Later, calcium channels open 
( white upward pointing arrows ) and release calcium ions ( white spheres ) into the presynaptic bouton. Some 
calcium ions then bind to available sites on the vesicle ( white downward pointing arrows ). ( C ) At the beginning of 
the second simulation ( Subheading    3.5.7  ), neurotransmitter molecules ( white spheres ) fill the synaptic vesicles, 
and then diffuse out as the simulation proceeds and the fusion pore expands ( D ). For clarity, the postsynaptic 
receptors are not shown in  C  and  D  even though they are present in the simulation. ( E ) All of the postsynaptic recep-
tors are in the unbound state ( black arrows ) at the start of the second simulation (presynaptic bouton not shown). 
( F ) Later, a mixture of single-bound, double-bound, closed, and open receptors is present as indicated by different colors. 
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   10.     Play the time series data : Press the Stop button (square) on 
the “Sequence Control” menu ( Fig.   3B ) and then press the 
Play button. This will restart the time series from the first 
frame (of the selected interval, if you are using the “Frame 
Control” settings). Use the Pause (parallel lines), Single-step 
(double lines and arrowheads), Reverse (left arrowhead), 
Loop, and Palindrome (loop forward and backward) but-
tons to modify playback.       

 All DReAMM settings such as choice of rendered objects, ren-
dering properties (including colormaps), etc., can be saved to a 
file for subsequent reuse.
   1.     Save settings : In the “Read/Write Settings” menu, click on 

the ellipsis (“…”) button next to the “Write File” text box. In 
the pop-up menu, navigate to the directory where you would 
like to save the file, enter the name “SynapseCustom.dx”, 
and then click “OK”. Click the “Write Once” button in the 
“Read/Write Settings” menu to save the file ( see   Note    36  ).  

   2.     Quit DReAMM : Quit DReAMM by clicking the X in the 
upper right-hand corner of the “DReAMM Image Window”. 
When prompted, “Do you want to save the project file”, click 
“No”.      

  We now adapt the MCell model of  Subheading    3.3   to include 
the expanding fusion pores ( Fig.   4I ) created with Blender in 
 Subheading    3.2  . We will add neurotransmitter molecules that 
originate within the vesicles and diffuse out through the expand-
ing pores. We will also add postsynaptic receptors in the form of 
ligand-gated ion channels. As mentioned previously ( Subhead-
ing    3.2   and  Note    19  ), MCell simulation of the expanding pores 
will use a feature called checkpointing. In brief, we will run a 
series of MCell simulations, saving the locations and states of all 
molecules after each run in the series. The first run will use the 
initial pore configuration and will proceed for a certain number 
of iterations, allowing neurotransmitter molecules to begin dif-
fusing. The second run will use the next pore configuration but 
will use the molecule locations and states from the previous run 
as initial conditions. This pattern then will continue for all ten 
of the expanding pore configurations. In principle many other 
parameters can also change between checkpoint runs, and there 
are a variety of ways to automate setup of the files. Here, we use 
a simple example for the sake of illustration. 

3.4.4. Save DReAMM 
Settings for the Simulation 
Objects

3.5. MCell Simulations 
of Fusion Pore 
Expansion and 
Neurotransmitter 
Release

Fig. 5. (Continued) ( G ) The complete synapse is shown at a late time point, with the presynaptic bouton semitransparent 
and the spine head opaque. Neurotransmitter molecules can be seen diffusing within the synaptic cleft and escaping 
into the surrounding volume. ( H ) Image clipping is used to provide a better view of the vesicles, synaptic cleft, diffusing 
neurotransmitter molecules, and postsynaptic receptors       .
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  As in  Subheading    3.3  , we first create a new MDL file to 
describe the molecules included in the model. Before starting, 
make sure that you are in the directory created in  Subheading  
  3.2   when the MDL files for the expanding pore were exported 
from Blender.
   1.    Using a text editor, create a new file called “Molecules.mdl” 

( see   Note    22  ).  
   2.     Define the molecules : Enter the following block of text ( see  

 Notes    17   and   24  ): 
DEFINE_MOLECULES {

nt {DIFFUSION_CONSTANT_3D = 1E-6}

nt_R_0B {DIFFUSION_CONSTANT_2D = 0}

nt_R_1Ba {DIFFUSION_CONSTANT_2D = 0}

nt_R_1Bb {DIFFUSION_CONSTANT_2D = 0}

nt_R_2B_C {DIFFUSION_CONSTANT_2D = 0}

nt_R_2B_O {DIFFUSION_CONSTANT_2D = 0}

} 
 In these MDL statements, we define a diffusing volume mol-

ecule (“nt”, neurotransmitter) and five different states of a sta-
tionary neurotransmitter receptor (stationary surface molecules). 
The receptor represents a ligand-gated ion channel with two inde-
pendent binding sites. “nt_R_0B” is the receptor in its unbound 
state; “nt_R_1Ba” and “nt_R_1Bb” are the two single-bound 
states; “nt_R_2B_C” is the double-bound, closed channel state, 
and “nt_R_2B_O” is the double-bound, open channel state.  
   3.    Save the file and quit.      

  We next add unbound receptors to the postsynaptic receptor 
region defined in  Subheading    3.1.6   ( Fig.   4G ). The actual loca-
tions of the molecules within the region will be randomized by 
MCell when the first simulation of the checkpoint sequence is 
initialized. Recall that this region extends to all of the spine heads 
and hence we add a total of 2,400 receptors distributed randomly 
across 12 spine heads.
   1.    Create a new file called “RegionModifications.mdl” ( see   Note  

  22  ).  
   2.    Define the numbers and locations of molecules present at sim-

ulation start-up:
MODIFY_SURFACE_REGIONS {

Dendrite[Receptor_Reg] {

MOLECULE_NUMBER { nt_R_0B’ = 2400}

}

}  

   3.    Save the file and quit.      

3.5.1. Define Molecules

3.5.2. Add Molecules to 
Mesh Regions
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     1.    Create a new file called “Reactions.mdl” ( see   Note    22  ).  
   2.     Define the reactions : Enter the following block of text: 
DEFINE_REACTIONS {

nt’ + nt_R_0B’ -> nt_R_1Ba’ [1E7] 

nt_R_1Ba’ -> nt’ + nt_R_0B’ [1E4]

nt’ + nt_R_0B’ -> nt_R_1Bb’ [1E7]

nt_R_1Bb’ -> nt’ + nt_R_0B’ [1E4]

nt’ + nt_R_1Ba’ -> nt_R_2B_C’ [1E7]

nt_R_2B_C’ -> nt’ + nt_R_1Ba’ [1E4]

nt’ + nt_R_1Bb’ -> nt_R_2B_C’ [1E7]

nt_R_2B_C’ -> nt’ + nt_R_1Bb’ [1E4]

nt_R_2B_C’ -> nt_R_2B_O’ [1E4]

nt_R_2B_O’ -> nt_R_2B_C’ [1.5E3]

} 
 In the first two lines, a neurotransmitter molecule binds 

reversibly to the first binding site on the unbound receptor. In the 
next two lines, a neurotransmitter molecule binds to the second 
binding site on the unbound receptor. Next, a neurotransmitter 
molecule binds reversibly to the second site when the first site is 
already occupied, generating the double-bound closed channel 
state. Similarly, the double-bound closed channel state can also 
be generated when a neurotransmitter molecule binds to the first 
site when the second is already occupied. Finally (last two lines), 
the double-bound receptor can change conformations revers-
ibly between the closed and open channel states. As outlined in 
 Subheading    3.3  , the apostrophes specify the directionality of the 
reactions with respect to the orientation of the surface molecules. 
In this case the neurotransmitter molecules are able to bind to 
receptor molecules from within the synaptic cleft space.  
   3.    Save the file and quit.      

     1.    Create a new file called “ReactionData.mdl” ( see   Note    22  ).  
   2.     Specify the desired reaction data output : Enter the following 

block of text: 

3.5.3. Add Reactions

3.5.4. Specify Reaction 
Data Output

REACTION_DATA_OUTPUT {

{COUNT[nt_R_0B, WORLD]} => “./reaction_data/nt_R_0B.dat”

{COUNT[nt_R_1Ba, WORLD]} => “./reaction_data/nt_R_1Ba.dat”

{COUNT[nt_R_1Bb, WORLD]} => “./reaction_data/nt_R_1Bb.dat”

{COUNT[nt_R_2B_C, WORLD]} => “./reaction_data/nt_R_2B_C.dat”

{COUNT[nt_R_2B_O, WORLD]} => “./reaction_data/nt_R_2B_O.dat”

{COUNT[nt, WORLD]} => “./reaction_data/nt.dat”

}



272 Czech, Dittrich, and Stiles

 Each file (.dat suffix) will be created automatically in a subdi-
rectory called “reaction_data”.  
   3.    Save the file and quit.      

  MCell’s MDL supports several different ways to release molecules 
at different times and locations during simulations. In this case, 
the neurotransmitter molecules will originate inside each of the 
synaptic vesicles, and then will diffuse out through the expanding 
pore into the synaptic cleft. To create the initial distributions of 
molecules within the synaptic vesicles, we will use a simple method 
(once for each vesicle) that places a specified number of volume 
molecules at random locations within spherical bounds of speci-
fied diameter. By default, this will occur when the simulation is 
initialized, so the molecules will begin diffusing immediately. Each 
vesicle will initially contain 3,000 neurotransmitter molecules.
   1.     Add the neurotransmitter release sites : Use a text editor to 

modify the first of the main MDL files for the expanding 
fusion pore, “VesicleFusion_1.mdl” ( see   Subheading    3.5.6   
later). Add the following text at the end of the INSTANTI-
ATE block (before its closing curly brace;  see   Note    37  ): 

first_release_site SPHERICAL_RELEASE_SITE {

LOCATION = [-0.106, 0.021, 0.105]

MOLECULE = nt

NUMBER_TO_RELEASE = 3000

SITE_DIAMETER = 0.032

}

second_release_site SPHERICAL_RELEASE_SITE {

LOCATION = [0.106, -0.021, 0.105]

MOLECULE = nt

NUMBER_TO_RELEASE = 3000

SITE_DIAMETER = 0.032

}  

   2.    Save the file and quit.      

     1.     Reuse the “Partitions.mdl” file : Copy the “Partitions.mdl” file 
from  Subheading    3.4   to the current directory for the expand-
ing pore MDL model.  

   2.     Add INCLUDE statements to the main MDL files for the check-
point sequence : When the pore expansion series was exported 
from Blender, a set of main and subordinate (included) MDL 
files was created. These files are numbered in sequence, e.g., 
the main files are named “VesicleFusion_1.mdl”, “VesicleFu-
sion_2.mdl”, etc. As in  Subheading    3.3.6  , we now need to 

3.5.5. Add Initial 
Distributions of 
Neurotransmitter 
Molecules

3.5.6. Final MDL File Setup
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add the remaining (newly created) INCLUDE file references 
to each of the ten main MDL files for the expanding pore. 
This can either be done by hand for each of the files, or all at 
once by entering the following two commands in succession 
at the command line:

sed -e “9aINCLUDE_FILE = \”Partitions.mdl\”\nIN-
CLUDE_FILE = \”Molecules.mdl\”\nINCLUDE_FILE 
= \”Reactions.mdl\”\n” -i VesicleFusion_[1-9]*.mdl

sed -e “16aINCLUDE_FILE = \”RegionModifications.
mdl\”\nINCLUDE_FILE = \”ReactionData.mdl\”\n” -i 
VesicleFusion_[1-9]*.mdl      

 Highly accurate simulation of neurotransmitter diffusion 
through the pore would require many iterations and a very 
fine time step so that the average random walk step length 
would be much smaller than the pore radius at all times  (4,   5) . 
In this simple example, however, each of the ten main MDL 
files is set to run for only one iteration with a relatively long 
time step (one microsecond). This will allow quick visualiza-
tion of the pore expansion, but to see the transmitter escape 
and bind to receptors, we will need to run the final checkpoint 
segment for many more iterations.
   1.     Increase the number of iterations for the final run of the check-

point sequence : Using a text editor, open the last of the main 
MDL files, “VesicleFusion_10.mdl”. Change the first line 
from:
iterations = 10

to
iterations = 500 
 Then change the line:
CHECKPOINT_ITERATIONS = 1
to
CHECKPOINT_ITERATIONS = 491  

   2.    Save the file and quit.  
   3.     Run the simulation : When the MDL files were exported from 

Blender, a separate “script” file was also created to run the ten 
MCell simulations in succession (rather than starting each by 
hand). The script file (“VesicleFusion.py”) is written in a high-
level command language called Python. Run the Python script 
by entering: 

  ./VesicleFusion.py      

 at the command line. You will see MCell’s default run-time 
 messages as the checkpoint runs execute in sequence, and the 
reaction and visualization files will be created.  

3.5.7. Run the Expanding 
Pore Simulation
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  We now use DReAMM to visualize the results of the expanding 
pore simulations. We will reuse the settings file created previously 
in  Subheading    3.4.4  , and will also apply some additional cus-
tomizations and animation settings. 
      1.     Start DReAMM : Enter “dreamm” at the command line.  
    2.     Import visualization data : Click “Import & Select” on 

the “Quick Controls” menu (labeled  1  in  Fig.   3A ). In the 
“Import & Select Objects” menu, click the ellipsis (“…”) 
by the “Viz Data File” text box. Navigate to the “VesicleFu-
sion_viz_data” directory and select the file “VesicleFusion.
dx”. Click “OK”.  

    3.     Import the customization settings file : In the “Read/Write 
Settings” menu, click the ellipsis (“…”) by “Read File” and 
then navigate to and select the file “SynapseCustom.dx” that 
was created in  Subheading    3.4.4  . Click “OK”. The “Den-
drite” and “PresynapticBouton” meshes will appear with the 
rendering properties defined previously ( see   Note    38  ).  

    4.     Adjust the view : Hit  Ctrl-f  to center the view. Now open the 
“View Control” menu ( Ctrl-v  from the “DReAMM Image 
Window”) and then switch to a left view by setting “Set 
View” to “Left”.  

    5.     Select all volume molecules : In the “Import & Select Objects” 
menu, change “Add Selected” to “Add All”. Next, click on 
“Volume Molecules” and click “Apply Operation Once”.  

    6.     Select all surface molecules : Click on “Surface Molecules” 
and click “Apply Operation Once”.  

    7.     Close menus : Click the “Close” button by “Import & Select” 
in the “Quick Controls” menu (labeled  5  in  Fig.   3A ).  

    8.     Apply previously defined volume molecule properties : Click 
the “Set Rendering Prop”. button in the “Quick Controls” 
menu (labeled  2  in  Fig.   3A ). In the “Rendering Properties” 
menu, click “Molecules” next to “List” (top center), then 
select “Ca”, and click “Load from selected object”. All of 
the rendering properties previously associated with “Ca” are 
now loaded in the “Properties” fields and in the “Colormap 
Editor” menu. To apply the same properties to the neuro-
transmitter molecules, select “nt” and deselect “Ca”. Hit 
“Apply Operation Once”, and all the “nt” pixels will change 
into yellow spheres ( Fig.   5C ).  

    9.     Apply previously defined surface molecule properties : As in the 
preceding step, load the previously defined “VGCC_C” prop-
erties and apply them to “nt_R_0B”. Then, load the proper-
ties for “VGCC_O” and apply them to “nt_R_2B_O”. The 
unbound receptors will now appear as red arrows, and the 
double-bound open channel receptors will appear as green 
arrows.  

3.6. Visualize MCell 
Results with DReAMM 
(Part 2)

3.6.1. Import the MCell 
Visualization Data and 
Import the Settings File
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   10.     Assign rendering properties for the remaining receptor states : 
Manually change “(Front) Color” to yellow by entering 
RGB values of 1, 1, and 0, respectively. Make sure that only 
“nt_R_1Ba” is highlighted in the list of object names. Click 
“Apply Operation (Once)”. Now enter RGB values of 0, 
0, 1 for blue, select only “nt_R_1Bb”, and click “Apply 
Operation Once”. Finally, enter RGB values of 0, 1, 1 for 
cyan, select only “nt_R_2B_C”, and click “Apply Opera-
tion Once”. The single-bound receptors now will be yellow 
or blue arrows, and the double-bound closed receptors will 
be cyan arrows. All surface molecules should now appear as 
colored arrows similar to their appearance in  Subheading  
  3.4.3   ( Fig.   5C–F ). If desired, try using the “receptor_1” or 
“receptor_2” glyphs for a more realistic appearance.  

   11.     Close menus : Hit the “Close” button by “Set Rendering 
Prop”. in the “Quick Controls” menu (labeled  6  in  Fig.  
 3A ).      

  To see the expanding pore more clearly, we will use a clipping 
box ( see   Note    39  ) and visualize only the meshes and molecules in 
and around the synaptic cleft.
    1.     Set the default view : Hit  Ctrl-f .  
    2.     Select the “Left” view : Hit  Ctrl-v  to bring up the “View Con-

trol” menu and then select “Left” under “Set View”.  
    3.     Align the clipping box : Click on “Open Menu List” in the 

“Quick Controls” window (labeled  4  in  Fig.   3A ). This will 
open the “Menu List”, which allows you to open individual 
DReAMM menus. Scroll down and click on “Image Clip-
ping” to open the corresponding menu, and then click the 
button labeled “Align Clipping Box with Current View”. 
This will orient the clipping box to the current viewing 
direction, so that the box’s front and back faces are parallel 
to the screen and the left, right, top, and bottom limits are 
parallel to the corresponding screen edges.  

    4.     Set the clipping distance : We now need to set the depth at 
which the clipping box begins; that is, the distance from 
the current camera location (look-from point) to the near-
est point on the front face of the box. This is most easily 
done by “picking” a point on an object, and DReAMM will 
then calculate the distance to a plane that cuts through the 
picked point. In the “View Control” menu, select “Pick” 
under “Mode” and then choose “Clipping Distance” under 
“Pick(s)”. Next, in the “DReAMM Image Window”, click 
on the head of the presynaptic bouton. Note that the dis-
tance from the camera to the picked point now appears in 
the “Picked” field of “Near Distance” in the “Image Clip-
ping” menu.  

3.6.2. Use Image Clipping
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    5.     Show the clipping box : In the “Image Clipping” menu, click on 
the “Show Clipping Box” button. A yellow semitransparent 
box will appear and, due to its large default size, will fill 
the “DReAMM Image Window”. With the image window 
active, hit  Ctrl-z  for “Zoom” mode ( see   Note    29  ) and then 
right click and drag to zoom out. If necessary, zoom in (left 
click and drag) or out again to see the entire clipping box in 
the image window.  

    6.     Adjust the clipping box size : By default, the clipping box 
dimensions are 20 × 20 × 0.1  microns  (width × height × 
thickness). Shrink the box’s width and height by modifying 
the “Left”, “Right”, “Upper”, and “Lower” limits in the 
“Image Clipping” menu. Continue until the box encloses 
only the synaptic vesicles and cleft, and then hide the box by 
clicking again on the “Show Clipping Box” button.  

    7.     Apply image clipping : Click the “Apply Image Clipping” 
button. Only a small slice through the synaptic region will 
remain visible.  

    8.     Pan/zoom to reorient and magnify the view : With the image 
window active, hit  Ctrl-g  for “Pan/Zoom” mode ( see   Note  
  29  ). Center the mouse pointer on the visible structures, and 
then left click and drag to enclose the objects within the 
marquee. When you release the mouse button, the view will 
be reoriented and magnified simultaneously.  

    9.     Rotate the view : Hit  Ctrl-r  for “Rotate” mode. Point near 
the 3 o’clock position in the image window, and then right 
click and drag in a counterclockwise direction. The clipped 
objects will follow the pointer by rotating in the plane of 
the screen (a constrained rotation around the current view 
direction). Continue to the 12 o’clock position so that the 
synaptic cleft will be approximately horizontal. Next, point at 
the objects and left click and drag to perform a free rotation 
around the current look-to point. Drag primarily to the left 
or right to obtain an oblique view of the clipped objects.  

   10.      Adjust the clipping box thickness and fine-tune the dimensions : 
In the “Image Clipping” menu, increase the thickness of the 
clipping box. A setting of about 0.35  microns  should include 
both synaptic vesicles and most of the cleft space. With some 
minor adjustments to the box’s dimensions, you can obtain a 
view similar to that shown in  Fig.   5H . You may also find that 
you have to fine-tune the “Near Distance” for the box. This can 
be done by entering a value in the “Specify” field (start with 
a value very close to the indicated “Picked” value that was 
obtained in  step 4 ) and then clicking on the “Specify” button.  

   11.      Play the time sequence : Click the Play button on the “Sequence 
Control” to watch the pore open and the neurotransmitter 
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escape to bind to receptors. If necessary, use the Frame 
Controls to skip ahead in time ( see   Subheading    3.4.3  ,  step 
10 ).      

  DReAMM includes many features to create sophisticated ani-
mations using keyframes ( see   Note    40  ). In this final section, we 
briefly introduce some of the possibilities by illustrating how to 
rotate the camera around the clipped objects.
   1.     Temporarily turn off image clipping : Again click the “Apply Image 

Clipping” button in the “Image Clipping” menu. By turning off 
image clipping temporarily, we will speed up and better illustrate 
the operations required to animate the camera.  

   2.     Open the “Make Animation” menus : Click the “Make Anima-
tion” button on the “Quick Controls” menu (labeled  3  in 
 Fig.   3A ).  

   3.     Activate the “DReAMM Keyframe Editing Image Window” : 
In the “Edit Keyframes” menu, click the “Show Camera Posi-
tions” and “Show Spline/Rotation Points” buttons. This will 
open a new image window that shows the model objects as 
well as glyphs representing the current camera and keyframe 
camera locations. Note that this new image window is fully 
interactive and operates with the same hot keys used in the 
main “DReAMM Image Window”. With the new window 
active, hit  Ctrl-f  to center the view. Now hit  Ctrl-r  and rotate 
the view to see the model objects as well as the camera glyphs. 
The current camera location for the “DReAMM Image Win-
dow” view is shown by the common base of two orthogo-
nal (perpendicular) arrows colored red and blue (look and 
up directions, respectively). By default, one keyframe cam-
era location is also present, as indicated by orthogonal gold 
(look) and green (up) needle glyphs (line segments) with the 
numeral “1” alongside.  

   4.     Define the current view from the “DReAMM Image Window” 
as the starting point for the animation : In the “Edit Key-
frames” menu, click “Start New List” to begin a new list of 
keyframe data. The current camera location and view from 
the “DReAMM Image Window” will overwrite the existing 
default keyframe information. This will be indicated visually in 
the “Keyframe Editing Image Window” as the first keyframe 
camera glyph (labeled “1”) becomes coincident with the cur-
rent camera position glyph.  

   5.     Set up the rotation keyframes : One of the most commonly 
desired animations is a simple rotation of the camera around 
some selected model objects. DReAMM allows you to do this 
operation in only a few simple steps. First, in the “Edit Key-
frames” menu, click on the drop-down list that currently says 
“Add to End” and change it to “Compute Rotation Points”. 

3.6.3. Animate the 
Visualization
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Now click the “Apply Edit: Once” button. A set of magenta 
needle glyphs will appear in the “Keyframe Editing Image Win-
dow”, showing potential camera locations and directions for 
the rotation. By default, a complete rotation is generated with 
1° per step. Next, change the “Compute Rotation Points” 
drop-down setting to “Add Rotation to Range”. Click the 
“Apply Edit: Once” button again. This finalizes the keyframe 
camera positions as indicated by the appearance of numbered 
keyframe camera glyphs.  

   6.     Close menus : Click the “Close All” button in the “Quick 
Controls” menu (labeled  7  in  Fig.   3A ).  

   7.     Play the animation : In the lower right-hand corner of the 
“Quick Controls” menu, change “Keyframe Mode” from 
“All Interactive” to “Keyframes” (labeled  8  in  Fig.   3A ). 
Click the Play button on “Sequence Control” ( Fig.   3A ) and 
watch the pore open and molecules diffuse while the cam-
era rotates around the objects. If you leave the “Keyframe 
Editing Image Window” active, you will simultaneously see 
the current camera glyph moving from keyframe-to-keyframe 
around the model objects. To speed up animation playback, 
disable the “Keyframe Editing Image Window” by reopen-
ing the “Edit Keyframes” menu and clicking once again on 
the “Show Camera Positions” and “Show Spline/Rotation 
Points” buttons.  

   8.     Turn on image clipping : Reopen the “Image Clipping” menu 
and click the “Apply Image Clipping” button again to see the 
animation of the clipped model objects. You can turn image 
clipping on and off during playback of the animation.  

   9.     Save your DReAMM settings : As in  Subheading    3.4.4  ,  step 
1 , save your current DReAMM settings so that you can reload 
them and replay the animation at a later time.        

  

    1.    There is presently a distinction between “modeling” software 
(e.g., Blender) and computer-aided design (CAD) software. 
Both allow the user to design 3D structures interactively, but 
“modeling” programs are specialized for animation and mor-
phing of “smoother” or, in the present context, more “bio-
logical” shapes. CAD software, on the other hand, is oriented 
toward the design of objects for architectural or mechanical 
engineering, and may be integrated with computer-aided 
manufacturing (CAM) software and machinery.  

4. Notes
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   2.    Developer libraries typically are not installed by default with 
Mac OS X. The same problem can arise with some Linux dis-
tributions such as Ubuntu, Debian, or others.  

   3.    The DX file format (.dx) was originally created by IBM for 
its commercial DataExplorer software, a large visual program-
ming and visualization environment. Eventually DataExplorer 
(DX) was released as open source code (OpenDX), which we 
have now improved and expanded into PSC_DX for use with 
DReAMM and large-scale MCell models. We continue to use 
the native DX file format because it is very general and efficient 
for use with hierarchical assemblies of arbitrary mesh objects, 
each of which may be associated with multiple datasets of arbi-
trary type, and also annotated with a variety of metadata tags. 
Although we do not explicitly illustrate export of .dx files from 
Blender in this chapter, it is easily done using the supplied 
plug-in. Direct export from Blender to DReAMM can be very 
useful for rendering and creation of sophisticated animations, 
as well as specialized mesh editing operations. DReAMM can 
also export MDL files for use with MCell.  

   4.    In Blender, the  X -,  Y -, and  Z -axes are red, green, and blue, 
respectively, and the cardinal views ( XZ -,  YZ -, or  XY -plane) 
can be accessed using number keys on the number pad ( 1 ,  3 , 
or  7 , respectively). While in a cardinal view, a visual key for 
the axes is present in the lower left corner of the “3D view” 
window. For example, if you hit  1  ( on the number pad ) for 
the  XZ -view, you will see a horizontal red line labeled X and 
a vertical blue line labeled Z, indicating that the  XZ -plane lies 
in the plane of the screen. The  Y -axis is perpendicular to the 
screen in this view.  

   5.    Most Blender hot keys work only when the cursor is located 
inside the “3D View” window.  

   6.    A UV sphere is composed of quadrangular faces between lines 
of longitude and latitude, similar to a globe. Icosahedral 
spheres (composed of hexagons and pentagons; triangulated by 
Blender) are another option, but UV spheres are easier to use 
for the region definition and extrusion operations in this chapter.  

   7.    Spatial units are arbitrary in Blender, but, once objects are 
exported to MDL files for use with MCell, dimensions will be 
interpreted as microns.  

   8.    Although the cardinal views are sufficient for the operations in 
this chapter, it is often helpful to rotate around an object for 
a better view. To rotate around the currently selected object, 
click and drag using the middle mouse button. Certain opera-
tions may also require zooming and panning. Scroll up with 
the middle mouse button to zoom in, and scroll down to
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zoom out. To pan, hold Shift and one of the following keys 
on the number pad:  8  (up),  2  (down),  4  (left), or  6  (right).  

    9.    If you accidentally hit one of the number keys on the main key-
board instead of the number pad, you will move to a different 
layer and your current view will disappear. If this occurs, simply 
hit  1  on the main keyboard to return to layer 1.  

   10.    To make the faces and central vertex, we first replicate the 
original topmost vertices using an extrude operation. Ordi-
narily this would be used to create a cylindrical extension, 
and in a later operation we extrude vertices in that fashion to 
create the spine shaft. In this case, however, we will extrude 
using a length of 0, so the new vertices will be exactly coinci-
dent with the original vertices. Then we will scale the radius 
of the extrusion to a value of 0, and this will move all of the 
new vertices to the desired central point in the plane of the 
opening. Finally, we will remove all of the unnecessary dupli-
cate vertices, leaving all of the new triangles connected to a 
single central point.  

   11.    It is useful to save periodic snapshots of all Blender files 
(.blend) using distinct names. This allows you to start over 
from a previous snapshot if something unexpected occurs.  

   12.    “Object Mode” is used for operations on entire objects 
(e.g., selecting, moving, scaling), while “Edit Mode” is used 
for operations on selected faces or vertices.  

   13.    The numerical suffix for the material name may differ (e.g., 
if a .blend file is reloaded). If this occurs, just ensure that you 
change the material name for the correct object.  

   14.    There is an error (a bug) that sometimes appears when using 
Blender’s Boolean operations. Under some conditions, the 
mesh vertices are reconnected incorrectly, leaving undesired 
faces and/or holes. This should not occur if the steps of the 
chapter are followed precisely. If the problem does occur, 
however, it can be fixed by deleting any extra faces and/or 
making the vertices around a hole into one or more faces as 
necessary.  

   15.    Blender uses both “Global” and “Local” axes. There is only 
one set of “Global” axes, but each object has its own unique 
“Local” axes, which may or may not coincide with the “Glo-
bal” axes. By using “Apply scale and rotation” in this step, 
the “Local” axes become coincident with the “Global” 
axes. This ensures that the objects will be aligned with the 
“Empty” object created in  Subheading    3.1.7  ,  step 9 .  

   16.    Each surface mesh element (face) has a front and back. The 
direction perpendicular (normal) to a face defines the face’s 
normal vector. Vertices shared by more than one face have 
an associated normal vector defined as the average of the face 
normals. When objects are scaled (shrunken or enlarged), 
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each vertex is moved along its normal (inward or outward, 
respectively), and so the faces become smaller or larger. On 
the other hand, when a group of faces is moved rather than 
scaled, all of the vertices are moved along parallel vectors. In 
the particular case of this step, we want a spine head to move 
“out” or “in” along the axis of the spine neck. To do so, we 
can move the head along a vector defined by the average of 
its face normals. Since each spine head is radially symmetric 
around the spine axis, the average of the face normals will be 
the spine axis itself.  

   17.    A full introduction to the MDL syntax is beyond the scope 
of these stand-alone examples. Please consult the MCell 
Reference Guide for additional information (  http://www.
mcell.psc.edu    ).  

   18.    Every surface mesh object is composed of individual poly-
gons. To describe any mesh in a general but compact way, all 
of the vertices ( x , y , z  coordinates) are listed first (see VER-
TEX_LIST in later example), and then the triangular faces 
are listed next (ELEMENT_CONNECTIONS). Each face 
is described by an array of index numbers that refer to the 
vertex list (a triple of vertex indices). For example, a face that 
connects the first three vertices could be listed as [0,1,2] 
(zero-based indices are used; the order in which the vertices 
are listed, together with the right hand rule, determines the 
front and back sides of the face). Thereafter, mesh regions 
can be named and defined using arrays of index numbers 
that refer to the list of faces. Thus, [0,1,2,3,4] would define 
a region composed of the first five faces. In an MDL file for 
one or more mesh objects, each object is defined by a POL-
YGON_LIST with a user-specified name, and that includes 
vertices, triangular connections, and regions (if any). For 
example:

my_mesh_name POLYGON_LIST {

VERTEX_LIST {

(list of all x,y,z coordinates)

}

ELEMENT_CONNECTIONS {

(list of all triangular faces, each defined by 
three vertex index numbers)

}

DEFINE_SURFACE_REGIONS {

my_first_region_name {

ELEMENT_LIST = [list of face index numbers]

}

my_second_region_name {
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(…)

}

(…)

}

}  

   19.    Checkpointing is a general term in large-scale computing 
and simply means that a running process (e.g., simulation) 
is stopped temporarily so that it can be restarted later. At 
the checkpoint, the current state of the process is written to 
a file that is subsequently read when computation resumes. 
With MCell, the checkpoint file includes the locations and 
states of all molecules, as well as other run-time parameters. 
When the simulation is restarted after a checkpoint, a com-
plete set of input MDL files is read in addition to the check-
point data. Thus, any new changes made in the MDL files 
(e.g., mesh geometry) are incorporated into the continuing 
simulation. In the example of this chapter, ten different sets 
of MDL files are used over a checkpointing sequence, and 
the radius of the fusion pore increases in each step. All of the 
diffusing neurotransmitter molecules are contained within 
the expanding pore or the synaptic cleft space later, and so 
diffusion from the vesicle through the pore can be simulated 
without concern that molecules escape from the changing 
pore geometry.  

   20.    To check dimensions, click the “Edge Lengths” button in 
the “Buttons Window” under “Mesh Tools 1”. This panel 
is on the far right of the “Buttons Window”, and, depend-
ing on window size and resolution, you may have to scroll 
over to see it. If this is the case, scroll “up” using the middle 
mouse button while the cursor is over the “Buttons Win-
dow”. Select “Edge Lengths”, and values will appear for 
all highlighted edges (to three decimal places). Additional 
measurement capabilities are available through other online 
plug-ins for Blender.  

   21.    This step may take some time to complete, depending on 
the speed of your computer. Also, you may find that Blender 
runs slowly after this step. This is due to a caching problem 
that can be eliminated simply by reopening the final saved 
.blend file and continuing.  

   22.    MDL files are plain text files and can be edited using any 
available text editing program. Popular choices on Unix-
like operating systems include vim, emacs, pico, or nano. In 
addition, the Writer program within OpenOffice (similar to 
MS Word within MS Office) can be used as long as the files 
are saved in plain text format.  
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   23.    A “block” denotes a set of MDL commands enclosed in 
curly braces, and some blocks may be nested (blocks within 
blocks).  

   24.    As in other cell modeling languages, a “molecule name” in 
MCell’s MDL is quite general and may actually correspond 
to a functional state, such as an open or closed conformation 
of a molecule that includes a transmembrane ion channel. 
The relationships between molecules and states are defined 
in subsequent reaction statements.  

   25.    Molecules can be added to surface regions on meshes in sev-
eral ways. In one approach the molecules are added directly 
by hand-editing a DEFINE_SURFACE_REGIONS block 
within a POLYGON_LIST ( see   Note    18  ). This can be quick 
and easy for small meshes, but hand-editing large mesh files 
is generally undesirable. Thus, in this chapter we illustrate use 
of the MODIFY_SURFACE_REGIONS command. In addi-
tion to other functions, MODIFY_SURFACE_REGIONS 
allows addition of molecules to mesh regions defined pre-
viously in other (included) MDL files. To add molecules, 
one specifies the name of the mesh region to be modified, 
the name of the molecules to be added, the number to be 
added, and the molecules’ orientations with respect to the 
front and back of the surface.  

   26.    In this example molecules are added to surface regions at the 
beginning of the simulation. It is also possible for molecules 
to appear and disappear during a simulation as reaction steps 
occur, and additional molecules may also be “released” in 
closed volumes and on surface regions at specified times dur-
ing running simulations. When a molecule is produced by a 
reaction, its initial location depends on the location of the 
reactant(s), and may also reflect user-specified directionality 
with respect to a surface.  

   27.    It is important to do visual checks often, especially before 
running long simulations with large models. Visual checks 
are typically done by running a short number of iterations 
for rapid visualization with DReAMM.  

   28.    By default, DReAMM will use rendering properties that 
minimize the time and memory required to display images. 
It will also use “Software Rendering”, which means that the 
calculations required to generate the images are performed 
on the computer’s CPU, rather than the graphics proces-
sor on the video card. DReAMM can also use “Hardware 
Rendering”, which does take advantage of graphics hard-
ware and under many conditions will be much faster. How-
ever, as models increase in size and complexity, rendering in 
Hardware may become slower than in Software, or may not 
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be possible at all if insufficient memory is available on the 
video card. You can switch back and forth between Software 
and Hardware rendering by clicking “Options -> Rendering 
Options…” on the “DReAMM Image Window” menu bar, 
and then clicking on the “Software” or “Hardware” but-
ton under “Rendering Mode” in the pop-up “Rendering…” 
menu. Either Software or Hardware rendering may be used 
throughout the examples of this chapter, except when Soft-
ware rendering must be used with “Image Clipping” ( Sub-
heading    3.6.2   and  Note    39  ).  

   29.    With DReAMM, hot keys function only if both “Num Lock” 
and “Caps Lock” are off on the keyboard. Most DReAMM 
hot keys select different viewing modes and require that the 
“DReAMM Image Window” is selected. A sequence of view 
changes can be undone and redone using  Ctrl-u  and  Ctrl-
d , respectively, and a default view of centered objects can 
be obtained with  Ctrl-f . Commonly used viewing modes 
include the following:
  •  “Rotate” ( Ctrl-r ) – left click and drag for free rotation around 

the current look-to point, or right click and drag for con-
strained rotation around the current look direction.  

 •  “Navigate” ( Ctrl-n ) – left click, hold, and move the 
pointer toward an object to move the camera toward 
the object; middle click, hold, and move the pointer 
to pivot the camera (change the look-to point without 
changing the look-from point), or right click, hold, 
and move the pointer to move the camera away from 
objects. While in “Navigate” mode, the “View Control” 
menu includes sliders for forward or backward speed of 
motion and relative pivot speed, and also a selector but-
ton that allows the camera to look in different directions 
while traveling forward or backward (e.g., looking 45° 
to the right while traveling forward). For best results, 
use “Navigate” mode while using Hardware rendering.  

 •  “Zoom” ( Ctrl-z ) – left click and drag to zoom in on a 
region outlined by a centered marquee, or right click 
and drag to zoom out by fitting the current display into 
a centered marquee.  

 •  “Pan/Zoom” ( Ctrl-g ) – similar to “Zoom” mode except 
that you reorient the view and zoom simultaneously, by 
first pointing to the object of interest and then clicking 
and dragging a marquee around it.     

   30.    Custom rendering properties are used to visualize particu-
lar molecules, region boundaries, and molecules obscured 
by meshes. Here, we illustrate the use of custom rendering 
properties to visualize the proper location and orientations 
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of the synaptic vesicles and their calcium binding sites, the 
VGCCs, and calcium ions.  

   31.    Values can be changed by clicking the up/down arrows or 
by directly entering the desired value into the field and hit-
ting  Enter .  

   32.    In a “real” model, use of a colormap ensures that all regions 
were designed properly. Any errors must be fixed and the 
modified model should be rerun and retested until all regions 
are verified visually.  

   33.    To see a sharp transition between mesh elements with differ-
ent colors, change the “Color Dependence” selector from 
“Vertices” to “Elements”. If “Vertices” is used instead, color 
changes between mesh elements are blended to give the 
mesh a smooth appearance.  

   34.    You must hit  Enter  after typing in a DReAMM text box 
before the changes will be recognized.  

   35.    A directional glyph like an arrow is often a good choice when 
checking the orientation of surface molecules.  

   36.    DReAMM settings files contain the list of currently selected 
objects, all keyframe data, and all assigned rendering prop-
erties, including colormaps. They can be reloaded later for 
the same or different visualization data, allowing reuse and 
exchange of settings. You can also choose to reload particu-
lar portions of a settings file. For example, you may wish 
to load rendering properties previously assigned to another 
model, but not the selected objects or keyframe information 
from the other model.  

   37.    The locations ( X , Y , Z  coordinates) for each release site can 
be obtained with Blender or DReAMM, and are approxi-
mately centered within each vesicle. With Blender, you can 
display a median value for a selected set of vertices by hitting 
 n  and then clicking “Global” in the “Transform Properties” 
pop-up menu. With DReAMM, you can use the “Probes” 
menu to activate 3D cursors that can be moved around in 
space, with a display of their positions.  

   38.    The settings file created previously includes rendering pro-
perties assigned for meshes and molecules. Since the meshes 
in the new model share the same names as the meshes in the 
previous model, the rendering properties are applied imme-
diately. On the other hand, the molecules in the new model 
do not have the same names as the molecules in the previous 
model. Thus, at this point the new molecules are still rendered 
using default properties (pixels). In subsequent  Subheading  
  3.6.1  ,  steps 8 and 9 , the previously defined rendering prop-
erties will be reassigned (copied) to the new molecules.  
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   39.    DReAMM includes two different types of clipping opera-
tions accessed through separate menus. “Data Clipping” 
allows you to specify separate  X -,  Y -, and/or  Z -limits for 
different objects (“Meshes”, “Wireframes”, “Boundaries”, 
“Volume Molecules”, or “Surface Molecules”). Molecules 
with positions that lie within the limits are included for ren-
dering, as are mesh elements (triangles) with included cent-
ers of mass. Thus, when using “Data Clipping” the amount 
of data to be rendered is reduced. If only a portion of a 
very large model is visualized, rendering speed can increase 
enormously. However, meshes clipped in this manner may 
have a jagged edge because complete triangles are removed. 
“Data Clipping” works when using either Software or Hard-
ware rendering. In contrast, “Image Clipping” allows you 
to specify an arbitrarily oriented clipping box anywhere in 
space, and all objects contained within the box are shown 
with smooth cut edges. This increases rather than decreases 
the amount of computation, and with current versions of 
DReAMM this must be done with software rendering. For 
large datasets, “Data Clipping” and “Image Clipping” can 
be used in combination.  

   40.    DReAMM animations are designed using interpolated key-
frames. Each keyframe includes information about the cam-
era position and view, lighting, depth cueing, and stereo 
visualization settings. In general, keyframes can be added 
and removed in a variety of ways, and all of the keyframe 
data parameters can be interpolated using a spline function 
over the entire keyframe sequence or a specified portion 
thereof. For additional information, see the DReAMM ani-
mation tutorials in  (15) .          
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Chapter 10      

 A Cell Architecture Modeling System Based on Quantitative 
Ultrastructural Characteristics       

     Július   Parulek      , Miloš   Šrámek,       Michal  Červeňanský      , Marta   Novotová, 
and       Ivan   Zahradník      

  Summary 

 The architecture of living cells is difficult to describe and communicate; therefore, realistic computer 
models may help their understanding. 3D models should correspond both to qualitative and quantitative 
experimental data and therefore should include specific authoring tools such as appropriate visualization 
and stereological measures. For this purpose we have developed a  problem solving environment for stereology-
based modeling  (PSE-SBM), which is an automated system for quantitative modeling of cell architecture. 
The PSE-SBM meets the requirement to produce models that correspond in stereological and morphologic 
terms to real cells and their organelles. Instead of using standard interactive graphing tools, our approach 
relies on functional modeling. We have built a system of implicit functions and set operations, organized in 
a hierarchical tree structure, which describes individual cell organelles and their 3D relations. Natural vari-
ability of size, shape, and position of organelles is achieved by random variation of the specific parameters 
within given limits. The resulting model is materialized by evaluation of these functions and is adjusted for 
a given set of specific parameters defined by the user. These principles are explained in detail, and modeling 
of segments of a muscle cell is used as an example to demonstrate the potential of the PSE-SBM for com-
munication of architectural concepts and testing of structural hypotheses.  

  Key words:   Implicit modeling ,  Cell architecture ,  Muscle cell ,  Stereology ,  3D structure ,  Visualization , 
 Automatic model generation ,  XML .   

    

 The structure and the function of muscle cells are related in 
many intricate ways that are difficult to understand, describe, and 
communicate to others. Within this scope, computer modeling 
might be very instrumental for synthesis and verification of recent 
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knowledge, as well as for testing specific hypothesis. Here, we 
describe a novel modeling approach aimed to capture the cell 
architecture, that is, the manner how the muscle cells are con-
structed of their organelles  (1–  3) . We employed the methods of 
geometrical modeling implemented with the use of recent com-
puter hardware and computer graphics tools to provide biologists 
and biophysicists with an environment for virtual cell modeling 
 (4–  7) . This approach has numerous potential applications. In this 
work we present an example of modeling striated muscle cells to 
demonstrate its principles and the potential of geometrical mod-
eling for representation of 3D volume models. 

 Our effort is aimed at creation, verification, and visualiza-
tion of complex models of muscle cells. A typical cell consists of 
hundreds or even thousands of various organelles. Thus, creation 
of such model organelle-by-organelle, using the traditional inter-
active techniques, would require unacceptably long time and, 
moreover, would not ensure the typical stochastic properties. 
Therefore, in our approach, the cell model is created in an auto-
mated process that allows simultaneous generation of numerous 
variants of models based on the same specification but differing 
in their random representations. 

 We call this automated geometry modeling system the  prob-
lem solving environment for stereology-based modeling  (PSE-SBM). 
The PSE-SBM meets the essential requirement, namely, to pro-
duce models that correspond in quantitative terms to volume and 
surface densities (VSD) of cell organelles known from stereologi-
cal and morphological analysis of electron-microscopic images 
of real cells. It is obvious that such goals cannot be reached 
by conventional graphic modeling tools, as they require either 
interactive graphical input (e.g., Blender  (8) , Truespace  (9) , 
etc) or sophisticated techniques for capturing 3D volume data, 
like electron or confocal microscopy – all techniques being very 
demanding for manpower, time, and costs. In fact, our approach, 
dissimilar to interactive graphics tools, resembles functional mod-
eling in a sense that it shares three features – usage of mathemati-
cal functions, adjustment of their parameters according to a set 
of input parameters, and visualization of the generated models 
in a user-defined way. We define a system of functions and set 
operations that describe each individual cell organelle and spatial 
relations among them. The resulting model, defined by the user 
through a set of specific parameters, is then just a combination of 
these functions. The functions employed here for modeling are 
known as implicit functions  (10,   11)  and their evaluation defines 
the outer surfaces of each organelle. 

    Implicit surfaces (implicits) are a convenient geometric modeling 
tool for image synthesis and computer-aided geometric design. 
The set of techniques, known today as implicit modeling, was 

1.1. Implicit Modeling
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used for the first time by Blinn  (12) . Currently, there are several 
types of implicit modeling systems that are oriented toward spe-
cific classes of objects. The first class stands for skeleton-based 
models. A simplest skeleton is a point or a set of isolated points. 
Implicit surfaces, built up on skeletal points, are known as blobs 
 (12) , soft objects  (13) , and metaballs  (14) . Techniques presented 
by point skeletons were later extended by lines, curves, and 
polygons and generalized to convolution surfaces  (15,   16) . The 
modeling systems implementing the approach based on convolu-
tion surfaces are often limited by the choice of skeletal elements 
according to technical difficulties in evaluating convolution inte-
grals. Nevertheless, convolution surfaces are widely used in geo-
metrical modeling of organic structures mainly due to their ability 
to represent smooth shapes  (17–  19) . 

 The second class is represented by implicit surfaces defined by 
analytical functions. These include algebraic (e.g., plane, quadrics) 
and nonalgebraic functions (e.g., superquadrics)  (20) . Later, Pasko 
et al. generalized the representation of implicits by combination of 
all the aforementioned approaches into a single framework named 
functional representation (or F-rep) of the geometric object  (21) . 

 To modify either the functional value or the coordinates of 
any given implicit surface function (implicit function), several 
unary modifiers  (10,   11,   21,   22)  can be applied. Furthermore, 
complex objects can be created via constructive solid geometry by 
Boolean set-theoretic operations. The basic set-theoretic opera-
tions can be defined using the min and max operators, which are 
not differentiable. Therefore, several analytical expressions that 
approximate these operators were proposed  (21,   23,   24) . 

 Implicit surfaces are particularly well suited for construction 
of blends. A blend is a surface that forms a smooth transition 
between intersecting surfaces. The blends can be classified into 
global and local. In general, global blends include linear, hyper-
bolic, and superelliptic ones  (11) . Local blends limit the domain 
in which the blending operation is performed by definition of 
an extra displacement function, which is added to the given set-
theoretic operation  (25,   26) . 

 Implicit surfaces are suitable for approximation of real world 
data. Muraki used the Blobby model to fit volumetric data  (27) . 
Reconstruction of surface models using the methods based on 
thin plate splines  (28)  and radial basis interpolants  (29)  from 
unparallel slices was explored in several works  (30–  32) . 

    Geometric modeling of 3D biological structures enables biolo-
gists to grasp and understand complex features of biological 
objects by coupling them with specific biophysical processes and 
by means of suitable visualization methods  (33) . 

 Prusinkiewicz  (34)  presented characteristics useful for 
describing biological models from a computer scientist’s point 

1.1.1. Modeling Environ-
ments for Biological 
Structures
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of view. Here, the models were classified into two groups: 
structure-oriented and space-oriented models. The structure-
oriented models typically describe where each component of the 
structure is located, while the space-oriented models describe 
what is located at each point of space. Further, the structure 
and the space that embeds such models may be continuous or 
discrete. Models may have different topology (nonbranching 
filaments, a branching structure, a network, a 2D surface, a 
3D solid object). In the case of time-evolving structures, the 
model may occupy constant space or may expand over time. 
The time-dependent neighborhood relationships between 
individual modules may be fixed or variable. Communication 
between the modules may have the form of lineage (informa-
tion transfer from a parent to its offspring) or of interaction 
between coexisting modules. 

 Implicit surfaces support a free-form modeling methodol-
ogy, which is an advantage in modeling of biological structures. 
Several modeling environments for implicits have been devel-
oped  (35–  37) . These represent the most promising branches in 
the field of implicits and their utilization in modeling of biologi-
cal structures. Additionally, some support for implicits is avail-
able also in the well-known VTK toolkit  (38) , including objects 
of the quadric subclass, CSG implicits, and several other primi-
tive classes. 

 General progress in computing power and speed has acceler-
ated the existing polygonization algorithms  (39,   40) , which now 
allow users to visualize their results nearly in real time. High-
quality rendering of implicit surfaces is provided by POV-Ray – 
the Persistence of Vision Raytracer  (41) . It reads in a text file with 
a description of the scene (object specifications, lighting, and a 
camera) and generates an image by a rendering technique based 
on ray tracing.   

      Cell architecture, i.e., the internal organization of cell organelles 
or structures that perform specific functions, is inferred mostly 
from electron microscopic images that provide resolution neces-
sary to see all organelles and their relations  (2) . Electron micro-
graphs, obtained by an electron beam passing through a very 
thin (40–100 nm) slice of a tissue sample, depict only a minute 
volume of the tissue. A morphological concept of spatial cell 
organization emerges after inspection of numerous samples. As 
individual images are not representative for the whole tissue, 
quantification of cell structures is performed on many images 
by the methods of morphometry and stereology. Morphological 
description involves typical features, such as shapes, positions, 
and variability of cell components. Morphometric description 
reflects the average sizes and distances of cell structures as seen 
in their images. Stereological description provides VSD of cell 

1.2. Study of Cell 
Architecture
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components relative to a unit of cell volume. The design of the 
architecture of a specific cell is then expressed using this set of 
complex characteristics  (2) .  

      In the concept described in this work, cell modeling starts with 
definition of a model, written down in a file using the model 
description language (MDL,  Subheading    3.1  ). Such a file is 
then wrapped by job cell configuration (jcc,  Subheading    3.2  ) 
syntax, in which specifications for processing of the input MDL 
file by the cell generator tool and specification of the contents 
of output files are provided. After issuing a cell generator com-
mand with an input jcc file, a set of cell models is produced; this 
takes approximately seconds. Cell models can be then verified 
(stereological quantification) to reveal dissimilarities between the 
expected and estimated stereological values. Finally, the user can 
adjust the initial configuration and rerun cell generation so that 
plausible stereological values are obtained ( Subheading    3.3.2  ). 
Another important criterion of model quality is the appearance 
or fidelity of the model ( Subheading    3.3.1  ). Visual inspection, 
an analog of morphological analysis, can reveal possible structural 
inconsistencies. Although the PSE-SBM allows direct visualiza-
tion of created cell models, it is useful to convert models to their 
boundary or volumetric representations and take the advantage 
of interactive rendering techniques. Direct rendering of implicit 
surface models by a ray-tracing technique produces images for 
presentation purposes. The diagram in  Fig.    1   summarizes all 
components of the modeling environment.    

1.3. Method Overview

  Fig. 1.    The iterative modeling procedure:  User’s specification –  an interactive specification of a PSE-SBM job,  MDL file 
–  a set of geometrical and statistic parameters in XML format that cover organelle descriptors,  JCC file –  wraps the MDL 
configuration describing the output to be produced,  Cell generator –  reads input JCC and MDL files and generates the 
cell model represented by means of XISL-based implicit functions,  Implicit model –  each organelle is represented by an 
individual implicit function,  Quantification –  estimation of VSDs,  Rendering –  images obtained by direct ray tracing of 
the implicit cell models,  Converter –  reads an input implicit cell model and converts it to either boundary or volumetric 
representation       .
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 The methodology of implicit modeling is not the main topic of 
this paper. However, to gain a better insight, we introduce here 
the PSE-SBM system together with an introduction to cell and 
organelle modeling techniques. Further, we present a computing 
method for estimation of VSD of organelles. 

      According to our goal aimed on stereology-based implicit mod-
eling, we have developed XISL – a scripting language – and tools 
for representation of implicit surfaces  (42) . The XISL suite is 
intended to assist developers in construction of implicit models 
of arbitrary cell or tissue type. Here, implicit models are speci-
fied in declarative text files by means of the extensible markup 
language (XML), where each implicit function class (a primi-
tive, an operation, etc.) is defined by its appropriate tag(s). This 
ensures clear and self-explanatory notation of complex implicit 
objects ( Fig.    2  ).  

 The XISL implicits are defined by means of the functional 
representation  (21) . In functional representation an object is 
defined by the inequality  f ( x  1 , … ,  x   n  )   ≥ = 0. In the three-dimen-
sional case, an object defined by such inequality is usually called an 
implicit solid and an object defined by the equation  f ( x   1  , … ,  x   n  ) = 0  

2. Materials

2.1. Xisl

  Fig. 2.    Demonstration of the XISL language (script) that defines the implicit “pawn” object and its rendition       .
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 is called an implicit surface. The function  f  can be defined analyti-
cally, by means of a function evaluation algorithm, or by tabulated 
values and an appropriate interpolation procedure. The impor-
tant property of implicit solids is unambiguous point-object clas-
sification. If  X  = ( x  1 , … ,  x   n  ) is a point in  E   n  , then it is classified 
as follows: for  f ( X )  > 0  it is inside the object, for  f ( X )= 0 it lies 
on the boundary of the object, and for  f ( X )< 0 it is outside of 
the object. 

 The general definition of XISL objects allows implementa-
tion of various forms of implicits. Each implicit function is repre-
sented via an  n -ary hierarchical tree, the leafs of which stand for 
arbitrary implicit primitives and the inner nodes stand for unary, 
set-theoretic, blending, and interpolation operations. 

 Several modeling systems based on implicits were developed 
 (35,   37) ; nevertheless, XISL is a compact, extensible, and operat-
ing system-independent package.  

      The PSE-SBM modeling system allows users to define cell mod-
els by means of a high-level XML-based MDL. MDL specifica-
tion defines organelles by their probability of occurrence and by 
the mean values of quantitative descriptors such as size and shape, 
including their variation. 

 An MDL specification, which defines the cell in a language 
understandable by the general user, has to be transformed to the 
low-level scene XISL description. This transformation has to be 
developed specifically for each type of a 3D scene, that is, for 
each cell type. In the following, we present application of this 
approach to striated muscle cells, which represent very complex 
and highly organized structures. 

 The initial step in cell modeling involves creation of the central 
skeleton of the cell, which in the case of muscle cells is represented 
by a system of parallel cross-sectional graphs (c-graphs) distrib-
uted along the longitudinal axis with perturbations specified in the 
MDL configuration. The longitudinal axis is defined by the orien-
tation of myofibrils. The transversal cell direction is perpendicular 
to the longitudinal cell axis. An important modeling feature is 
that each organelle has a preferred orientation along one of these 
two directions. The c-graphs are used to create the myofibrillar 
system by means of the F-rep of polygons  (43)  and interpolation. 
Other organelle types (i.e., mitochondria, t-tubules, sarcoplasmic 
reticulum, and terminal cisterns) are defined by their own skel-
etons derived from the c-graphs. Specification of skeletons reflects 
the observed properties of real cells and their organelles and is 
specified by appropriate morphological rules in the MDL configu-
ration. This concept is illustrated in  Fig.    3  .  

 The power of implicits resides in their ability to provide 
organic-like shapes easily. Cellular structures are mostly rounded 
objects without sharp edges and other details. Modeling of such 

2.2. Cell Modeling
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shapes can be achieved by combination of round primitives and 
proper operations applied on them. For instance, a special class of 
blend operations is suitable for creating smooth transitions between 
input round primitives such as algebraic primitives and skeleton-
based primitives. In addition, implicit surfaces also directly support 
point to object classification, object-to-object collision detection, 
and object deformation, which are useful features in modeling of 
multiorganelle cells. An important computational requirement is 
rapid transmission of large models over the network. Therefore, it 
is crucial to have model representation with low demands on stor-
age capacity. Thankfully, a noticeable feature of implicits is their 
compressibility. In contrary to other methods, such as boundary 
representation where an object is represented by a mesh, for the 
implicit representation it is sufficient to store a function as a set 
of symbolic terms that represent the function evaluation process 
( see   Fig.    2  ). For example, the size of a compressed file containing 
about thousand of XISL-defined cell organelles did not exceed 1 
MB, while a polygonal representation of such model at an appro-
priate resolution reached several tens of MBs.  

      Skeletal muscle cells of mammals are populated with various types 
of organelles, e.g., myofibrils, mitochondria, sarcoplasmic reticu-
lum, terminal cisterns, sarcolemma, t-tubules, etc., which differ in 
size, shape, and topology. Therefore, in their modeling, different 
approaches should be employed. 

 Myofibrils, the contractile fibrils, are thin and long cylindrical 
objects, segmented into Z, I, and A bands that give rise to the 
striated pattern of muscle cells when viewed under a microscope. 

2.3. Organelle 
Representation

  Fig. 3.    An example demonstrating eight consecutive sarcomeres of a muscle cell. A sarcomere is indicated by number 
7 on the left. For better clarity, the sarcolemma is hidden and, also, the bottom part of the myofibrillar system is clipped 
off by a transversal plane ( middle ). The complex system of underlying skeletons is made visible by clipping by a longitu-
dinal plane ( right ). The myofibrillar system (1) is defined by means of the c-graphs (2). The remaining organelles include 
mitochondria (3), sarcoplasmic reticulum (4), t-tubules (5), and sarcolemma (6)       .
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Muscle cells contain many myofibrils that occupy more than 
50% of their volume. Myofibrils are organized in parallel bundles 
spanning the whole length of the cell. In cross sections, myofi-
brils have rounded polygonal shape of about 1  μ m in diameter. 
In the model, they are defined by means of cross-sectional graphs 
(c-graphs) in a system of parallel transversal modeling planes. The 
resultant formula of a myofibril is then obtained by interpolation 
between the neighboring c-graphs along the longitudinal axis. 
Myofibrils vary only slightly along their longitudinal axis and thus 
their contours in cross section remain nearly unchanged. At the I 
bands, the myofibril is slightly thinner than at the A bands. With 
respect to this, it is sufficient to define a single (initial) c-graph 
representing the basic myofibrillar topology across the cell. When 
required, this initial c-graph can be obtained from the c-graph 
database using a special syntax in the MDL configuration. The 
initial c-graph is then distributed along the longitudinal axis with 
slight perturbations as depicted in  Fig.    4  .  

 The thickening/thinning at the A/I band boundaries is speci-
fied by means of a user-defined factor. Longitudinal distribution of 
c-graphs is derived from the known sarcomere length (the distance 
between two neighboring Z bands), the number of modeled sar-
comeres, and the relative length of each band within a sarcomere. 

 Mitochondria are closed, membrane-bound, elliptically shaped 
organelles of irregular smooth forms and variable sizes. To capture 
their varying elliptical shape, we developed a new method based 
on implicit sweep objects. The basic components of sweep objects 
are 2D sweep templates and 3D sweep trajectories. Several works 
addressed the problem of creation of generalized sweep objects 
 (43–  45) . In general, to create a sweep object, a transformation is 
created that maps a 2D template point  c  to a 3D position  p . The 

  Fig. 4.    Modeling of myofibrils.  Left : an example of c-graph distribution on two sarcomeres (1 – a single sarcomere). 
Dashed vertical lines at the top represent the distribution of the c-graphs.  Right : myofibrils and the corresponding 
c-graphs within three sarcomeres; for better clarity, the myofibrils located in the middle of the cell are hidden       .
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transformation maps the center of the 2D template to the point 
that lies on the trajectory. To preserve the cross-sectional elliptical 
shape of mitochondria, the 2D template is defined as an implicit 
ellipse with variable dimensions. To represent a 3D trajectory, we 
adopted the uniform quadratic B-splines. 

 Transversal tubules (t-tubules) form a planar network around 
and between myofibrils. In practice, t-tubules can be represented 
by a network of connected tubes with slightly varying diameter 
that pass randomly between the myofibrils. In fast skeletal mus-
cles they run typically near the I/A band boundaries. T-tubules 
are positioned by means of line segments derived from a set of 
edge line segments of the c-graphs. 

 Sarcoplasmic reticulum (SR) is a rich but delicate membra-
nous structure consisting of two compartments. The terminal 
cisterns of the SR are juxtaposed to the longitudinal sides of 
t-tubules. The network of longitudinal SR grows between the 
neighboring terminal cisterns along the myofibrils. It is repre-
sented by a system of tiny randomly interconnected and longi-
tudinally oriented tubules, creating a typical mesh ( see   Fig.    3  ). 
Sarcoplasmic reticulum is modeled in two steps. The first step is 
building of the system of longitudinal tubules, which is achieved 
by extended interpolation  (46)  between sets of circular implicit 
shapes. The terminal cisterns, forming a smooth junction to the 
system of longitudinal tubules, are modeled in the second step. 
The resultant sarcoplasmic reticulum is obtained by union opera-
tion on these two components. 

 Sarcolemma is a membrane envelope tightly surrounding the 
muscle cell, which defines the cell volume. It is represented in a 
similar way as the myofibrils except that the polygonal skeleton is 
created automatically from the peripheral edges of all c-graphs. 

  Figure    5   demonstrates all aforementioned organelles, except 
for the sarcolemma, which is hidden in order to see the cell interior.   

  Fig. 5.    An example of the model of two sarcomeres. 1 – A-band SR, 2 – I-band SR, 
3 – t-tubules following the I/A band interface, 4 – A-band mitochondrion, 5 – I-band 
mitochondrion       .
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      Our ambition was to build models that fulfill both geometric 
and stereological characteristics of a real cell. This is in con-
trast to traditional approaches, which care solely for the visual 
appearance and ignore the quantitative characteristics. There-
fore, computation of volume and surface area of all objects in 
the model (the volume and surface densities) is required for 
evaluation of the model fidelity and for eventual estimation of 
corrections of input parameters in the MDL file. For this pur-
pose we have developed and implemented a new Monte Carlo-
based method for numeric evaluation of volumes and surfaces 
of all organelles over the whole volume of the model  (3) . The 
same tools can be used for simulation of stereological experi-
ments and testing its feasibility.  

      For purposes of platform heterogeneity and further PSE-SBM 
parallelization, our tools are based on command line invocations. 
Here, we demonstrate the Windows versions of these tools, which 
are deployed within PSE-SBM. The basic set of tools includes the 
following:

  •   cell_model_generator  (cellJob), which reads an input 
MDL configuration wrapped by high-level XML syntax and 
generates cell (XISL) models, executable scripts (*.bat), and 
the POV-ray files aimed at model visualization.  

 •   cell_converter  (cell2diff), which provides for conver-
sion of implicit (XISL) cell representation into boundary or 
volumetric representation; nevertheless, it can be also used 
in a window GUI mode as an interactive model preview tool 
using the boundary representation.  

 •   volume_surface_estimator  (xislVSl2xml), which is requi-
red for scripts generated by the  cell_model_generator , 
estimating VSDs.    
 Besides these tools, the user can download and install exter-

nal (third-party) software required for model visualization. The 
detailed instructions of software acquisition can be found in  (47) .   

       

      Let us assume that the user wants to build a model of a muscle cell 
with four sarcomeres, each of 1,770 nm in length. The length and 
number of sarcomeres determine the longitudinal model dimen-
sion. The transversal dimension is derived from the number and 
diameter of myofibrils that should be included in the model. We 
have prepared a c-graph database containing c-graphs of 4–22 
myofibrils. Thus, a user can choose the initial topology of myofi-
brils from this database or create its own c-graph using an external 

2.4. Computation of 
Stereological Densities

2.5. Software Tools

3. Methods

3.1. MDL Specification
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graphical tool and store it in the proper format. Each sarcomere 
segment should start and end at the Z band. Next, the longitudi-
nal size of each myofibrillar band has to be specified. Individual 
bands are represented by colored zones within each sarcomere. 
Let these dimensions be 700 nm for A bands, 2 × 500 nm for 
each I band at both sides of the A band, and 70 nm for Z bands; 
the sum of these lengths is 1,770 nm, as requested. As observed 
in real cell images, a myofibril cross-sectional size varies along 
the longitudinal axis; therefore, the user has to define the scaling 
parameters that are applied to the corresponding c-graphs of each 
myofibril. The aforementioned specification can be writen in the 
MDL form as follows: 

 < MDLconf   name  =”modelA”> 
 < data    length  =”1770”  sarcNum  =”4”  iBandFract  =

”0.56”  aBandFract =”0.40”  zBandFract =”0.04”/> 
 < cgraph   file =”../mp/mp22/mp_22_4.txt” 

 aBandMod =”50”  iBandMod =”70”  zBandMod =”70” 
 alterMin =”5”  alterMax =”10”  iBandScale-
Min =”2.95”  iBandScaleMax =”3.02”  aBandScale-
Min =”3.07”  aBandScaleMax =”3.14”/> 

 </ MDLconf > 
 The < data  …/> tag specifies the size of a single sarcomere 

( length ), number of sarcomeres ( sarcNum ), and relative lengths 
of the I band, A band, and Z band in fractions of sarcomere 
length ( iBandFract, aBandFract, and zBandFract ). 

 The second tag < cgraph  …/> specifies the input c-graph, 
where  file  represents the input c-graph file name with path (con-
taining 22 myofibrils in this example);  aBandMod ,  iBandMod , 
and  z  BandMod  define appropriate distances between neigh-
boring myofibrils for each myofibrillar zone. To use random 
c-graph distortion, one can specify the  alterMin  and  alterMax  
attributes, which randomly shift c-graph points within limits 
of these values. The attributes  iBandScaleMin ,  iBandScale-
Max ,  aBandScaleMin , and  aBandScaleMax  represent the inter-
val from which the scaling values are selected, which are then 
applied to each c-graph. 

 The use of only these two tags would result in generation of 
only the myofibrils. A more complex tag specification is needed 
to describe other cell organelles, mainly due to their high vari-
ability and stochastic character. For example, the user wishes to 
add organelles with the following properties:

  •  Mitochondria, which are located at the I and A bands with a 
diameter (short axis) of 30–50 nm at the I band and 40–60 
nm at the A band. Further, it is required that the mitochon-
dria occur more frequently at the I band than at the A band.  

 •  Sarcoplasmic reticulum, positioned both at the I and A bands, 
with the following geometric parameters: longitudinal SR 
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tubules of 15–20 nm in radius and the neighboring SR tubules 
seeded at intervals of 40 nm. The occurrence probability of SR 
is 100% at myofibrils unless there is not enough space.  

 •  T-tubules running at the border of the I and A bands, where 
the tubule radii are in the range of 20–40 nm, and they 
should cover 60% of the segments of the c-graphs.  

 •  The distance between the sarcolemma and the c-graph outer 
edges is 150 nm.    
 These attributes are clearly comprehensible to general users; 

however, within the MDL configurations a user has to specify 
also the basic geometrical parameters such as skeleton sizes or 
the sizes of blending areas. Besides, the  cell_model_generator  tool 
involves a set of hidden parameters regarding implicit modeling, 
which cannot be adjusted by an unacquainted user. These inner 
parameters have been tuned by the developer specifically for 
modeling of striated muscle cells. 

 Now, by having the organelle parameters specified, the user 
appends the corresponding tags to the MDL configuration file 
 “modelA” . The resultant MDL configuration is as follows: 

 < MDLconf   name =”modelA”> 
 < data   length =”1770”  sarcNum =”4”  iBandFract =” 

0.59”  aBandFract =”0.40”  zLineFract =”0.01”/> 
 < cgraph   file =”../mp/mp22/mp_22_4.txt” 

 aBandMod  =”50”  iBandMod =”70”  zBandMod =”70” 
 alterMin =”5”  alterMax =”10”  iBandScale-
Min =”2.95”  iBandScaleMax =”3.02”  aBandScale-
Min =”3.07”  aBandScaleMax = ”3.14”/> 

 < sarc   offset =”150”/> 
 < mitch_IBandT0   prob =”0.4”  minLength =”100” 

 maxLength =”200”  minSize =”40”  maxSize =”80” 
 longVar = ”30”/> 

 < mitch_ABandT0   prob =”0.1”  minLength =”150” 
 maxLength  =”250”  minSize =”60”  maxSize =”100” 
 longVar =”100”/> 

 < t_tubule_hIA   prob =”0.6”  minSize =”16”  max-
Size  =”20”/> 

 < srA   space =”110”  spaceEps =”40”  minSize =”15” 
 maxSize =”20” blendSize=”1”  blendImpact =”0”/> 

 < srI   space =”110”  spaceEps =”40”  minSize =”15” 
 maxSize =”20”  blendSize =”1”  blendImpact =”0”/> 

 < /MDLconf > 
 Here, the < sarc ../> tag specifies the sarcolemma with the 

offset attribute specifying the basic distance between the c-graph 
and the control polygon of sarcolemma. 

 The < mitch_I(A)BandT0 …/> tag defines the occurrence 
of the I(A) band mitochondria with attributes  prob  specifying the 
probability of occurrence used in creation of the skeleton,  min-
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Length  and  maxLength  specifying the allowed sizes of the 
longitudinal elliptic shape,  minSize  and  maxSize  defining 
the permitted transversal elliptic shape thicknesses, and  longVar  
corresponding to maximal allowed longitudinal deviation within 
the skeleton location. 

 The < t_tubule_hIA …/> tag defines the occurrence of 
t-tubules that are created at the I/A band interfaces; the prob 
attribute represents the probability of occurrence of the t-tubule 
within the c-graph, and the  minSize  and  maxSize  specify the 
allowed interval of t-tubule radii. 

 The < srA, srI, …/> tags define the sarcoplasmic reticu-
lum. Here, the attributes describe the basic SR elements – seeds, 
their spacing ( space ), spacing variation ( spaceEps ), permitted 
dimensions ( minSize ,  maxSize ), and the amount of blend-
ing material ( blendSize ,  blendImpact ) that smoothly joins 
the longitudinal SR tubes with terminal cisterns. 

 Importantly, all dimensions (size, length, etc.) are given in 
nm, and the relative ratios and probabilities are given in fractions. 
The aforementioned MDL configuration was stored in a text file 
mdl.mcc for further use.  

      Now, to be able to use the MDL configuration file by the cell 
generator tool, the configurations in the file have to be wrapped 
by the XML syntax. Here, the user can specify additional require-
ments starting with the cellJob tag, which, e.g., enables to 
specify the number of models to be generated per single configu-
ration, the number of custom lookups per single model, and the 
precision of volume and surface area computations. The follow-
ing example illustrates usage of the cellJob tag: 

 < cellJob   name = ” cellX0” scriptType=”1”  npV  
=”1000” npS=’100000’> 

 < povray   zoomFactor = ” 1.2” camRotX= ” 60” cam-
RotY= ” 150”  camRotZ =”20”  suffix =”y150a”> 

 < clip   id =”SARC”  type = ” 0”  v1 = ” 0.4”  v2 = ” 0.4” 
 v3 = ” 0.5”  v4 = ” 1”  v5 = ” 0”  v6 =”0”/> 

 < povray > 
 < povray   zoomFactor = ” 0.9”  camRotX = ” 60”  cam-

RotY = ” 150”  camRotZ =”0”  suffix =”y150b”/> 
 < conf   file =”mdl.mcc”  prefix =”X0” 

 conf =”modelA”  count =”80”/> 
 < /cellJob > 
 The attributes in the individual tags are as follows: 
 The < cellJob …> tag is the topmost element. The  name  

attribute identifies the name (cellX0) of the job; the  script-
Type  attribute defines the type (1 – for Grids, 2 – for Linux, and 3 
– for Windows) of the output scripts that perform VSD estimation 
for each generated cell model. The  npV  and  npS  attributes repre-
sent the precision of VSD estimation, i.e., the number of counting 
points per each organelle, used in the numerical integration. 

3.2. Starting the Model 
Generation
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 The < povray …> tag defines POV-ray visualization files  (41)  
for each generated model; e.g., a single tag instance corresponds 
to a single output POV-ray file. The  zoomFactor, camRotX, 
camRotY , and  camRotZ  represent the basic camera settings 
used for visualization of the model. The suffix attribute defines 
the string appended to the resultant POV-ray file name. 

 The < clip …> tag is an optional tag, which specifies the 
organelle classes that are intended to be clipped off in the output 
POV-ray files. The  type  attribute defines the applied clipping 
primitive (0 – cube or 1 – plane) specified in 3D space by a set of 
parameters  v1 ,  … ,  v6 . 

 The < conf …> tag is required by the MDL configuration. 
The file attribute specifies the file, from which the MDL con-
figuration, labeled by the conf attribute, will be processed. The 
output cell (XISL) files will be prefixed by the prefix attribute. 
The count attribute defines the number of models requested to 
be generated by this MDL configuration. 

 By storing this syntax in the file cellFile.jcc, the pro-
cedure of the cell model generation (cellJob) can be executed 
by the command line statement “cellJob cellFile.jcc 
jobX0.” For instance, by executing the model generator on the 
presented input script, the output files will include 80 cell (XISL) 
models, 160 POV-ray files (two per each model), and 80 script files 
that will compute VSDs. Typically, all models and associated files 
are created by a desktop PC in few seconds. The user can attach 
additional MDL configurations using the < conf …/> tag.  

           The first aspect that corresponds to the model fidelity is derived 
from model visualization. The main purpose of visualization is to 
allow users to ascertain the fidelity of the model, i.e., the archi-
tecture of the cell, the topology, appearance, shape and size of 
organelles, the proportions among them, etc. In other words, the 
plausibility of the cell structure (i.e., correct understanding and 
MDL implementation) can be assessed. 

 Because of the stochastic nature of model generation and/or 
due to wrong implicit surface behavior, some errors in the model 
may arise. The SR or mitochondria may be generated with breaks 
or penetrating each other in some cases. We solved this by design-
ing the underlying skeletons in a way that minimized collisions of 
organelles. In the case of SR, the underlying skeleton is pushed to 
the nearest myofibril and the mitochondrial skeleton is shifted in 
the opposite direction. Nevertheless, a problem may still arise when 
the input MDL parameters produce too narrow intermyofibrillar 
free spaces and thus preclude translation of underlying skeletons. 

 To provide for optimal inspection of the model, either to eval-
uate its fidelity or to reveal its failures, or for impressive model pres-
entations, we equipped the PSE-SBM system with several model 
visualization tools, namely, the high-quality ray-tracing technique 

3.3. Model Inspection 
and Verification

3.3.1. Visual Inspection
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for representation of implicits, the interactive polygonal model 
preview for boundary inspection, and the interactive volumetric 
rendering technique for volumetric representation. The basic rep-
resentation is the implicit one, in which the models are initially 
generated. To convert the implicit cell model to boundary or 
volumetric representation, one can use the  cell_converter  
software tool, which takes as an input a special file specifying the 
XISL cell model and the procedure for model sampling. 

 In implicit representation, each object is represented by an 
implicit function that unequivocally separates the interior and the 
exterior of the object. It is still a challenge to render such objects 
directly utilizing only the enumeration of implicit functions. Direct 
rendering of implicit surfaces can be achieved by means of the 
ray-tracing technique, which is computationally demanding and 
unsuitable for interactive applications. Nevertheless, the XISL 
package enables users to render implicit surfaces employing the 
ray-tracing method by means of the generated POV-ray files, which 
can be edited according to custom demands in a POV-ray editor. 
Technically, the list of XISL implicits, written down in POV-ray 
file, is wrapped by a special syntax. The POV-ray tool is suitable for 
rendering of final high-quality images ( see   Figs.    3   and   5  ). 

 Objects defined by implicit functions are usually approxi-
mated by boundary models that can be interactively rendered 
( Fig.    6  ). In boundary representation, objects are defined by a 
set of triangles that approximate the implicit surface. The  cell_
converter  tool includes adaptive reduction of the number of 
triangles to maximize performance while maintaining the surface 

  Fig. 6 .    An interactive preview of a cell model using model triangulation. The user can 
adjust the number of visible triangles in order to obtain faster rendering ( LOD  level of 
detail). In each LOD, the result can be stored in the  ply  format, which can be subse-
quently used as an input of other graphical applications       .
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fidelity. Such triangular meshes can be stored in the  ply  format 
 (48) , which is well supported by standard 3D graphic editors.  

 The model can be also represented as a 3D sampled volume, 
where each 3D point represents a scalar value. This is a practi-
cal format for spatiotemporal simulations of various kinds. The 
 cell_converter  tool allows creation of such discretely sampled 
3D volume data. The user should specify intensities to be assigned 
to each organelle class, resolution, and dimensions of the volume. 
Here, we employ the  f3d  format  (49)  capable of storing 3D Car-
tesian, regular and rectilinear data, and supporting different kinds 
of voxel types. Moreover, a set of tools is available for manipula-
tion and rendering of such data. The volumetric cell models can 
be inspected by means of  f3dviewer  and  f3dvr  tools. The  f3dvr  
tool is a sophisticated application for interactive rendering of 3D 
volume data. It provides for several rendering techniques cover-
ing calculation of lighting models or suppression of homogene-
ous regions in the data set. The data are displayed in the form of 
artificially created slices generated in parallel through the volume 
and subsequently blended together. Furthermore, the application 
allows distinguishing between objects defined by distinct scalar 
values (intensities), by means of the so-called transfer functions. 
The transfer functions allow defining color and transparency of 
objects, and emphasizing or suppressing selected objects. However, 
it is not always easy to classify the structures only by their inten-
sities. To enhance the classification, multidimensional transfer 
functions have been developed that additionally utilize gradient 
magnitude, curvature, or other attributes of input intensities. 

 In the case of cell models we benefit from the fact that they 
are created in silico and, therefore, the individual organelle types 
can be assigned nonoverlapping intensities ( Fig.    7  ). With respect 
to this fact, we have developed a rendering technique ( iso mode ), 
which combines nearest-neighbor filtering and trilinear filtering 
with utilization of one-dimensional transfer functions. A transfer 
function editor window enables users to draw curves represent-
ing transfer functions that specify the resultant red, green, blue, 
and opaque rendering ingredients ( Fig.    8  ). The convenient trans-
fer functions can be saved for later use. Some transfer functions 
have been pregenerated for fast rendering of individual organelle 
classes and their combinations.    

      Models generated by the PSE-SBM system can include hundreds 
to thousands of organelles. The important criteria that assess the 
model credibility are the VSD characteristics. For computation of 
VSDs, evaluation scripts, pregenerated in the cell model genera-
tion step, have to be run. As an example, distributions of volume 
densities and surface densities computed from 80 models are pre-
sented in  Figs.    9   and   10  . This computation is an excessively time-
consuming process depending on the amount of created organelles 

3.3.2. Model Inspection 
from the Stereological 
Point of View



  Fig. 8 .   The transfer function editor window.  Left  – on the  x  axis are intensities and on the  y  axis are color and opaque 
values. The color and opaqueness is defined for each intensity. The highest value (255) corresponds to total opaqueness 
and the lowest (0) value corresponds to total transparency. Here, a user wants to display t-tubules, defined in the inten-
sity interval <60, 110>, and mitochondria, defined in the intensity interval <120, 160>, and sets the rest values (i.e., 
intensity ranges <0, 59>, <111, 119>, and <161, 255>) to 0 and the t-tubule and mitochondrion intensities to visually 
suitable values, e.g., 255. In practice, it is also convenient to adjust the curves defining the colors of colored models       .

  Fig. 7.    The interactive presentation of the model by the  f3dvr  tool that enables to inspect the organelles of interests 
in a 3D volumetric representation       .
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and the required precision. In this example, each VSD estimation 
took approximately 20 min per model for npV = 1,000 and npS 
= 100,000.   

 It may happen that the user is not satisfied with the resulting 
VSDs, that is, with the created models. There are several possi-
bilities how to change the MDL configurations in order to obtain 
the required VSDs. For instance, let us assume that the volume 
density of mitochondria in the generated models is too low. To 
increase their volume density, i.e., their relative volume, the user 
can choose from the following possibilities:
   1.    Make the input c-graph thinner by setting the attributes 

 iBandScaleMin  and  iBandScaleMax  in the < cgraph …/> 
tag to lower values, which results in reduction of the global 
cell dimensions. However, this adjustment also raises VSDs of 
the other organelles.  

   2.    Increase the probability (the  prob   attribute in the < mitch_I
(A)BandT0 …/> tag) of mitochondria occurrence. Note 
that too big a probability may generate mitochondria very fre-
quently, and thus make their occurrence unrealistic.  

  Fig. 9     The distribution of volume densities obtained from 80 models generated from the same MDL configuration. Each 
graph represents histogram of volume densities per organelle class: ( a ) myofibrils, ( b ) mitochondria, ( c ) t-tubules, ( d ) 
sarcoplasmic reticulum       .
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   3.    Increase one or both of the mitochondrion dimensions ( length, 
size ). Nevertheless, for too large values, the cell generator 
may not find suitable skeletons of the proper length, which 
will result in a small number of large mitochondria.     
 Therefore, the recommended way to solve this problem is to 

adjust a combination of all three parameters. Nevertheless, a user 
can produce several new MDL configurations as an input, where 
each of them corresponds to one of the possible mitochondrion 
adjustments. Such MDL configurations, wrapped by the jcc syn-
tax, are then repetitively processed by the cell generator. It is rec-
ommended to label models created from multiple configurations 
differently for easy recognition by means of the prefix attribute in 
the < conf …> tag. 

 Stereology is traditionally used to quantify geometric properties 
of cell organelles on the basis of 2D images prepared by electron 
microscopy  (50) . However, such stereological experiments might 
involve errors of different origin that are difficult to assess. Now, 
with credible synthetic models at hand, testing of stereological 

  Fig. 10 .   The distribution of surface densities obtained from 80 models generated from the same MDL configuration. Each 
graph represents histogram of surface densities per organelle class: ( a ) myofibrils, ( b ) mitochondria, ( c ) t-tubules, ( d ) 
sarcoplasmic reticulum       .
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hypotheses in silico is possible. Randomly or specifically oriented 
sets of sections through the model can be produced by the PSE-
SBM system and used for stereological analysis by exactly the same 
method as in the case of real cells. We applied this approach to 
assessment of the error of volume and surface density estimation 
in fast skeletal muscle cells performed by students of biology. It 
was found that the major source of errors resided in problematic 
assignment of specific loci to a single organelle, as in relatively 
thick sections it was often hard to distinguish between them.   

      Computation of the VSDs is a very time-consuming process 
requiring up to several hours on a single desktop computer. 
Therefore, we took the advantage of the grid environment  (7)  
that, in addition to the large computational power, offers addi-
tional benefits. The task can be specified interactively via a web 
interface that is also used as a portal to the grid environment. 
The web interface and the GUI portal ( Fig.    11  ) help to transfer/
translate requests to the PSE-SBM. Moreover, through the web 
portal, the user can observe the state of running jobs and see the 
intermediate results (models) in the form of rendered images and 
evaluated stereological parameters. The crucial task is to retrieve 
the models of interest even if the system contains hundreds of 
computed models. Here, we make use of a specialized grid service, 

3.4. Grid Version

  Fig. 11.    A screenshot demonstrating the PSE-SBM portal GUI that enables to prepare, submit, and verify models. File 
a0_st_data.txt contains the evaluated VSDs for each organelle class ( the bent arrow ); file a0.xml includes 
XISL definition of the organelles ( left arrow ), and file a0_2048_p4.bmp is one of rendered images per the a0 model 
( right arrow ). The remaining files, visible in the list on the left side, were generated automatically       .
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which is capable of registering cell models, their estimated VSDs, 
and additional parameters in the system. A user then enters a 
query containing descriptive data of interests and executes it 
against the system. Plausible models can be then directly down-
loaded to the user’s local machine. The web interface provides 
users with download and all presented tools for sophisticated 
model utilization (polygonization, exporting to other formats, 
interactive rendering, etc.).   

      The modeling approach we presented here was stimulated by the 
need to verify the results of stereological measurements on muscle 
tissue, to develop a kind of “golden standard” that would be 
helpful for quantitative morphology. The final result promises 
more general and wider use worth of further exploration. Here, 
we summarize the most tempting and promising uses: 
  For biologists 

  •  To test biological hypotheses: Is the architecture well under-
stood? Can it provide for the observed images and the stud-
ied function? Are the stereological and morphometric data 
reliably measured by the selected method?  

 •  Comparative analysis of cells and tissues in phylogeny and 
ontogeny, in health and disease, in stressed or relaxed state, etc .  

 •  To assist research and teaching in biology as a tool for reporting 
and presenting complex results in a concise form.  

 •  Presenting not only typical but also average and specific 
structures and architectures of the studied cells and tissues.  

 •  Easy generation of numerous variants and views of studied 
objects.    

  For informaticians, theoreticians, and biophysicists 
  •  Developing and testing new approaches for modeling and 

visualization of complex 3D scenes  
 •  Extension by functional models related to real cell structures  
 •  Development of principles for modeling of structures 

growing and adapting in time and space    
 The list is long and ambitious. We hope that it is also inspiring.       

      

 This work was made possible due to the support of APVT 
51-31104, APVV-20-056105, and VEGA 2/6079/26. The 
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manuscript.  
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      Chapter 11

 Location Proteomics: Systematic Determination of Protein 
Subcellular Location       

     Justin   Newberg      , Juchang   Hua,       and Robert F.   Murphy  

        Summary 

 Proteomics seeks the systematic and comprehensive understanding of all aspects of proteins, and location 
proteomics is the relatively new subfield of proteomics concerned with the location of proteins within cells. 
This review provides a guide to the widening selection of methods for studying location proteomics and 
integrating the results into systems biology. Automated and objective methods for determining protein 
subcellular location have been described based on extracting numerical features from fluorescence micro-
scope images and applying machine learning approaches to them. Systems to recognize all major protein 
subcellular location patterns in both two-dimensional and three-dimensional HeLa cell images with high 
accuracy (over 95% and 98%, respectively) have been built. The feasibility of objectively grouping proteins 
into subcellular location families, and in the process of discovering new subcellular patterns, has been 
demonstrated using cluster analysis of images from a library of randomly tagged protein clones. Generative 
models can be built to effectively capture and communicate the patterns in these families. While automated 
methods for high-resolution determination of subcellular location are now available, the task of applying 
these methods to all expressed proteins in many different cell types under many conditions represents a 
very significant challenge.  

  Key words:   Location proteomics ,  Subcellular location trees ,  Subcellular location features ,  Fluores-
cence microscopy ,  Pattern recognition ,  Cluster analysis ,  Generative models ,  CD-tagging ,  Systems 
biology .    

 A critical aspect of the analysis of a proteome is the collection of 
detailed information about the subcellular location of all of its 
proteins. Since subcellular location can change during the cell 
cycle and in response to internal (mutation) or external (drugs, 
hormones, metabolites) effectors, the acquisition of sufficient 
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information for even a single protein can be challenging. Two 
strategies are possible: experimental  determination  and compu-
tational  prediction . 

 The former approach involves assigning class labels to data 
using automated learning methods. Depending on the applica-
tion, classes can take on different meaning. Typically in location 
proteomic studies, various proteins or organelles define classes. If 
the classes of the data samples are known (in other words, if the 
data are class-labeled), then supervised learning approaches can 
be used, wherein classifiers are trained to distinguish between the 
classes, and new data can be automatically labeled as belonging 
to these classes. If data is not class labeled, then unsupervised 
learning approaches can be used, typically to group data by simi-
larity and to identify important clusters in a dataset. In location 
proteomics, these clusters can correspond to important protein 
or organelle patterns. 

 A range of approaches to predicting location from sequence 
have been described, including detection of targeting motifs, 
analysis of amino acid composition, and modeling based on 
sequence homology  (1–  6) . What is clear is that all subcellular 
location prediction systems suffer from deficiencies in the train-
ing data: a limited number of proteins with known locations  and  
insufficiently detailed descriptions for those that have been deter-
mined. This is because raw experimental data are converted into 
words that describe location, and both the process of assigning 
words and the limitations of the words themselves create loss of 
information. This is true even when standardized terms such as 
the Cellular Component terms from the Genome Ontology  (7)  
are used. (Of course, many determinations of location are done 
by microscopy at low magnification and therefore the resolution 
of the imaging becomes the limiting factor.) There is thus an 
urgent need to collect new protein subcellular location data with 
high resolution. We first consider approaches using visual assign-
ment of location. 

 Such efforts can be characterized along three dimensions: 
whether or not the approach used involves a selective  screen  for 
a particular location, whether or not the proteins to be analyzed 
are chosen  randomly , and whether or not the resolution of the 
determinations is at or near the limit of optical microscopy. Tate 
et al.  (8)  used a gene trap approach to screen for proteins local-
ized in the nucleus of mouse embryonic stem cells. Rolls et al. 
 (9)  used a cDNA library fused with GFP to screen for proteins 
with nuclear envelope distributions. Similarly, Misawa et al.  (10)  
used a GFP-fusion cDNA library to identify 25 proteins showing 
specific intracellular localization. In contrast, Simpson et al.  (11)  
used N- and C-terminal GFP fusion of cDNAs to assign locations 
to more than 100 novel proteins in monkey Vero cells, while Jarvik 
et al.  (12)  used random genomic tagging (CD-tagging) to create 



 Location Proteomics 315

more than 300 GFP-expressing cell clones and assign locations. 
Huh et al.  (13)  created a even larger library of 6,029 yeast strains 
with GFP-tagged ORFs (open reading frames) to characterize 
the localization of yeast proteins. 

 While the vast majority of studies of protein location using 
fluorescence microscopy have employed visual interpretation of 
the resulting images, there have been efforts to bring automation 
to this process  (14–  23) . These have been based on work over the 
past decade demonstrating not only that computational analysis can 
be used to recognize  known  subcellular location patterns  (24–  30)  
but also that the accuracies achieved are equal to, and in some 
cases better than, those of visual analysis  (17) . 

 Images from many of these studies are publicly available. 
 Table    1   summarizes some of these and other studies and illus-
trates how they are different by design. In addition, Schubert 
et al.  (21)  have developed multiepitope ligand cartography, a 
robotically controlled immunofluorescence microscopy system 
that can capture as many as 100 distinct antibodies in the same 

 Table 1  
  Data collections relevant to location proteomics  

 Project 
 Species (cell 
type) 

 Number of 
proteins 

 Public 
access 

 Tagging 
method  2D/3D  Mag 

 Yeast GFP 
fusion 
localization 
database 

 Yeast  >4,000  yeastgfp.
ucsf.edu 

 cDNA c-ter-
minal GFP 
fusion 

 2D  100× 

 Human 
Protein 
Atlas 

 Human (>40 
tissue 
types) 

 >6,000  proteinatlas.
org 

 Immuno-
histochemical 
staining 

 2D  20× 

 CD-tagging 
database 

 Mouse 3T3  >100  cdtag.bio.
cmu.edu 

 Internal GFP 
fusion 

 3D  60× 

 GFP-cDNA 
localization 
project 

 Human 
(HeLa) 
and mon-
key (Vero) 

 >1,000  gfp-cdna.
embl.de 

 cDNA terminal 
GFP fusion 

 2D  63× 

 Protein 
subcellular 
location 
image 
database 

 Human 
(Hela) 
and mouse 
(3T3) 

 >100  pslid.cbi.
cmu.edu 

 Immunofluo-
rescence and 
genomic 
internal GFP 
fusion 

 2D/3D  100× + 60× 

 Cell centered 
database 

 Various  Various  ccdb.ucsd.
edu 

 Various  2D/3D  60×–40,000× 
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image sample, but collections of images from this approach are 
not yet publicly available.     

 This review briefly covers the process of data collection for 
determination of subcellular location, followed by a more detailed 
discussion of a range of automated methods for analysis of the 
resulting images. The large scale application of these methods 
over the next few years will help to address the need for large sets 
of proteins with well-characterized locations, and this in turn will 
further aid development of future systems capable of modeling 
and predicting subcellular location. 

 Perhaps the most common method for determining the subcellular 
location of a protein is to label the protein with a fluorescent probe 
and then to visualize the distribution of the protein within cells under 
a fluorescence microscope. We will limit our discussion to variations 
on this approach, and we will not consider alternatives such as cell 
fractionation followed by protein identification and quantitation. 
Such approaches have been described  (18,   20)  but are fundamen-
tally limited by the resolution of the fractionation step. 

 A typical fluorescence microscope consists of a light source 
such as an arc lamp or laser. Light passes through an excitation 
filter that allows only a specific wavelength through. Next, a 
condenser focuses the light onto the sample. This excites fluoro-
phores in the sample to emit higher wavelength light that passes 
through the objective and then an emission filter that removes 
any undesired wavelengths. Next, the emitted, filtered light hits 
the detector (a photomultiplier tube or CCD-camera) and is 
stored digitally as a grayscale image. Multiple filter sets and cor-
responding probes can be thus used to obtain multiple grayscale 
images, producing a multichannel image. 

 The various approaches to tagging a protein for fluorescence 
microscopy can basically be divided into those that tag native 
proteins with a fluorescent dye and those that modify the coding 
sequence of the protein to introduce a fluorescent group into the 
molecule (for review  see   refs.   9,   14) . 

 Native proteins are most commonly tagged in situ using anti-
bodies conjugated with a fluorescent dye, but fluorescent probes 
that can specifically bind to a protein, such as phalloidin bind-
ing to F-actin, are also used. However, these approaches cannot 
usually be applied to a living cell, since the cell membrane has to 
be made permeable for the probes to enter the cell; moreover, 
they also require antibodies or probes with appropriate specifi-
city, which make them hard to apply on a proteome wide scale. 

2. Acquisition of 
Protein Subcel-
lular Location 
Images
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Significant efforts to apply immunolabeling at the proteomic level 
have been undertaken, notably by the Human Protein Atlas (47). 

 Tagging of proteins by modifying their DNA sequence does 
not have the above disadvantages. This approach involves either 
modifying a coding sequence (cDNA) and then introducing this 
sequence into cells or modifying the genome sequence directly (in 
either a targeted or a random manner). One of the powerful ran-
dom tagging techniques is CD tagging  (14) . In this approach, the 
coding sequence of a green fluorescent protein (GFP) is inserted 
randomly into genomic DNA by a retroviral vector. Because the 
tagging happens to the genomic DNA, the modified protein keeps 
its original regulatory sequences and expression level. This is in 
contrast to cDNA modification, in which a constitutive, highly 
expressed promoter is usually used and thus the expression level 
of the protein is typically higher than normal. By repeatedly per-
forming random tagging on cells of identical lineage, most of, or 
eventually all of the proteins within a given cell line can be tagged 
and have their subcellular locations determined. 

 As mentioned earlier, systems for recognizing subcellular patterns 
in a number of cell types have been developed. The heart of each 
of these systems is a set of numerical features that quantitatively 
describe the subcellular location pattern in a fluorescence micro-
scope image. These features, termed subcellular location features 
(SLFs), are designed to be insensitive to the position, rotation, 
and total intensity of a cell image  (29) . The only requirement for 
the calculation of these SLFs is that each input image contain a 
single cell. This requirement can be met in multiple cell images 
by segmenting the images into single cell regions either manu-
ally or automatically, using approaches such as modified Voronoi 
tessellation  (28) , watershed  (26,   27) , levelset methods  (30) , and 
graphical model methods  (29) . 

 A specific nomenclature has been used to enable unambigu-
ous references to the features used in a particular study. Sets of 
features are referred to using the prefix “SLF” followed by a set 
number. Individual features are referred to by the set name fol-
lowed by a period and its index within the set. For example, SLF1 
refers to the first set of features, and SLF1.2 refers to the second 
feature in this set. We briefly summarize the various types of SLFs 
below. 

  Morphological features (SLF1.1–1.8) . The high intensity blobs of 
pixels in fluorescence microscope images might be the first thing 
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a cell biologist looks at when trying to resolve subcellular loca-
tion patterns. Morphological features mainly describe the charac-
teristics of these blobs, or  objects . An object is defined as a group 
of touching (connected) pixels that are above a threshold (the 
threshold is determined automatically). Eight morphological fea-
tures have been defined  (15)  to describe the number, size, and 
relative position of the objects. 

  Edge features (SLF1.9–1.13) . The edge features are calculated 
by first finding edges in the fluorescence image. These edges can 
be thought of as consisting of positions that have low intensity 
in one direction and high intensity in the opposite direction. The 
number of above-threshold pixels that are along an edge, the total 
fluorescence of the edge pixels, and measures of the homogeneity 
with which edges are aligned in the image are especially useful 
for characterizing proteins whose patterns are not easily divided 
into objects (such as cytoskeletal proteins). Proteins showing a 
radiating (star-like) distribution (such as tubulin) have low edge 
homogeneity, while those showing aligned fibers (such as actin) 
have higher edge homogeneity  (15) . 

  Geometric features (SLF1.14–1.16) . The starting point for 
these features is determination of the convex hull of the cell, 
which is defined as the smallest convex set which surrounds all 
above threshold pixels. Three features have been defined using 
the convex hull: the fraction of the area of the convex hull that is 
occupied by above threshold pixels, the roundness of the convex 
hull, and the eccentricity of the convex hull  (15) . 

  DNA features (SLF2.17–2.22) . The central landmark in 
eukaryotic cells is the nucleus, and thus having a parallel image 
of the DNA distribution of a cell is quite valuable. When this is 
present, a set of features can be calculated to measure quantities 
such as how far on average protein objects are from the nucleus, 
and how much overlap exists between the protein and DNA dis-
tributions  (15) . 

  Haralick texture features (SLF3.66–3.78) . For patterns that 
are not easily decomposed into objects using thresholding, meas-
ures of image  texture  are often very useful. Texture features are 
calculated as various statistics defined by Haralick  (24)  that sum-
marize the relative frequency with which one gray level appears 
adjacent to another one. Adjacency can be defined in the hori-
zontal, vertical, and two diagonal directions in two-dimensional 
(2D) images. The texture features are averaged over these four 
directions to achieve rotational invariance. These features were 
first introduced for classification of cell patterns in the initial 
demonstration of the feasibility of automated subcellular pattern 
analysis  (25) . 

  Zernike moment features (SLF3.17–3.65) . Like the con-
vex hull and texture features, the rationale behind using these 
moment features is to capture general information about the dis-
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tribution of a protein in a rotationally invariant way. Because the 
Zernike moments are defined on the unit circle, a cell image is 
first mapped to the unit circle using polar coordinates, where the 
center of a cell is the origin of the unit circle. Then, the similar-
ity between the transformed image and the Zernike polynomials 
are calculated by conjugation. By using the absolute value of the 
resulting moments, the features become rotation invariant  (25) . 

  Skeleton features (SLF7.80–7.84) . The goal behind these fea-
tures is to characterize the shape of the objects found by thresh-
olding. This is done by first obtaining the skeleton of each object 
by a recursive erosion operation on the edge. Each skeleton 
is then described by features such as its length and degree of 
branching, and these are averaged over all objects to give features 
of the cell as a whole  (17) . 

  Daubechies 4 wavelet features (SLF15.145–15.174) . The prin-
ciple behind wavelet decomposition is to measure the response 
of an image to a filter (a wavelet) applied in the horizontal, verti-
cal, and diagonal directions. Wavelet decomposition can be per-
formed recursively, with each pass measuring the response of the 
filter at a lower frequency  (31) . Thus the average energy (sum of 
squared intensities) at each level of decomposition of an image 
using a wavelet function provides (among other things) informa-
tion on the frequency (size) distribution of fluorescent objects 
but without the need for thresholding. 

  Gabor texture features (SLF15.85–15.144) . These features are 
calculated by convolving an image with a 2D Gabor filter and cal-
culating the mean and standard deviation of the resulting image 
 (32) . By using different parameters to generate the Gabor filter, a 
total of sixty Gabor texture features can be calculated  (33) . 

 In a series of studies, the SLFs described above have been applied 
to a set of 2D HeLa cells images showing the distribution of nine 
proteins and a parallel DNA-binding probe  (15) . The nine pro-
teins that were labeled by immunofluorescence are located in the 
endoplasmic reticulum (the protein p63), the Golgi complex (the 
proteins giantin and gpp130), lysosomes (LAMP2), endosomes 
(transferrin receptor), mitochondria, nucleoli (nucleolin), and 
cytoskeleton (beta-tubulin and F-actin). These protein classes 
which represent the major organelles in a cell were combined 
with a DNA-stained nucleus class selected from the parallel DNA 
images to form a 10-class subcellular location dataset. Example 
images are shown in  Fig.    1  . To evaluate the performance of an 
automated classifier, 90% of the images in each class were used to 
train that classifier and then its accuracy was obtained by testing 
it with the remaining 10% of the images. The process was then 
repeated nine additional times using different training and test-
ing sets under the constraint that each image appears in a test set 
only once (this approach is termed tenfold cross-validation), and 

3.3. Classification of 
2D Images
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  Fig. 1 .   Representative images of 2D HeLa dataset. These images have been preprocessed to remove background fluores-
cence and pixels below threshold. Images show the subcellular localization of ( A ) an ER protein, ( B ) Golgi protein giantin, 
( C ) Golgi protein Gpp130, ( D ) lysosomal protein LAMP2, ( E ) a mitochondrial protein, ( F ) nucleolar protein nucleolin, ( G ) 
filamentous actin, ( H ) transferin receptor, ( I ) cytoskeleton protein tubulin, and ( J ) DNA . Scale bar = 10  μ m. Reprinted from 
 ref.  15  as allowed by Oxford University Press       .
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results from each repeat were averaged to get an overall classifica-
tion accuracy. When the image set was first collected, an accuracy 
of 83% was obtained using a neural network classifier and a set of 
37 SLFs  (15) . Through the use of additional features and clas-
sifiers over the past few years, the accuracy on this dataset has 
risen to 92% for a majority-voting ensemble classifier using a set 
of 47 SLFs  (33) . These results are shown in  Table    2  . Even better 
results have been obtained on this dataset using a multiresolution 
classification scheme that achieved an accuracy of 95%  (34) . The 
automated systems are able to distinguish two Golgi proteins, 
GPP130 and giantin, which have been shown to be very hard to 
discriminate by visual inspection, as shown in  Table    3    (17) . A 
comparison of computer ( Table    2  ) and human ( Table    3  ) clas-
sifications is shown in  Fig.    2    (35) .             

 Although most adherent cultured cells are very thin compared 
to their diameter in the plane of the substrate, a high resolution 
2D image (which typically samples from only 0.5 to 1  μ m in the 
axial direction) represents only a fraction of the compartments 
that are present in the three-dimensional (3D) cell. By taking 2D 
confocal microscope images at a series of depths within a cell, 
we can obtain a 3D image of a cell. Sampling in the axial direc-
tion is done typically every 0.5–2  μ m, but depends on the micro-
scope and the experimental design. Three types of 2D SLFs have 

3.4. SLFs for 3D 
Images

 Table 2  
  Confusion matrix of 2D HeLa cell images using optimal majority-voting ensemble 
classifier with feature set SLF16  

 DNA  ER  Gia  Gpp  Lam  Mit  Nuc  Act  TfR  Tub 

 DNA   98.9   1.2  0  0  0  0  0  0  0  0 

 ER  0   96.5   0  0  0  2.3  0  0  0  1.2 

 Gia  0  0   90.8   6.9  0  0  0  0  2.3  0 

 Gpp  0  0  14.1   82.4   0  0  2.4  0  1.2  0 

 Lam  0  0  1.2  0   88.1   1.2  0  0  9.5  0 

 Mit  0  2.7  0  0  0   91.8   0  0  2.7  2.7 

 Nuc  0  0  0  0  0  0   98.8   0  1.3  0 

 Act  0  0  0  0  0  0  0   100   0  0 

 TfR  0  1.1  0  0  12.1  2.2  0  1.1   81.3   2.2 

 Tub  1.1  2.2  0  0  0  1.1  0  0  1.1   94.5  

 The overall accuracy was 92.3%. Data from  ref.   33  
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 Table 3  
  Confusion matrix of human classification of images from 
2D HeLa dataset  

 DNA  ER  Gia  Gpp  Lam  Mit  Nuc  Act  TfR  Tub 

 DNA   100   0  0  0  0  0  0  0  0  0 

 ER  0   90   0  0  3  6  0  0  0  0 

 Gia  0  0   56   36  3  3  0  0  0  0 

 Gpp  0  0  53   43   0  0  0  0  3  0 

 Lam  0  0  6  0   73   0  0  0  20  0 

 Mit  0  3  0  0  0   96   0  0  0  0 

 Nuc  0  0  0  0  0  0   100   0  0  0 

 Act  0  0  0  0  0  0  0   100   0  0 

 TfR  0  13  0  0  3  0  0  0   83   0 

 Tub  0  3  0  0  0  0  0  3  0   93  

 The overall accuracy was 83%. The major confusion came from the two 
Golgi protein, giantin and Gpp130, which were hard to distinguish by 
human inspection. Data from  ref.   17  

  Fig. 2 .   Comparison of automated and visual classification of subcellular location pat-
terns in 2D images of HeLa cells. Each  dark square  shows the classification accuracy 
of a specific pattern, while the  solid line  indicates equal performance between the two 
approaches. While six of the patterns are classified equally well by both, the computer 
performs significantly better on three of the patterns (two Golgi and one lysosomal). 
Reprinted from  ref.   35  with permission (© 2004 IEEE)       .
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been extended to three dimensions so that they can capture some 
information which is not available in 2D images. Results from 
automated classification using these 3D SLFs show improvement 
over the 2D SLF. Brief descriptions of these 3D features are pre-
sented below. 

  Morphological features (SLF9.1–9.28) . The 3D morpho-
logical features are direct extensions of their 2D counterparts. 
Objects are found in 3D and size is replaced by volume. More-
over, distance features are decomposed into two components, 
one situated in the plane of the image and the other axially 
through the stack. Similar to the case for 2D images, a few 3D 
features (SLF9.9–9.14) can be defined relative to a parallel 
DNA image  (27) . 

  Edge features (SLF11.15–11.16) . The number of pixels along 
the edges and the total fluorescence of these pixels are calculated 
on every slice of the 3D images and then summed up. The frac-
tions of these two values over the entire 3D image are used as 3D 
edge features  (16) . 

  Haralick texture features (SLF11.17–11.42) . The Haralick 
texture features can be extended to 3D images by considering 
all 13 directions in which a pixel can be considered adjacent to 
its neighbor pixels in 3D space (rather than the four directions 
in 2D space). The average value and the range of the 13 texture 
statistics over all 13 directions are used, yielding 26 features. Har-
alick texture features require a choice of image resolution and 
gray level bit depth to optimize the performance of recogniz-
ing patterns. Experiments revealed that 0.4  μ m per pixel resolu-
tion and 256 (8 bit) gray levels were the best combination for 
recognizing subcellular patterns in the 3D HeLa image dataset 
described below  (36) . 

 The 3D SLFs have been applied to a set of 3D HeLa images of 
the same nine proteins as in the 2D HeLa image collection  (27) . 
A three-laser confocal microscope was used to record images 
of cells labeled simultaneously with three different probes (the 
images were collected in the Center for Biologic Imaging at the 
University of Pittsburgh with the kind assistance and support of 
Dr. Simon Watkins). In addition to probes for one of the nine 
targeted patterns, propidium iodide was used to stain DNA (after 
RNAse treatment), and a third probe was used to label total cell 
protein. The image of this third tag was used in combination with 
the DNA image to automatically segment images into single cell 
regions  (27) . 

 The first evaluation of automated classification of this data-
set used 28 morphological features, including 14 features which 
depend on the parallel DNA image. By using a neural network 
classifier, an overall accuracy of 91% was achieved  (27) . To deter-
mine how well classification could be performed without using a 

3.5. Classification of 
3D Images



324 Newberg, Hua, and Murphy

parallel DNA image, a new feature set SLF14 was created with 
14 DNA-independent morphological images, two edge features, 
and 26 Haralick texture features. An overall accuracy of 98% was 
achieved using features selected from this set  (36)  as shown in 
 Table    4  . The results are nearly perfect, and the extension from 
2D to 3D significantly increases the ability to distinguish the two 
Golgi proteins, Gpp130 and Giantin.  

 The classification results described above have shown the ability 
of the SLFs to distinguish major subcellular location patterns 
with a classifier trained on class-labeled images. This is super-
vised learning, in which the protein or location classes are known 
at the outset. In contrast, unsupervised learning tries to find an 
optimal way of dividing  unlabeled  images into distinct groups 
or clusters. In location proteomics, clustering methods are used 
to find the major subcellular location pattern groups for all pro-
teins across a proteome or large dataset. An optimal clustering 
on the location patterns of proteomes (finding subcellular loca-
tion families) can offer a fundamental framework for assigning 
locations to proteins. Such a framework is useful for many rea-
sons, one of which is because it can be used to automatically 
generate an ontology that effectively describes protein locations, 
and another of which is that each pattern (family) is tied to the 
images that defined it. 

3.6. Clustering of 
Subcellular Location 
Images

  Table 4  
  Confusion matrix of 3D HeLa images using neural network classifier with seven 
features selected from SLF17    

 DNA  ER  Gia  Gpp  Lam  Mit  Nuc  Act  TfR  Tub 

 DNA   98   2  0  0  0  0  0  0  0  0 

 ER  0   100   0  0  0  0  0  0  0  0 

 Gia  0  0   100   0  0  0  0  0  0  0 

 Gpp  0  0  0   96   4  0  0  0  0  0 

 Lam  0  0  0  4   95   0  0  0  0  2 

 Mit  0  0  2  0  0   96   0  2  0  0 

 Nuc  0  0  0  0  0  0   100   0  0  0 

 Act  0  0  0  0  0  0  0   100   0  0 

 TfR  0  0  0  0  2  0  0  0   96   2 

 Tub  0  2  0  0  0  0  0  0  0   98  

   The overall accuracy was 98%. Data from  ref.   36   
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 There are many different clustering algorithms and most of 
them require a similarity (or distance) function, which defines the 
way to calculate the similarity (or dissimilarity) of images in the 
feature space. Two well-known distance functions are Euclidean 
distance and Mahalanobis distance. Instead of unscaled Euclidean 
distances, which calculate the straight line distance in feature 
space between two images, standardized (or  z -scored) Euclidean 
distances, which are Euclidean distances calculated after normaliz-
ing each feature to zero mean and unit variance, can be used. The 
Mahalanobis distance takes into account the correlation between 
features by scaling the distance with the covariance. Standard-
ized Euclidean distance was shown to empirically produce the 
best agreement among different clustering algorithms applied to 
subcellular location images  (19) . 

 k-Means clustering is a well-known centroid-based algo-
rithm. Each data point is grouped into one of  k  clusters whose 
centroid is closest to it in the feature space. A centroid of a cluster 
is defined as the average feature vector of all the data points in 
that cluster. The starting centroids of the  k  clusters are randomly 
chosen from the data points or randomly generated. When a new 
data point is clustered into a certain cluster, the cluster centroid is 
updated accordingly. The process is repeated over all data points 
a few times until all the clusters converge. 

 To determine into how many groups the data should be clus-
tered, an Akaike Information Content (AIC) score can be calcu-
lated for many values of  k , the number of clusters. AIC measures 
the log-likelihood of the model penalized by the number of 
parameters of the model. A clustering result with small  k  and 
small variance of each cluster will have a relatively low AIC score, 
which means the clustering result is good. By varying  k  and com-
paring the AIC scores, an optimal  k  can be found  (37) . Bayesian 
Information Criterion can be used in place of AIC. 

 Unlike the k-means clustering algorithm, hierarchical clus-
tering does not depend on the choice of the number of clus-
ters. Initially, each of the data points is a cluster. The distances 
of all of the clusters are calculated pairwise and the closest two 
clusters are joined together. This is repeated until all are joined. 
The result of hierarchical clustering shows how the clusters 
converge to fewer but larger clusters. A dendrogram is usu-
ally used to show the result of hierarchical clustering. A den-
drogram generated from the SLFs of fluorescence microscope 
images has been termed a “subcellular location tree (SLT)” 
 (16) . A SLT tells us how close the subcellular location pattern 
of one protein is to that of another protein. In order to increase 
the robustness of hierarchical clustering, consensus methods 
can be used  (19) . In consensus clustering, a random half of 
images from each protein is used to build a hierarchical tree. 
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This is repeated and a consensus tree is built to show branches 
that are conserved  (38) . 

 A third clustering approach is based on the confusion matrix 
generated by a classifier. This approach starts with training a clas-
sifier to discriminate all different proteins regardless of the pos-
sibility that some proteins may share the same location pattern. If 
two proteins actually do share a same location pattern, the classi-
fier will not be able to tell them apart, which will then be shown 
in the confusion matrix as a large number in off-diagonal cells. By 
merging such confused proteins into a group, we can finally com-
bine proteins which share a location pattern and obtain clusters 
which can be well separated by the classifier  (19) . 

 As described before, the CD-tagging technique has been 
used to introduce an internal GFP domain in randomly targeted 
proteins in mouse 3T3 cells and to prepare a large library of 
subcellular location images  (12) . 3D images have been collected 
for these clones using spinning disk confocal microscopy. The 
consensus clustering based on k-means algorithm divided 90 
proteins into 17 groups, which represent the major location pat-
terns distinguishable by the current 3D SLFs. A SLT was also 
generated on the same dataset. The proteins assigned to the 
same branch of the SLT often visually appear to display similar 
patterns. On the other hand, the proteins with distinct location 
patterns are well separated. This SLT (shown in  Fig.    3  ) and the 
representative images of each leaf are available online at   http://
murphylab.web.cmu.edu/services/PSLID/      (19) . The whole 
process of building such a consensus SLT is automated and 
objective. The tree shows the major subcellular location patterns 
which are distinguishable in a collection of 90 different proteins 
in 3T3 cells as well as the hierarchical relations among these 
patterns. This clustering method is very promising to reveal the 
framework of protein subcellular location families when a com-
plete image collection is available for all the proteins in a given 
cell type. Recently, images of 188 randomly tagged clones have 
been clustered into 35 distinct location clusters  (23) .    In addition 
to being used to group proteins by their location patterns, clus-
tering of images has been used to group drugs by their effects 
upon subcellular patterns  (39) . 

 Thus far we have discussed analysis of independent single cell 
regions. However, most fluorescence micrographs contain mul-
tiple cells per image field, and there is useful information in the 
spatial distribution of cells. Moreover, these cells may be express-
ing extracellular proteins of interest, and may be influencing each 
other (through things like cell division, hormonal signaling, or 
mechanical coupling). 

 There are various approaches to dealing with multicell 
images. The simplest are applied to images containing only one 

3.7. Multiple Cell 
Image Analysis
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  Fig. 3 .   A consensus subcellular location tree generated from the 3D 3T3. image dataset. The SLF11 feature set and 
standard ( z -scored) Euclidean distance were used. The columns on the  right  of the tree show the protein name (if 
known), human observation of subcellular location, and subcellular location inferred from Gene Ontology (GO) annota-
tions. Proteins marked with a  double asterisk  have significantly different locations between the description of human 
observation and the inference from GO annotation. Reprinted from  ref.  19  under the terms of the Creative Commons 
License       .
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pattern in all of the cells. In one approach, field level features, 
which are independent of the number and rotation of cells in 
the image, are used to train classifiers. Huang and Murphy  (40)  
showed that such features could be used to give a 95% accuracy. 
Their work was done using a modified version of the 2D HeLa 
images described above, where they used multiple single cell 
regions to synthesize multicell images containing anywhere from 
2 to 6 cells. Following this work, Newberg and Murphy  (41)  
showed that field level features combined with voting classifica-
tion schemes can be used to effectively analyze protein patterns 
across human tissues. They trained a system that could distin-
guish between eight major organelle patterns with an 83% accu-
racy; this became 97% when only the most confident classification 
assignments were considered. 

 In another approach, information from surrounding cells is 
used to influence the classifier assignments for a local cell region 
in the image. This approach thus involves segmentation as a 
first step. If the image contains a homogeneous pattern (that is, 
all of the cells express the same protein pattern), simple voting 
methods can be used. These involve segmenting images, using 
SLFs in the classification of single cell regions, and then simply 
assigned the most common class label in the multicell image to 
all regions in that image. When multicell images contain more 
than one pattern (i.e., one group of cells expressing a tubulin 
pattern and another expressing a nuclear pattern), more complex 
voting schemes are needed. Chen and Murphy  (42)  showed that 
a graphical models approach can effectively deal with inhomo-
geneous data. This works by allowing close cell regions to have 
more influence than further away regions when deciding upon a 
class label for that region. Distances can be measured in both the 
physical space (where regions lie in an image) and feature space. 
Using synthetic multicell data (generated from the 2D HeLa 
image set), they were able to achieve greater than 90% accuracy 
in images containing up to four different types of patterns. This 
initial approach has been significantly improved and extended in 
subsequent work  (43,   44) . 

 The aforementioned methods consider protein subcellular loca-
tion patterns at the level of each cell (or group of cells) and do 
not capture any information about the individual components 
of the cellular pattern. When they are applied to a new mixture 
pattern which combines the components from several different 
basic patterns (i.e., the location pattern of a protein which exists 
in different organelles or compartments), the cell level recog-
nition methods tend to either generate a new location group 
(clustering) or simply be confused (classification). A more desir-
able result, however, might be a quantitative breakdown of how 
basic patterns compose the new mixed pattern  (45) . To this 

3.8. Object Type Rec-
ognition and Genera-
tive Models
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end, an object-based method was developed wherein object 
types are learned from several class-labeled images, and then 
they are used to recognize a new image pattern based on this 
pattern’s object type composition. In this two-stage learning 
problem, first objects are extracted from known image classes 
and the object types are learned by clustering on object features, 
termed subcellular object features (SOFs). Note that objects in 
an image are defined as a group of connected pixels that are 
above some threshold. In the second stage, features, which 
describe the object type composition as well as the relative posi-
tions of these objects, are extracted from new mixture patterns. 
These in turn can be used to train classifiers to recognize the 
new patterns  (45) . 

 This two-stage method has been applied to the previously 
described 2D HeLa dataset, which consists of ten different sub-
cellular location classes. AIC-based k-means clustering on the 
extracted SOFs indicated that there were 19 unique object types 
in the images. Next, from each image sample, 11 SOFs and two 
SLFs were extracted for each of the 19 object types. A classifier 
was trained using a subset of these features to distinguish between 
the ten classes. Classification accuracy using cross-validation was 
75%, and when the two Golgi apparatus proteins were merged, 
the accuracy increased to 82%. These results indicate that the 
SOFs and object types are informative for describing the protein 
patterns  (45) . 

 The utility of these features and object types is that they can 
be used to characterize mixture patterns. Zhao et al.  (45)  dem-
onstrated this using an unmixing approach to decompose mix-
ture patterns into components of fundamental patterns. A linear 
regression method was first applied. It assumes that the features 
of a mixture pattern are linear combinations of the features of 
fundamental patterns. The coefficients (weights) of each funda-
mental pattern can be solved from linear equations. However, 
even in fundamental patterns, the fractions of each object type 
are not fixed. They vary from cell to cell. In a second unmix-
ing approach, multinomial distributions were used to model the 
object type components of fundamental patterns and the fun-
damental pattern components of mixture patterns. The param-
eters of the model were then solved by the maximum likelihood 
method. 

 The object-type-based pattern recognition enables systems 
to recognize patterns composed of a mixture of components 
(object types) of the basic patterns. The learned object types can 
potentially be used to describe new subcellular location patterns 
or subtle protein location changes that might occur when cells 
are treated with drugs. More importantly, the recognition of the 
object types makes it possible to build generative models for pro-
tein location patterns. Zhao and Murphy  (46)  defined a method 
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that uses a three part model, with a nuclear, cell boundary, and 
protein component. Each component is learned separately, and 
the protein model uses object types at its core. In addition to cap-
turing a subcellular pattern, the models also capture the variance 
of the pattern between images. Thus, these generative models 
can be used to create sets of images. The power of these genera-
tive models is that they, unlike conventional microscopy which 
only allows for a few proteins to be specifically imaged at a time, 
potentially allow for the creation of images that contain as many 
data channels as there are proteins in a proteome, and thus, these 
models are expected to become an essential tool for location pro-
teomics and systems biology.     
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   Chapter 12   

 Model-Based Global Analysis of Heterogeneous 
Experimental Data Using  gfit        

     Mikhail K.   Levin  ,       Manju M.   Hingorani      , Raquell M.   Holmes    , 
  Smita S.   Patel , and      John H.   Carson    

  Summary 

 Regression analysis is indispensible for quantitative understanding of biological systems and for develop-
ing accurate computational models. By applying regression analysis, one can validate models and quantify 
components of the system, including ones that cannot be observed directly. Global (simultaneous) analysis 
of all experimental data available for the system produces the most informative results. To quantify com-
ponents of a complex system, the dataset needs to contain experiments of different types performed under 
a broad range of conditions. However, heterogeneity of such datasets complicates implementation of the 
global analysis. Computational models continuously evolve to include new knowledge and to account for 
novel experimental data, creating the demand for flexible and efficient analysis procedures. To address 
these problems, we have developed  gfit  software to globally analyze many types of experiments, to validate 
computational models, and to extract maximum information from the available experimental data.  

  Key words:   Regression analysis ,  Computational model ,  Curve fitting ,  MATLAB ,  Computer simu-
lation ,  Least-squares .   

    

 Computational models play increasingly important roles in biol ogy. 
Constructing a model that accurately represents the mechanism 
of a system, reliably simulates its behavior, and has well-defined 
parameter values is the ultimate goal of many research projects. 
Models are used for interpreting experimental observations, test-
ing hypotheses, integrating knowledge, discovering components 
responsible for certain behavior, designing more informative 
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experiments, and making quantitative predictions  (1) . Remark-
ably, computational models act both as tools for studying biology 
and as representations of the resulting knowledge. Indeed, quanti-
tative mechanistic information incorporated into a model allows it 
to make predictions outside the domain of existing observations. 

 The focus of this chapter is on understanding experimental 
data and extracting useful information from it. The role of a model 
in this process is to postulate a relationship between conditions of 
experiments and the observed results. Using regression analysis, 
different models can be tested for their ability to explain the 
experimental observations, and their parameters can be estimated. 
Thus, regression analysis ties together models and data, validating 
the former and extracting information from the latter  (2,   3) . 

 Unfortunately, practical application of this procedure to 
biological systems can be complicated. As will be shown in this 
chapter, even relatively simple models may contain too many 
parameters to estimate based on a single experiment of any type. 
Therefore, to test whether the model is consistent with the data 
and to determine its parameters, data from multiple experiments 
need to be analyzed globally, while applying all known constraints 
to the values of parameters  (4) . 

 In this chapter, we discuss the challenges associated with 
practical application of regression analysis to biological systems. 
The problems we describe are exacerbated in complex models 
and experimental designs, and thus are especially frustrating for 
quantitative biologists. We describe our software,  gfit , which 
helps to overcome these problems and illustrate its utility with 
three biological systems of increasing complexity. 

  Regression analysis includes a range of methods for establishing 
a model that accurately represents a system and makes accurate 
predictions of its behavior. The specific tasks include searching 
for optimal parameter values, testing whether the model agrees 
with experimental data, estimating parameter confidence inter-
vals, testing whether more experimental data are needed, detect-
ing outlier points, and selecting the preferred model from two 
possible ones. In regression analysis, model  F  is defined as a 
quantitative relationship between experimental measurements 
(dependent variables)  Y  and experiment conditions (independ-
ent variables)  C  

 Y = F (C, x) + e   (1)     

 where  x  is a vector of model parameters (variables affecting 
behavior of the system that cannot be controlled or directly 
observed during experiment), and   e   is a set of measurement 
errors ( see   Note    1  )  (5) . 

 1.1. Regression 
Analysis 
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 Goodness of fit, the closeness of model simulations to the 
measurements, is quantified by objective function S( x ). The most 
commonly used objective function is a sum of squared residuals 
( see   Note    2  ),

 ( ) ( ) 2
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i i
i
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=
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 or, in case of nonuniformly distributed   ε  , a weighted sum of 
squared residuals
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x , where si is a standard deviation of ei    (3)     

 Curve fitting is a problem of finding parameters  x  that produce 
the best fit, that is minimize the objective function: 

 
x

min ( ).S x    (4)     

 Curve fitting is an optimization problem, performed by opti-
mization engines. Many tasks of regression analysis are based on 
curve fitting.  

  One common obstacle to broader application of regression analy-
sis to biological problems is failure of many models to directly 
simulate the experimentally observed variable. For example, a 
typical system model may simulate concentrations of reacting 
species, values that are rarely observed in an experiment directly. 
One way of addressing this discrepancy is to convert measured 
values into the type simulated by the model. However, such con-
versions often introduce statistical errors and are not always pos-
sible. The better solution is to simulate exactly the same value 
type as measured in the experiment. To achieve that, separate 
experiment models may be required. Experiment models use the 
system model to simulate the system’s response to manipula-
tions and the experimentally measured signal ( see   Fig.    1  ). The 
approach of separating system models and experiment models is 
used in Virtual Cell software  (6) .  

 A curve fitting procedure for a heterogeneous dataset can be 
quite complex and require extensive communication between its 
entities, i.e., model, optimization engine, experiment conditions, 
measurements, parameters, and constraints ( see   Fig.    2A  ). Before 
a search for optimal parameter values can begin, the data for each 
experiment has to be examined:
  –  To determine which variables need to be simulated and their 

sizes  
 –  To check that the data required for the simulation has been 

provided  

 1.2. Applying 
Regression Analysis 
to Experimental Data 
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 –  To check against constraints on variable dimensions and values 
imposed by the model  

 –   To determine what parameters can be estimated and to choose 
their starting values     

 Once the data have been examined, the optimization proce-
dure can be initiated by passing a vector of starting parameter values 
to the optimization engine. Depending on the engine type, param-
eter constraints can be also provided. The engine conducts opti-
mization by repeatedly changing parameters and recalculating the 
objective function on the basis of experimental measurements and 
simulations. To simulate each experiment, the input data for the 
model has to be assembled from applicable optimization parameters 
and experiment conditions. The input data also have to be checked 
against the constraints, since not all of them can be enforced by 
optimization engines. After simulating all experiments, the appro-
priate objective function can be computed and used by optimiza-
tion engine to determine the direction of the search. 

 Curve fitting procedure follows complicated rules that depend 
on the computational model, experimental data, and optimization 
engine. In addition, parameter constraints need to reflect various 
considerations related to the research project. These factors make 
the analysis procedure not only complex, but also highly variable, 
making design and maintenance of project-specific software prohi-
bitively expensive. Fortunately, the patterns of data flow during 

  Fig. 1 .   Application of scientific method to quantitative biology. Mechanistic Hypothesis 
about a biological system leads to a System Model, a quantitative description of system 
components and their interactions. To test the Hypothesis, the system is treated in a 
controlled manner and its behavior is measured. The ideas, assumptions, and, possibly, 
hypotheses involved in the treatment are parts of Experiment Design. The Measurement 
obtained by following the Experiment Protocol is compared with Simulation. To make 
the comparison meaningful, all Simulations need to have same physical meaning and 
dimensionality as their corresponding Measurements. Therefore, an Experiment Model, 
an in silico counterpart of Experiment Protocol, is derived from each Experiment Design. 
Experiment Models interacting with the System Model produce Simulations that are 
quantitatively compared with the Measurements       .
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regression analysis are largely independent of the system under 
investigation. This fact allowed us to design software that solves 
the analysis problem generally and for any model type.  

  The purpose of  gfit  is connecting models with various types of 
experimental data. First, it simplifies the model’s task of directly 
simulating experimentally observable variables. Second, during 
regression analysis,  gfit  maintains communications between the 
analysis components, acting as a mediator ( see   Fig.    2B  ). Third, 
by defining standard application interfaces for models, optimiza-
tion engines, objective functions, and other entities, it facilitates 
customization of the analysis procedure. 

 Of all components, application interfaces of models represent 
the biggest problem. Almost every step of regression analysis 
procedure depends on what information is required and produced 
by the model. Yet, every model has different inputs and outputs. 
To be able to perform regression analysis with any kind of compu-
tational model,  gfit  uses a metadata approach. Any model used by 
 gfit  is expected to have an attached Model Description ( see   Note  
  3  ) defining its inputs and outputs as sets of variables ( see   Note    4  ). 
More information about Model Descriptions is provided later in 
this chapter. Once the rules for performing simulations with the 
model are known, the analysis process becomes more straightfor-
ward and independent of the model type ( Fig.    3  ).  

 Regression analysis is a complicated process with many pit-
falls.  gfit  strives to provide information that can help researchers 
avoid mistakes related to the analysis. In the protocols that follow, 
the reader will build simple models and use the existing models 
and experimental data for parameter estimation.   

  1.3. Design of  gfit 

  Fig. 2 .   Components of regression analysis.  Arrows  indicate information flow between components. ( A ) Analysis proce-
dure requires extensive interactions between components. ( B ) To streamline the procedure,  gfit  mediates all interactions 
between components       .
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     1.    Version 6.5 or later of  MATLAB  (Mathworks, Natick, MA), 
a common science and engineering computing software, is 
required for running simulations.  

   2.     MATLAB Optimization Toolbox  (Mathworks) is required for 
regression analysis.      

     1.    Download the latest version of  gfit  from   http://gfit.
sourceforge.net    . The zip-archive contains gfit.jar library 
and other files required for interaction of  gfit  with  MATLAB.   

   2.    Unzip the file to a convenient location on your hard disk. For 
this chapter we will assume location C:/. Folder C:/Mgfit 
will be created.  

   3.    Start  MATLAB .  
   4.    Change  MATLAB ’s current directory to C:/Mgfit.  
   5.    To start installation, type mgfit in  MATLAB ’s command line 

and press  Enter .  

2. Materials

 2.1. Software 
Requirements 

  2.2. Installation of  gfit 

  Fig. 3 .   Flow of information through regression analysis components. Communications between the components are 
controlled by  gfit  according to Model Description. During simulation of each experiment, independent variables from the 
experiment conditions and parameters are tested against constraints and combined into model input data. The input 
received by the model is guaranteed to be valid and to contain sufficient information for the simulation. Combining condi-
tions with parameters keeps the model agnostic about the purpose of the simulation. Size of variables in model output 
depends on the input. The dependence is defined in Model Description and used by  gfit  to provide the input that will 
result in model output directly comparable with the measured variables for that experiment       .
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   6.    Respond  Yes  to the query about adding C:/Mgfit to  
MATLAB ’s path.  

   7.    Restart  MATLAB  if requested.  
   8.    After installation, the same command, mgfit, will bring up 

 gfit  user interface window.      

  rsys library is used for solving ODEs for mass-action reaction 
systems, as described in  Subheading    3.3  .
   1.    Download the latest version of rsys for your operating system 

from   http://gfit.sourceforge.net    .  
   2.    Unzip the file and put the library file anywhere on the  MATLAB  

path. For example, to C:/Mgfit folder.      

  A zip archive containing all model and data files mentioned in this 
chapter can be downloaded from   http://gfit.sourceforge.
net    . The data files included are in tab/newline-delimited format. 
These files can be opened in a text editor, but it is more convenient 
to view them in a spreadsheet. Please check the readme.txt file 
for the most current information.   

    

  In this section, we will create a model for equilibrium binding 
of a protein,  E , to a ligand,  L , ( Eq. 5 ) and use it for analysis of 
experimental data. This analysis is quite simple and can be accom-
plished with many existing programs (including commonly used 
spreadsheet applications). We will use it to illustrate the principles 
of data analysis and model validation used by  gfit , and later apply 
them to more interesting examples.

 D

[ ][ ]
, where

[ ]
DK E L

E L EL K
EL

+ =����⇀↽����    (5)     

 If only total concentrations of  E  and  L  are known,     E T = [ E ] + 
[ EL ]   and   [ L T] = [ L ] + [ EL ]  , equilibrium concentration of the 
complex can be written as 
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     1.    Open  MATLAB  editor by typing edit in the command line. 
Editor window will appear.  

   2.    Add the code shown in  Listing    1   and save the file as 
eq_binding.m in C:/Mgfit/Models folder.         

 2.3.  Installation of  
  rsys  Library  

 2.4. Data and Models 

3. Using  gfit  : 
Examples

 3.1 Simple Model 
Example: Equilibrium 
Binding 

 3.1.1. Create Standalone 
Model 
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 Steps 1 and 2 create a MATLAB m-file function. Line 1 contains 
 MATLAB  keyword function followed by the name of the out-
put variable  signal , followed by the name of the function,  eq_bind-
ing , and a list of input variables ( Et, Lt, Kd ). Line 2 is a comment, 
marked in  MATLAB  by the % character. Line 3 performs the calcu-
lation according to  Eq. 6 . Line 4 assigns the calculated, [EL] ,  to 
the output variable.  

  The model we created has three input variables and one output 
variable. To perform a simulation, we need to supply values for 
input variables and store the result in the output variable. Variables 
in MATLAB (and in  gfit ) can contain a single value or arrays of 
numbers. The arrays may have 0, 1, or many dimensions. 0D array, 
scalar, stores a single number; 1D array, stores a vector of numbers; 
2D array contains a matrix, etc .  Models can take advantage of this 
fact. For example, our model can accept vectors of  Et  and  Lt  con-
centration and simulate an entire titration curve in one call. We will 
use the model in  Listing    1   to simulate different experiments.  

  1. Simulate and plot a titration curve for  Lt  changing from 
0 to 50 

  Lt = 0:50; EL = eq_binding(1, Lt, 5); 
plot(Lt, EL) 

 2. Simulate and plot a titration curve for  Et  changing from 
0 to 20 

  Et = 1:20; EL = eq_binding(Et, 10, 5); 
plot(Et, EL) 

  The model is flexible in that it can simulate experiments with 
different numbers of measurements (20 or 50) and with dif-
ferent combinations of variables that change and remain con-
stant. However, if we did not know how input variables were 
used inside the model, it would be easy to call the model with 
illegal variables. For example, the following command will 
produce an error, because the size of  Et  vector is not equal 
to the size of Lt vector. 

  Et = 1:20; Lt = 0:50; EL = eq_binding
(Et, Lt, 5); 
 As well, mistakenly supplying negative values for the input 

parameters will produce a warning and a meaningless simulation 
result. Although we can keep track of correct variable sizes and 
values when manually executing a simple model, this task becomes 

 3.1.2. Perform Simulation 

 3.1.3. Simulate Titration 
Curves 

Listing 1 MATLAB function simulating binding equilibrium
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tedious if many different experiments have to be simulated by a 
complex model. To create a connection between experimental 
data and a model that is practically useful, there has to be a 
method for automatically tracking the requirements of the model 
and for reconciling these requirements with existing experimen-
tal data. gfit learns about the requirement of the model and its 
expected output by reading the associated user generated Model 
Description ( see   Note    3  ).  

     1.    Insert lines 3–13 into previously created eq_binding.m, as 
shown in  Listing    2  .      

   2.    Add variable  signal  to the list of inputs.     
  MATLAB m-files with a tag as on line 3 are recognized by  gfit  

as models. Lines 3–13 are occupied by Model Description. 
Note that each of the lines starts from character %, a comment 
in MATLAB language. Therefore, Model Description is 
ignored by MATLAB and the meaning of the original program 
is not changed. Model Description is used by  gfit  to ensure 
that the model always receives legitimate input variables and 
to interpret experimental data that belongs to the model. 
 The information in Model Description is organized in a tabular 

fashion. Any number of tables can be present. Tables in Model 

 3.1.4. Create  gfit  Model 
Description 

Listing 2. gfit model for binding equilibrium.
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Description are space/tab/newline-delimited. Rows in each table 
should contain same number of elements. However, if an element 
needs to be empty (as in minVal of signal variable), an empty pair 
of brackets ((), [], ‘’, or “”) can be used. Brackets should also 
surround multiword elements. 

 The first table (lines 4–8) should list all model I/O variables 
in the same order as in the input list of the function. The first col-
umn of every table contains variable names. The second column 
of the first table defines variable types. Type free for variable Et 
means that its value could either be known precisely and supplied 
with the experiment conditions, or not known and appear as one 
of the optimization parameters. Variable  Lt  is independent, mean-
ing that its value should always be known exactly and appear in 
the experimental data. Variable  Kd  has  para  type and is sought 
as an optimization parameter. Variable signal has dependent type 
and therefore is expected to be calculated by the model. 

 The Model Description is also used to set bound limits on 
the input variables. Column three of the first table, (minVal) 
specifies the minimum value of zero for all variables except  signal , 
which is  dependent  and cannot have its value constrained. This 
has been included in the first table but can also be placed in a 
separate table. 

 In this example, the size of variables is set in the second table 
of Model Description (lines 10–12). The length of Et variable 
vector is set equal to the length of Lt as required by the model. It 
also sets the length of signal produced by the model to have the 
length of  Lt . Since the size of the output variable must be known 
by  gfit , the latter expression guarantees that the results are equal 
to a known length. The table also states (line 12, in the third 
column−plotVs) that signal should be plotted versus Lt.  

     1.    Start  gfit  by typing mgfit in MATLAB command line.  gfit  
window will appear.  

   2.    Select eq_binding.m model by choosing menu  Model 
ÆPick Model . The name of the model will appear in the 
model field.  

   3.    Arrange data for two experiments in a spreadsheet application 
as shown in  Fig.   4A . Names of the experiments should appear 
in the top line of the data block. First experiment  Titration 
one  contains two variables  Lt  and  Et  having equal size. Second 
experiment,  Titration two , contains only the independent 
variable,  Lt , required by the model. Note that variables Lt in 
experiments one and two have different sizes.   

   4.    To transfer data to  gfit , select both experiments in the spread-
sheet and copy it into the clipboard. Names of experiments 
should appear in the top row of the selected block.  

 3.1.5. Import Data into  gfit  
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   5.    In gfit window, choose menu  DataÆPaste-add Data .  gfit 
 recognizes tab/newline-delimited data stored in clipboard 
and checks it against the requirements of Model Description 
to assure that it can be used with the current model. If there 
is an inconsistency between data and the requirements of the 
Model Description, an error message will appear.     
 Once the data is acquired by  gfit , it generates parameters for all 

para variables and for every  free  model variable in the model that is 
missing in the experimental data ( Fig.    4B  ). Parameters are gener-
ated based on the input variables defined in Model Description. 

 During simulation of an experiment, input variables draw 
their values either from the supplied experimental data, or from 
current values of parameters. In  gfit , parameters and input vari-
ables have a many-to-many relationship. When simulating differ-
ent experiments, a variable containing an array of numbers can 
collect its values from many parameters. One parameter can be 
also connected to multiple variables as long as the variables have 
the same physical units (discussed below). 

  Fig. 4 .   gfit imports experimental data from a spreadsheet. ( A ) Spreadsheet containing two experiments− Titration one  and 
 Titration two .  Black rectangle  shows the cells to be selected, copied, and imported to  gfit . ( B ) Once the data are imported, 
 gfit  user interface shows model parameters       .
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 Linkage of parameters to different variables can be adjusted 
through  gfit  parameter table in the user interface ( Fig.    4B  ). 
For every parameter, the table shows its name, optimization 
flag ( pick ), low bound constraint (smallest value allowed), 
start (current) value, and upper bound constraint. Param-
eters in the table can be sorted by several criteria. To switch 
between different sorting methods, click  sort  parameter table 
header button. All parameters can be selected or deselected 
for optimization (discussed below) by clicking on  pick  but-
ton. Bound constraints for each parameter are set based on 
the variable’s constraints in the Model Description. The valid 
interval of constraints can be only reduced through the user 
interface. For example, minimal value for  K  D  can be changed 
to 1.0, but not to −1.0.  

     1.    Set parameter  Et ex2  to 15.0 and parameter Kd to 1.  
   2.    To perform simulation click on  Simulate button .  
   3.    Click on button Plot. A  plot  will appear.     

 The model we created can be conveniently used for simu-
lating equilibrium concentration of  EL  complex under differ-
ent expe riment conditions. Unfortunately, concentration of a 
complex is seldom measured directly in an experiment. In the 
simplest case, experimentally observed values are proportional 
to [ EL ]. To avoid transformation of the data (even a linear one) 
prior to analysis, the model needs to simulate the measured sig-
nal.  

     1.    To simulate the signal observed in a real experiment 
(e.g., binding induced change of fluorescence), introduce 
two more variables, signal gain,  gain , and signal back-
ground, c. Assume the  signal  to be proportional to [EL] 
with an offset.  

   2.    Add more columns to the first table of Model Description to 
set default starting values of parameters, physical units, and 
human-readable descriptions of model variables. Resulting 
model is shown in  Listing    3  .      
 These changes make this model more flexible because it can 

now be used for any experiment that measures a value propor-
tional to the equilibrium concentration of the complex. Param-
eters by default take more reasonable starting values. Human 
readable variable descriptions appear when mouse cursor hovers 
over a name in the parameter table. Units prevent mixing incom-
patible variables in the same parameter.  

     1.    From the data archive, open file eq_binding_data_fig5.
txt in a text editor. The file contains data for one experiment, 
select and copy its entire contents.  

 3.1.6. Simulate with  gfit  

 3.1.7. Refine Model 

 3.1.8. Fit Data 
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   2.    In  gfit  interface, select the updated model and import the data 
into  gfit .  

   3.    To view the imported data click  Plot .  
   4.    Click  Fit . Optimization engine will search parameter space for 

the best fit, and will display the optimized values and their 
confidence intervals ( Fig.    5  ) ( see   Notes    5, 6,   and   7  ).   

   5.    To view fitted data click  Plot .     
 In this section, we have created a regular  MATLAB  m-file 

and added a  gfit  Model Description to it, which allowed us to 
connect it with experimental data to perform simulation and fitting. 
In the following sections, we will apply this technique to more 
complex biological systems.   

  The model created in the previous section can be used for studying 
relatively simple systems where binding properties are character-
ized only by the dissociation constant. However, binding processes 
are often more complex and characterized by multiple parameters. 
Binding of proteins to discrete positions on a linear lattice (DNA, 

 3.2. More Complex 
Example: Equilibrium 
Binding to a Polymer 

Listing 3. Updated gfit model for binding equilibrium.
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RNA, microtubules, and microfilaments) plays important roles in 
many biological processes. In this section, we will discuss bind-
ing of the helicase from hepatitis C virus to single-stranded (ss) 
DNA substrates. The experimental data were obtained by titrating 
a constant concentration of the helicase with oligonucleotides of 
different lengths while monitoring the reduction of intrinsic fluo-
rescence of the helicase caused by ssDNA binding  (7) . With this 
example we take regression analysis a step further and globally fit 
many titration curves to quantify helicase properties that are not 
apparent from any single experiment. 

 The model of equilibrium binding to a lattice, in addition to 
concentrations and the dissociation constant, uses parameters 
related to the geometry of the molecules, namely lattice length 
 N , protein’s minimal binding site ( M , number of lattice units 
interacting with the protein), and protein’s occlusion site ( S , 
number of lattice units from which one protein molecule excludes 
the others) ( Fig.    6A  ). The model assumes noncooperative and 
sequence-independent binding. Since the  K  D  observed in lattice 

  Fig. 5 .   Fitting the results of a fluorimetric titration experiment. The interface shows optimal values for each parameter 
and their confidence intervals       .

  Fig. 6 .   Binding of proteins to lattices depends on their geometry. ( A ) Protein geometry 
parameters are minimal binding site,  M , and occlusion site,  S . ( B ) If lattice length, 
 N  < M, binding free energy is approximately proportional to  N . ( C ) If  N  >  M , the observed 
 K  D  is inversely proportional to the number of alternative binding configurations,  N  −  M  
+ 1. ( D ) If more than one protein can bind to a lattice molecule,  N  ≥  S  +  M , binding 
configurations for all possible numbers of bound proteins have to be considered       .
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binding experiments changes with the lattice length, the model 
uses a more fundamental microscopic dissociation constant,    0

DK
  , defined as the dissociation constant observed with lattice of 
length  M . Thus, variables   0

DK   ,  M , and  S  keep same values in all 
experiments.  

 The model calculates concentration of bound protein,  E  B , 
from total protein concentration,  E  T , total concentration of lat-
tice,  L  T , and  N . Depending on relative values of  M ,  S , and  N , 
three cases can be considered. If lattice is shorter than the minimal 
binding site ( Fig.    6B  ),  N  <  M , and assuming equal contribution 
of each lattice unit to the binding free energy, the binding can be 
described by  Eq. 6 , where the observed dissociation constant 

(1 / )( / )0
D D ,N MN MK K −= ξ  where ξ is a concentration unit 

 conversion factor.   (7)     

 For longer lattices that can accommodate only one protein 
molecule ( Fig.    6C  ),  M  £  N  < 2 S , the observed dissociation 
constant is inversely proportional to the number of distinct 
positions the protein can occupy.
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 If multiple proteins can bind to a single lattice molecule,  Eq. 6  
can no longer be used, and the extent of binding has to be 
calculated by numerically solving  Eq. 9   (8) . Alternatively, if the 
number of proteins bound to a lattice is large, a lower order 
equation can provide accurate results  (9) .
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 Although apparent dissociation constant,  K  D , can be estimated 
on the basis of a single titration experiment, true   0

DK    cannot 
be determined without prior knowledge of  M  and  S . All three 
parameters can be determined simultaneously by globally fitting 
titration curves for many ssDNA substrates of different lengths. 

 The model for lattice binding lattice_binding_v1.m, 
provided in the data archive, follows a similar pattern as previ-
ously created eq_binding.m model. Both models start with 
Model Description. We will now test whether the model is con-
sistent with the observed results, estimate the parameters, and 
determine their confidence intervals. 
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     1.    Start  gfit  and choose model lattice_binding_v1.m.  
   2.    Open file lattice_binding_data.txt in a spreadsheet. 

The file contains data for nine titration experiments. As before, 
the top row contains only names of experiments with variable 
names and values appearing below ( see   Note    8   ).  

   3.    Select and copy entire dataset. Make sure that selection 
starts at experiment name row and no values on the bottom 
are left out.  

   4.    Choose menu Data®Paste-add Data to import data to  gfit . 
The parameters generated for the dataset will appear. View 
data by clicking button Plot.      

     1.    Make sure that all parameters are selected for optimization and 
click button  Fit . Because of the larger number of parameters 
and more involved computation, fitting may take a couple of 
minutes to complete.  

   2.    Plot the fitted data. The fit does not match the data. Notice, 
however, that unlike the data, all fitted curves start from the 
same value. This happened because same value of f 0 param-
eter was used for all experiments.  

   3.    Right-click on the name of  f  0  parameter and choose menu 
 Separate Elements . Parameter  f 0   separated into nine param-
eters, one for each experiment. Also separate elements of 
parameter  fg , because the gain of the signal is also known to 
vary between experiments.  

   4.    Click button Fit.     
 Using this model and dataset,  gfit  is expected to produce 

a good fit at the first attempt ( Figs.    7   and   8  ). However, this 
result is not typical. In our experience with other models, local 
optimization algorithms seldom find the global minimum in the 
first attempt. This highlights the importance of global optimiza-
tion methods  (10,   11) . Generally, finding a global minimum of a 
nonlinear problem is unattainable within finite time. Neverthe-
less, even if a good fit has been found, it is advisable to search the 
parameter space for alternative minima. Discovering distinct sets 
of parameters that produce “as good,” or “nearly as good” fits is 
important to diagnose overparameterized models or insufficient 
amount of experimental observations.   

 The method currently used by  gfit  for exploring parameter 
space is random restart. This simple method is implemented as 
a “globalizer” on top of the existing local optimization engine. 
Random restart repeatedly reinitiates local optimization with 
a randomly chosen set of parameters. The new starting param-
eter values are picked from a uniform distribution for doubly-
constrained parameters, from a truncated normal distribution for 
singly-constrained parameters, and from a normal distribution 

 3.2.1. Import Titration Data 
for Global Analysis 

 3.2.2. Fit the Data 
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for the unconstrained ones. Random restart procedure is imple-
mented without a defined termination condition. It is supposed 
to be interrupted by the user.  

     1.    Choose menu  AnalysisÆRandom Restart  ( see   Note    9  ).  
   2.    Allow the program to perform a few hundred optimizations and 

interrupt it by clicking button  Cancel . The best found param-
eter values appear in the right column of the parameter table.  

   3.    To check the goodness of fit visually, copy best found param-
eter values to the start column by clicking the table header 
button  <<value , click button  Simulate , then button  Plot  ( see  
 Note    10  ).     
 More generally, the following rule-of-thumb procedure can be 

used to decide if the random restart search should be continued.  

 3.2.3. Search for Global 
Minimum 

  Fig. 7 .   Results of global fitting of nine equilibrium titration experiments. The interface shows a table of 21 parameters. 
Three parameters,  Kd  0 , M, and  S , were globally applied to all experiments, while each of the others were used in one 
experiment only. For example, parameter  f0 ex3  was used in experiment 3 only. Optimization started with parameter 
values displayed in column  start , and arrived to the optimal values displayed in column  optimum . Column  confidence  
shows parameter standard errors (68% confidence intervals) estimated using asymptotic method       .
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     1.    With random restart running or terminated, open most recent 
file C:/Mgfit/Temp/Optim_ nnn .txt in a simple text edi-
tor ( see   Note    9  ).  

   2.    Select and copy entire contents of the file and paste it into 
a spreadsheet application. Now each row of the spreadsheet 
contains a set of optimized parameters, while the first column 
contains the values of objective function. Parameter sets appear 
in the order they were calculated.  

 3.2.4. When Should 
Random Restart 
be Terminated? 

  Fig. 8 .   Plots of nine globally fitted titration experiments. In each titration, increasing concentrations of ssDNA were added 
to the constant concentration of helicase. Concentrations of helicase as well as lengths of ssDNA were different in each 
titration. Binding to DNA reduced the intrinsic fluorescence of the helicase. Experimental measurements of fluorescence 
are shown as  dots . Results of the simulation are shown as  solid lines        .
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   3.    Sort parameter sets by their objective function. The best fitting 
parameter set is now at the top row of the table.  

   4.    Examine the better fitting parameter sets. Identify a group of 
better fitting sets with similar goodness of fit values starting 
from the top row.
   a    If the group is small, the search is worth continuing.  
   b    If the group is large and at least some of the parameters 

have significantly different values, the data does not suffi-
ciently constrain model parameters. Additional experiments 
may be needed.  

   c    If the group is large and parameter values are similar between 
different sets, the group is probably in the vicinity of the 
global minimum of the problem.           

  In this section, we describe modeling and analysis of a kinetic 
pathway responsible for loading sliding clamp proteins onto 
DNA during replication initiation. The clamp, PCNA, encir-
cles DNA and binds to DNA polymerase, conferring processiv-
ity to the replication complex. PCNA is loaded onto DNA by 
the heteropentameric clamp loader protein, RFC, in a process 
that involves ATP binding and hydrolysis and conformational 
changes of the proteins ( Fig.    9A  )  (12) . Although the process 
has been extensively studied, understanding at the quantitative 

 3.3. Advanced 
Example: Kinetic 
Mechanism of Clamp 
Assembly on DNA 

  Fig. 9 .   Mechanism of clamp loading on DNA. ( A ) Clamp loader protein, RFC, catalyzes assembly of circular PCNA clamps 
onto primed DNA in a reaction driven by ATP binding and hydrolysis. ( B ) Design of ATPase experiments, with initial mix-
ing of RFC and PCNA with ATP, followed by varying delay times, mixing with DNA, and measurement of product kinetics. 
( C ) Simplified clamp loading reaction scheme. RFC (in the presence of PCNA; RC) binds ATP (T). The ternary complex 
undergoes an activation step (RA) before DNA (N) binding, rapid ATP hydrolysis and dissociation from the clamp-DNA 
complex (CN)       .
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level is incomplete. Properties of individual species and reactions 
involved in this process are difficult to determine because almost 
any measurement technique is affected by a combination of many 
simultaneously occurring reactions. Computational modeling in 
conjunction with regression analysis provides a feasible solution 
to this complex problem.  

 Currently we are building, validating, and refining a mecha-
nistic model of the process that can resolve many species and 
quantify the rates of individual reactions that may not be observed 
experimentally. A simplified reaction scheme, the first iteration of 
modeling process, is shown in  Fig.    9C  . The challenge of esti-
mating the rates of many individual reactions can be addressed 
by monitoring the process from different perspectives. As noted 
earlier, each measurement is a function of many or all of the rates 
in the process; however, measurements from different perspec-
tives are likely to be affected in distinct ways by individual reac-
tion rates. Therefore, taken together, multiple measurements of 
presteady-state kinetics monitored by a few different methods can 
provide sufficient constraints to the parameters of the model. 

 Results of global regression analysis of data from two types of 
presteady-state experiments, one measuring ATP hydrolysis and 
the other phosphate (Pi) release by RFC protein, are shown in 
 Figs.    10   and   11  . ATP hydrolysis was monitored by a radiometric 
assay measuring formation of  32 P-ADP over time from  32 P-ATP, 
and Pi release was monitored by the change in fluorescence of a 
reporter, Pi Binding Protein, on binding the Pi released by RFC 
following ATP hydrolysis. Salient features of the experimental 
design in both cases are ( Fig.    9B  ): (a) rapid mixing of a constant 
concentration of RFC (in the presence of excess PCNA clamp) 
with excess ATP; (b) incubation of RFC with ATP for varying 
times; (c) rapid mixing of the RFC, ATP, PCNA mix with excess 
DNA and measurement of product formation and release over 
time. Salient features of the model mechanism are ( Fig.    9C  ): (a) 
RFC binding to ATP; (b) a proposed step that might account for 
the observed increase in ATPase activity with increasing RFC-
ATP incubation time; (c) DNA binding to the RFC-ATP com-
plex; (d) ATP hydrolysis; (e) release of ADP, Pi and clamp−DNA 
complex.   

 Simultaneous fitting of a large number of experiments 
requires efficient simulation. The most computationally intensive 
operation performed by RFC model is integration of ODE sys-
tems to simulate mass-action reactions. To accelerate this process, 
reaction kinetics was simulated using native  rsys  library. A com-
bination of a flexible and user-friendly scripting language, such 
as  MATLAB , with a native library for computationally intensive 
parts of simulation was found to be especially productive. 

 Given estimates of ATP and DNA-binding rate constants, the 
model produces a good fit for datasets from both ATP hydrolysis 
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as well as Pi release experiments in a single seamless operation. 
Confidence in the parameters obtained from the fits is increased 
by using the random restart method, as described in  Subhead-
ing    3.2.3  . A highlight of the findings is that global fitting of the 
ATPase data validates the proposed step between ATP binding 
and hydrolysis ( Fig.    9C  ), and reveals that it is a relatively slow, 
and thus mechanistically important, step in the clamp assembly 
reaction (rate constant:  kRt_Act ). We can now formulate specific, 
testable hypotheses regarding the nature of this step; e.g., an ATP 
binding-driven conformational change in RFC that enables pro-
ductive interactions with the clamp and DNA. 

 It is clear that the reaction depicted in  Fig.    9C   represents a 
simplified model of the clamp assembly reaction, in which the 

  Fig. 10 .   Parameters of RFC clamp loader model. The values of parameters were obtained by global fitting of 22 presteady-
state kinetic measurements       .
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number of possible species and steps are restricted. Such limita-
tions are often introduced in models to focus on specific experi-
mentally measured parameters, and thereby increase confidence 
in the fit. For example, this model omits RFC binding to the 
clamp, since the parameters defining this step are unknown and 
are not measured explicitly in the ATPase experiments. Under 
such circumstances, however, it is entirely possible that good-
ness of fit to the data becomes unrelated to the quality of the 
model.  gfit  enables model-based global analysis of a variety of 

  Fig. 11 .   Fitting of kinetic data by the clamp loader model. Depending on the measurement conditions, kinetics of Pi 
release and ADP production exhibits different extent of lag followed by a burst and approach to the steady state. The 
presence of multiple “features” in the kinetic curves facilitates constraining parameters of the model       .
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experiments to find parameter values that are consistent across 
the board. Therefore, a more comprehensive model of clamp 
assembly can be developed from the start, and then continually 
validated and refined by data input from experiments measur-
ing clamp binding, clamp opening, DNA binding, clamp−DNA 
release, etc., leading to discovery of the preferred mechanism of 
clamp assembly on DNA.   

    

    1.    In regression analysis literature, dependent variables may be 
referred to as response or observed variables; independent vari-
ables may be referred to as predictor or explanatory variables.  

   2.    Residual is the difference between the experimental measure-
ment and the simulation produced by the model.  

    3.    Model Description is metadata attached to  gfit  models that 
defines their correct usage. It contains model name, version, 
general human-readable comments about the purpose of the 
model and its algorithm, and, most importantly, machine-
readable descriptions of the model’s input and output vari-
ables. For each variable, it specifies name, type, physical 
unit, dimensions, and a range of acceptable values. Variable 
dimensions are defined either as constants or in relationship 
to another variable dimension or index variable. Variables 
may change their size depending on experimental data and 
user input. Dimensions of each variable usually change in 
concert with dimensions of other variables.  

    4.    Variable (in  gfit  context) is an array of elements (numbers) 
defined in Model Description. A variable may contain a single 
element (scalar variable, 0D), a vector of elements (1D), a 
matrix (2D), etc. Variables are used for storing information 
about an experiment, for passing data to the model and for 
receiving data simulated by the model. Depending on the 
Model Description, each variable dimension may be fixed, or 
vary individually or in concert with other variable dimensions. 
This property of variables increases flexibility of  gfit  models.  

    5.    During calculations, all control elements of gfit interface are 
disabled with the exception of the button Cancel. Clicking 
this button prevents simulation of the next experiment. Simu-
lation of the current experiment will not be aborted.   

     6.    During fitting, information about each iteration is displayed 
in MATLAB command window. If fitting is aborted, the last 
values of parameters appear in the right column of parameter 
table.  

4. Notes
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    7.    Currently  gfit  uses an asymptotic method for determining 
confidence intervals of parameters. This method is known to 
be inaccurate for nonlinear models.  

  8.    In spreadsheet-arranged data, a colon following a variable 
name indicates that the variable is scalar and its value should 
appear in the cell to the right of the name.  

    9.    During a random restart run, starting parameter values and 
optimization results are accumulated in files Start_ nnn .txt 
and Optim_ nnn .txt, respectively, in folder C:/Mgfit/
Temp/, where  nnn  are digits starting from 000 and incre-
mented for each subsequent random restart search. The files 
contain tab/newline-delimited tables with each set of param-
eters occupying one row. The first row contains parameter 
names. In addition, the first column of Optim_ nnn .txt file 
contains objective function values, S( x ). To check the progress 
of the search without interrupting it, open either of the files 
in a simple text editor, select, and copy its entire contents, and 
paste it into a spreadsheet application.  

   10.    Column 6 of parameter table contains values produced by 
optimization (completed or interrupted). To be able to edit 
the values, to use them for simulation, or as starting values 
for fitting, copy them to column 4 by clicking table header 
button <<value.          
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      Chapter 13

  Multicell Simulations of Development and Disease Using 
the CompuCell3D Simulation Environment       

     Maciej H.   Swat,       Susan D.   Hester,       Ariel I.   Balter      , Randy W.   Heiland, 
      Benjamin L.   Zaitlen,       and James A.   Glazier      

  Summary 

 Mathematical modeling and computer simulation have become crucial to biological fields from genomics 
to ecology. However, multicell, tissue-level simulations of development and disease have lagged behind 
other areas because they are mathematically more complex and lack easy-to-use software tools that allow 
building and running  in silico  experiments without requiring in-depth knowledge of programming. This 
tutorial introduces Glazier–Graner–Hogeweg (GGH) multicell simulations and CompuCell3D, a simu-
lation framework that allows users to build, test, and run GGH simulations.  

  Key words  : Glazier–Graner–Hogeweg model ,  GGH ,  CompuCell3D ,  Mitosis ,  Cell growth , 
 Cell sorting ,  Chemotaxis ,  Multicell modeling ,  Tissue-level modeling ,  Developmental biology , 
 Computational biology .    

  

 Most contemporary life scientists, whether theoretical or experi-
mental, have relatively narrow disciplinary training. This speciali-
zation is partly a consequence of the speed of current progress in 
the life sciences and concomitant growth in the number of active 
researchers. 

 While the success of contemporary biology might lead naïve 
observers to conclude that our understanding is a simple super-
position of achievements in the subfields composing life sciences, 
only rarely can we understand how a biological phenomenon 
operates by analyzing and understanding how its isolated com-
ponents operate. 

1. Introduction 

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
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 Just as knowing how transistors work is not sufficient to 
design and build a modern microprocessor, knowing the “function” 
of an enzyme does not suffice to design cells’ biochemical net-
works or even to predict the phenotypic effect of knocking out 
specific genes. 

  Systems biology  is a scientific discipline that studies complex 
interactions in biology, relying more on knowledge integration 
than on detailed studies of individual biological subsystems. Systems 
biologists often build mathematical models and computer simu-
lations of living cells, tissues, organs, or even entire organisms to 
embody their understanding of this integration. 

 The last decade has seen fairly realistic simulations of single 
cells that can confirm or predict experimental findings. Because 
they are computationally expensive, they can simulate at most 
several cells at once. Even more detailed subcellular simulations 
can replicate some of the processes taking place inside individual 
cells. For example, Virtual Cell (  http://www.nrcam.uchc.edu    ) 
supports microscopic simulations of intracellular dynamics to 
produce detailed replicas of individual cells, but can only simulate 
single cells or small cell clusters. 

 Simulations of tissues, organs, and organisms present a 
somewhat different challenge: how to simplify and adapt single 
cell simulations to apply them efficiently to study,  in silico , 
ensembles of several million cells. To be useful, these simpli-
fied simulations should capture key cell-level behaviors, provid-
ing a phenomenological description of cell interactions without 
requiring prohibitively detailed molecular-level simulations of the 
internal state of each cell. While an understanding of cell biol-
ogy, biochemistry, genetics, etc. is essential for building useful, 
predictive simulations, the hardest part of simulation building is 
identifying and quantitatively describing appropriate subsets of 
this knowledge. In the excitement of discovery, scientists often 
forget that modeling and simulation, by definition, require sim-
plification of reality. 

 One choice is to ignore cells completely, e.g., Physiome  (1)  
models tissues as continua with bulk mechanical properties and 
detailed molecular reaction networks, which is computationally 
efficient for describing dense tissues and noncellular materi-
als like bone, extracellular matrix (ECM), fluids, and diffusing 
chemicals  (2,   3) , but not for situations where cells reorganize 
or migrate. 

 Multicell simulations are useful for interpolating between 
single-cell and continuum-tissue extremes because cells provide 
a natural level of abstraction for simulation of tissues, organs, 
and organisms  (4) . Treating cells phenomenologically reduces 
the millions of interactions of gene products to several behav-
iors: most cells can move, divide, die, differentiate, change 
shape, exert forces, secrete and absorb chemicals and electrical 
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charges, and change their distribution of surface properties. The 
 Glazier–Graner–Hogeweg  ( GGH ) approach facilitates multi-
scale simulations by defining spatially extended  generalized cells , 
which can represent clusters of cells, single cells, subcompart-
ments of single cells, or small subdomains of noncellular materi-
als. This flexible definition allows tuning of the level of detail in 
a simulation from intracellular to continuum without switching 
simulation frameworks to examine the effect of changing the 
level of detail on a macroscopic outcome, e.g., by switching 
from a coupled ordinary differential equation (ODE)  Reaction-
Kinetics  (RK) model of gene regulation to a Boolean descrip-
tion or from a simulation that includes subcellular structures to 
one that neglects them.  

  

 Because it uses a regular cell lattice and regular field lattices, GGH 
simulations are often faster than equivalent  Finite Element  (FE) 
simulations operating at the same spatial granularity and level of 
modeling detail, permitting simulation of tens to hundreds of 
thousands of cells on lattices of up to 1,024 3  pixels on a single 
processor. This speed, combined with the ability to add biologi-
cal mechanisms via terms in the effective energy, permit GGH 
modeling of a wide variety of situations, including tumor growth 
 (5–  9) , gastrulation  (10–  12) , skin pigmentation  (13–  16) , neuro-
spheres  (17) , angiogenesis  (18–  23) , the immune system  (24,   25) , 
yeast colony growth  (26,   27) ,  myxobacteria   (28–  31) , stem-cell 
differentiation  (32,   33) ,  Dictyostelium discoideum   (34–  37) , simu-
lated evolution  (38–  43) , general developmental patterning  (14, 
  44) , convergent extension  (45,   46) , epidermal formation  (47) , 
 Hydra  regeneration  (48,   49) , plant growth, retinal patterning 
 (50,   51) , wound healing  (47,   52,   53) , biofilms  (54–  57) , and limb-
bud development  (58,   59) .  

  

 All GGH simulations include a list of  objects , a description of their 
 interactions  and  dynamics , and appropriate  initial conditions . 

 Objects in a GGH simulation are either generalized cells or 
 fields  in two dimensions (2D) or three dimensions (3D). Gener-
alized cells are spatially extended objects ( Fig.   1 ), which reside 
on a single  cell lattice  and may correspond to biological cells, 

2. GGH Applications 

3. GGH Simulation 
Overview 
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subcompartments of biological cells, or to portions of noncel-
lular materials, e.g., ECM, fluids, solids, etc.  (8,   48,   60–  72) . We 
denote a lattice site or  pixel  by a vector of integers,  i→ , the  cell 
index  of the generalized cell occupying pixel  i→  by  s ( i→ ) and the 
 type  of the generalized cell  s ( i→ ) by  t ( s (i→  )). Each generalized cell 
has a unique cell index and contains many pixels. Many general-
ized cells may share the same cell type. Generalized cells permit 
coarsening or refinement of simulations by increasing or decreas-
ing the number of lattice sites per cell, grouping multiple cells 
into clusters or subdividing cells into variable numbers of  subcells  
(subcellular compartments). Compartmental simulation permits 
detailed representation of phenomena like cell shape and polarity, 
force transduction, intracellular membranes and organelles, and 
cell-shape changes. For details on the use of subcells, which we 
do not discuss in this chapter,  see   refs.  27,   31,   73,   74 . Each gener-
alized cell has an associated list of attributes, e.g.,  cell type ,  surface 
area , and  volume , as well as more complex attributes describ-
ing a cell’s state, biochemical interaction networks, etc.  Fields  are 
continuously variable concentrations, each of which resides on 
its own lattice. Fields can represent chemical diffusants, nondif-
fusing ECM, etc. Multiple fields can be combined to represent 
materials with textures, e.g., fibers.  

  Interaction descriptions  and  dynamics  define how GGH 
objects behave both biologically and physically. Generalized-
cell behaviors and interactions are embodied primarily in the 
 e ffective energy , which determines a generalized cell’s shape, 

  Fig. 1 .   Detail of a typical two-dimensional GGH cell-lattice configuration. Each domain represents a single spatially 
extended cell. The detail shows that each generalized cell is a set of cell-lattice sites (or pixels),  i→ , with a unique index, 
 s (  i→  ), here 4 or 7. The  shade of gray  denotes the cell type,  t ( s (  i→  ))       .



 Multicell Simulations of Development and Disease Using the CompuCell3D 365

motility, adhesion, and response to extracellular signals. The 
effective energy mixes true energies, such as cell–cell adhesion, 
with terms that mimic energies, e.g., the response of a cell to a 
chemotactic gradient of a field  (75) . Adding  constraints  to the 
effective energy allows description of many other cell properties, 
including osmotic pressure, membrane area, etc.  (76–  83) . 

 The cell lattice evolves through attempts by generalized cells 
to move their boundaries in a caricature of cytoskeletally driven 
cell motility. These movements, called  index-copy attempts , change 
the effective energy, and we accept or reject each attempt with a 
probability that depends on the resulting  change of the effective 
energy ,  H , according to an  acceptance function . Nonequilibrium 
statistical physics then shows that the cell lattice evolves to locally 
minimize the total effective energy. The classical GGH imple-
ments a modified version of a classical stochastic Monte-Carlo 
pattern-evolution dynamics, called  Metropolis dynamics with 
Boltzmann acceptance   (84,   85) . A  Monte Carlo Step  ( MCS ) con-
sists of one index-copy attempt for each pixel in the cell lattice. 

  Auxiliary equations  describe cells’ absorption and secretion 
of chemical diffusants and extracellular materials (i.e., their inter-
actions with fields), state changes within cells, mitosis, and cell 
death. These auxiliary equations can be complex, e.g., detailed 
RK descriptions of complex regulatory pathways. Usually, state 
changes affect generalized-cell behaviors by changing parameters 
in the terms in the effective energy (e.g., cell target volume or type 
or the surface density of particular cell-adhesion molecules). 

  Fields  also evolve due to secretion, absorption, diffusion, 
reaction, and decay according to  partial differential equations  
(PDEs). While complex coupled-PDE models are possible, 
most simulations require only secretion, absorption, diffusion, 
and decay, with all reactions described by ODEs running inside 
individual generalized cells. The movement of cells and variations 
in local diffusion constants (or diffusion tensors in anisotropic 
ECM) mean that diffusion occurs in an environment with mov-
ing boundary conditions and often with advection. These 
constraints rule out most sophisticated PDE solvers and have 
led to a general use of simple forward-Euler methods, which 
can tolerate them. 

 The  initial condition  specifies the initial configurations of the 
cell lattice, fields, a list of cells and their internal states related to 
auxiliary equations, and any other information required to com-
pletely describe the simulation. 

   The core of GGH simulations is the  effective energy , which 
describes cell behaviors and interactions. 

 One of the most important effective-energy terms describes 
cell adhesion. If cells did not stick to each other and to extracellu-
lar materials, complex life would not exist  (86) . Adhesion provides 

3.1. Effective Energy
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a mechanism for building complex structures, as well as for hold-
ing them together once they have formed. The many families of 
adhesion molecules (CAMs, cadherins, etc.) allow embryos to 
control the relative adhesivities of their various cell types to each 
other and to the noncellular ECM surrounding them, and thus 
to define complex architectures in terms of the cell configurations 
which minimize the adhesion energy. 

 To represent variations in energy due to adhesion between 
cells of different types, we define a  boundary energy  that depends 
on  J ( t ( s ),  t (  s    ¢ )).

The  boundary energy per unit area  between two cells ( s ,  s   ¢ ) 
of given types ( t ( s ),  t ( s   ¢ )) at a  link  (the interface between two 
neighboring pixels):

 

= − δ∑� �
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neighbors

boundary
,

( ( ( )), ( ( ))) (1 ( ( ), ( ))),
i j

H J i j i jt s t s s s

   

(1)     

 where the sum is over all neighboring pairs of lattice sites  i→  and  j→ , 
and the boundary-energy coefficients are symmetric 

    J(t(s),t (s¢ )) = J(t (s¢ ),t (s)).   (2)   

 In addition to boundary energy, most simulations include 
multiple constraints on cell behavior. The use of constraints to 
describe behaviors comes from the physics of classical mechan-
ics. In the GGH context we write  constraint energies  in a general 
 elastic  form: 

   Hconstraint = l (value − target_value)2.   (3)   

 The constraint energy is zero if value = target_value (the con-
straint is  satisfied ) and grows as  value  diverges from  target_value . 
The constraint is  elastic  because the exponent of 2 effectively 
creates an ideal spring pushing on the cells and driving them 
to satisfy the constraint.  λ  is the  spring constant  (a positive real 
number), which determines the  constraint strength . Smaller val-
ues of  λ  allow the pattern to deviate more from the  equilibrium 
condition  (i.e., the condition satisfying the constraint). Because 
the constraint energy decreases smoothly to a minimum when 
the constraint is satisfied, the energy-minimizing dynamics used 
in the GGH automatically drives any configuration toward one 
that satisfies the constraint. However, because of the stochastic 
simulation method, the cell lattice need not satisfy the constraint 
exactly at any given time, resulting in random fluctuations. In 
addition, multiple constraints may conflict, leading to configura-
tions which only partially satisfy some constraints. 

 Because biological cells have a given volume at any time, most 
GGH simulations employ a  volume constraint,  which restricts vol-
ume variations of generalized cells from their target volumes: 
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 where for cell  s ,  l  vol ( s ) denotes the  inverse compressibility  of 
the cell,  v ( s ) is the number of pixels in the cell (its  volume ), 
and  V  t ( s ) is the cell’s  target volume . This constraint defines 
 P  ∫ -2 l  (v ( s ) - V t ( s )) as the  pressure  inside the cell. A cell with 
  v < Vt   has a positive internal pressure, while a cell with  v  >  V  t  has 
a negative internal pressure. 

 Since many cells have nearly fixed amounts of cell membrane, 
we often use a  surface-area constraint  of form: 
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 (5)   

 where  s ( s ) is the surface area of cell  s ,  S  t  is its target surface area, 
and  l  surf ( s ) is its  inverse membrane compressibility.1   

 Adding the boundary energy and volume constraint terms 
together ( Eqs. 1  and  4 ), we obtain the  basic   GGH effective energy : 
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  A GGH simulation consists of many attempts to copy cell indices 
between neighboring pixels. In CompuCell3D, the default dynami-
cal algorithm is  modified Metropolis dynamics . During each index-
copy attempt, we select a  target  pixel,   i→

  , randomly from the cell 
lattice, then randomly select one of its neighboring pixels,   i ′

�
  , as a 

 source  pixel (note that the neighbor range may be greater than one). 
If they belong to the same generalized cell (i.e., if   ( ) ( )i is s= ′

� �
  ) we 

do nothing. Otherwise, the cell containing the source pixel,   ( )is ′
�

  , 
attempts to occupy the target pixel. Consequently, a successful index 
copy increases the volume of the  source  cell and decreases the volume 
of the  target  cell by one pixel ( Fig.   2 ).  

 In the modified Metropolis algorithm we evaluate the change 
in the total effective energy due to the attempted index copy and 
accept the index-copy attempt with probability

   
mexp( / ) : 0;

( ( ) ( ))
1 : 0

H T H
P i i

H
s s

− Δ Δ >⎧ ⎫
→ =′ ⎨ ⎬Δ ≤⎩ ⎭

� �
    (7)   

 where   Tm   is a parameter representing the  effective cell motility  
(we can think of   Tm   as the amplitude of cell-membrane fluctua-
tions).  Equation 7  is the  Boltzmann acceptance function . Users 

 3.2. Dynamics 

 1Because of lattice discretization and the option of defining long-range neighborhoods, the surface area 
of a cell scales in a non-Euclidian, lattice-dependent manner with cell volume ( see   ref.   61  on bubble 
growth). 
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can define other acceptance functions in CompuCell3D. The 
conversion between MCS and experimental time depends on 
the average values of   DH/Tm  . MCS and experimental time are 
proportional in biologically meaningful situations  (20,   87–  89) .  

  Consider an effective energy consisting of boundary-energy and 
volume-constraint terms as in  Eq. 6 . After choosing the source 
(  i ′
�

  ) and destination (  i→  ) pixels (the cell index of the source will 
overwrite the target pixel if the index copy is accepted), we cal-
culate the change in the effective energy that would result from 
the copy. We evaluate the change in the boundary energy and 
volume constraint as follows. First, we visit the target pixel’s 
neighbors (  i ′′

�
  ). If the neighbor pixel belongs to a different gen-

eralized cell from the target pixel, i.e., when   ( ) ( )i is s≠′′
� �

   (see 
 Eq. 1 ), we decrease   DH   by   ,( ( ( )) ( ( ))J i it s t s ′′

� �
  . If the neighbor 

belongs to a cell different from the source pixel (  i ′
�

  ) we increase 
  DH   by   ,( ( ( )) ( ( ))J i it s t s′ ′′

� �
  . 

 3.3. Algorithmic 
Implementation of 
Effective-Energy 
Calculations 

  Fig. 2.    GGH representation of an index-copy attempt for two cells on a 2D square lattice – The “ white ” pixel (source) 
attempts to replace the “ gray ” pixel (target). The probability of accepting the index copy is given by  Eq. 7        .
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 The change in volume-constraint energy is evaluated accord-
ing to 
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 where   v(s ( i ′
�

))   and   v(s (i→))   denote the volumes of the general-
ized cells containing the source and target pixels, respectively. 

 In this example, we could calculate the change in the effective 
energy locally, i.e., by visiting the neighbors of the target of the index 
copy. Most effective energies are quasi-local, allowing calculations 
of   DH   similar to those presented above ( Fig.   3 ). The locality of the 
effective energy is crucial to the utility of the GGH approach. If we 
had to calculate the effective energy for the entire cell lattice for each 
index-copy attempt, the algorithm would be prohibitively slow.  

 For longer-range interactions we use the appropriate list of 
neighbors, as shown in  Fig.   4  and  Table   1 . Longer-range inter-
actions are less anisotropic but result in slower simulations.         

  Fig. 3.    Calculating changes in the boundary energy and the volume-constraint energy on a nearest-neighbor square 
lattice       .
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 One advantage of the GGH model over alternative techniques is its 
mathematical simplicity. We can implement fairly easily a computer 
program that initializes the cell lattice and fields, performs index 

 4. CompuCell3D  

 Table 1 
  Multiplicity and Euclidian distances of  n  th-nearest 
neighbors for 2D square and hexagonal lattices  

 The number of  n th neighbors and their distances from the central pixel 
differ in a 3D lattice. CompuCell3D calculates distance between neigh-
bors by setting the volume of a single pixel (whether in 2D or 3D) to 1. 

 2D Square lattice  2D Hexagonal lattice 

  Neighbor  
 order  

  Number of  
 neighbors  

  Euclidian  
 distance  

  Number of 
Neighbo r s  

  Euclidian 
  distance  

 1  4  1   6 
 

2 / 3
 

 2  4 
 2  

  6 
 

6 / 3
 

 3  4  2   6 
 

8 / 3
 

 4  8 
 5  

 12 
 

14 / 3
 

  Fig. 4.    Locations of  n th nearest neighbors on a 2D square lattice and a 2D hexagonal lattice       .
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copies, and displays the results. In the 15 years since the GGH 
model was developed, researchers have written numerous programs 
to run GGH simulations. Because all GGH implementations share 
the same logical structure and perform similar tasks, much of this 
coding effort has gone into rewriting code already developed by 
someone else. This redundancy leads to significant research over-
head and unnecessary duplication of effort and makes model repro-
duction, sharing and validation needlessly cumbersome. 

 To overcome these problems, we developed CompuCell3D 
as a framework for GGH simulations  (90,   91) . Unlike specialized 
research code, CompuCell3D is a  simulation environment  that 
allows researchers to rapidly build and run shareable GGH-based 
simulations. It greatly reduces the need to develop custom code 
and its adherence to open-source standards ensures that any such 
code is shareable. 

 CompuCell3D supports nonprogrammers by providing visu-
alization tools, an  eXtensible Markup Language  (XML) interface 
for defining simulations, and the ability to extend the framework 
through specialized modules. The C+ computational kernel of 
CompuCell3D is also accessible using the open-source scripting 
language Python, allowing users to create complex simulations 
without programming in lower-level languages such as C or C+. 
Unlike typical research code, changing a simulation does not 
require recompiling CompuCell3D. 

 Users define simulations using  CompuCell3D XML  ( CC3DML ) 
 configuration files  and/or Python scripts. CompuCell3D reads 
and parses the CC3DML configuration file and uses it to define 
the basic simulation structure, then initializes appropriate Python 
services (if they are specified) and finally executes the underlying 
simulation algorithm. 

 CompuCell3D is modular: each module carries out a defined 
task. CompuCell3D terminology calls modules associated with 
index copies or index-copy attempts  plugins . Some plugins cal-
culate changes in effective energy, while others ( lattice monitors ) 
react to accepted index copies, e.g., by updating generalized cells’ 
surface areas, volumes, or lists of neighbors. Plugins may depend 
on other plugins. For example, the Volume plugin (which cal-
culates the volume–energy constraint in  Eq. 4 ) depends on 
VolumeTracker (a lattice monitor), which, as its name suggests, 
tracks changes in generalized cells’ volumes. When implicit plugin 
dependencies exist, CompuCell3D automatically loads and initial-
izes dependent plugins. In addition to plugins, CompuCell3D 
defines modules called  steppables  which run either repeatedly after a 
defined intervals of Monte Carlo Steps or once at the beginning or 
end of the simulation. Steppables typically define initial conditions, 
alter cell states, update fields, or output intermediate results. 

  Figure   5  shows the relations among index-copy attempts, 
Monte Carlo Steps, steppables, and plugins.   
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 To show how to build simulations in CompuCell3D, the reminder 
of this chapter provides a series of examples of gradually increasing 
complexity. For each example we provide a brief explanation of 
the physical and/or biological background of the simulation and 
listings of the CC3DML configuration file and Python scripts, 
followed by a detailed explanation of their syntax and algorithms. 

 5. Building 
CC3DML-Based 
Simulations Using 
CompuCell3D  

  Fig. 5.    Flow chart of the GGH algorithm as implemented in CompuCell3D. CompuCell3D includes a Graphical User Inter-
face (GUI) and visualization tool, CompuCell Player (also referred to as Player). From Player the user opens a CC3DML 
configuration file and/or Python file and hits the “Play” button to run the simulation. Player allows users to define multiple 
2D or 3D visualizations of generalized cells, fields or various vector plots while the simulation is running and save them 
automatically for postprocessing       .
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We can specify many simulations using only a simple CC3DML 
configuration file. We begin with three examples using only 
CC3DML to define simulations. 

  XML is a text-based data-description language that allows stand-
ardized representations of data. XML syntax consists of lists of 
 elements , each either contained between opening (<Tag>) and 
closing (</Tag>) tags:2   

 5.1. A Short Introduc-
tion to XML 

 2In the text, we denote XML, CC3DML, and Python code using the Courier font. In listings presenting 
syntax, user-supplied variables are given in  italics . Broken-out listings are boxed. Punctuation at the end 
of boxes is implicit. 

  <Tag Attribute1=” text1 ”> ElementText </Tag>  

   <Tag Attribute1=”     attribute_text1 ” Attribute2 =”  
 attribute_text2  ”/>   

  <Cell> 
 <Nucleus Size=”10”/>  
  <Membrane Area=”20.5”>Expanding</Membrane>  

  </Cell>  

  We will denote the <Tag>…</Tag> syntax as a <Tag>  tag 
pair . The opening tag of an XML element may contain additional 
 attributes  characterizing the element. The content of the XML 
element ( ElementText  in the above example) and the values 
of its attributes ( text1 ,  attribute_text1 ,  attribute_
text2 ) are strings of characters. Computer programs that read 
XML may interpret these strings as other data types such as inte-
gers, Booleans, or floating point numbers. XML elements may be 
nested. The simple example below defines an element Cell with 
subelements (represented as nested XML elements) Nucleus 
and Membrane assigning the element Nucleus an attribute 
Size set to “10” and the element Membrane an attribute Area 
set to “20.5,” and setting the value of the Membrane element to 
Expanding:  

 Although XML parsers ignore indentation, all the listings pre-
sented in this chapter are block indented for better readability.  

  One of the simplest CompuCell3D simulations mimics crystal-
line grain growth, or  annealing . Most simple metals are com-
posed of microcrystals, or  grains , each of which has a particular 
crystalline-lattice orientation. The atoms at the surfaces of these 
grains have a higher energy than those in the bulk because of 
their missing neighbors. We can characterize this excess energy 

 5.2. Grain-Growth 
Simulation 

or of form:
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as a  boundary energy . Atoms in convex regions of a grain’s sur-
face have a higher energy than those in concave regions, in par-
ticular those in the concave face of an adjoining grain, because 
they have more missing neighbors. For this reason, an atom at 
a convex curved boundary can reduce its energy by “hopping” 
across the grain boundary to the concave side  (62) . The move-
ment of atoms moves the grain boundaries, lowering the net 
configuration energy through  annealing  or  coarsening , with 
the net size of grains growing because of grain disappearance. 
Boundary motion may require thermal activation because atoms 
in the space between grains may have higher energy than atoms 
in grains. The effective energy driving grain growth is simply the 
boundary energy in  Eq. 1 . 

 In CompuCell3D, we can represent grains as generalized 
cells. CC3DML  Listing   1  defines our grain-growth simulation.  

 Each CC3DML configuration file begins with the <Com-
puCell3D> tag and ends with the </CompuCell3D> tag. 
A CC3DML configuration file contains three sections in the 
following sequence: the  lattice section  (contained within the 

<CompuCell3D>
 <Potts>
  <Dimensions x=100" y="100" z="1"/>
  <Steps>10000</Steps>
  <Temperature>5</Temperature>
  <Boundary_y>Periodic</Boundary_y>
  <Boundary_x>Periodic</Boundary_x>
  <NeighborOrder>2</NeighborOrder>
 </Potts>

 <Plugin Name="CellType">
  <CellType TypeName="Medium" TypeId="0"/>
  <CellType TypeName="Grain" TypeId="1"/>  
 </Plugin>

 <Plugin Name="Contact">

  <Energy Type1="Grain" Type2="Grain">5</Energy>

<Energy Type1="Medium" Type2="Grain">0</Energy>

  <Energy Type1="Medium" Type2="Medium">0</Energy>
  <NeighborOrder>3</NeighborOrder>
 </Plugin>

 <Steppable Type="UniformInitializer">
<Region>
<BoxMin x="0" y="0" z="0"/>
<BoxMax x="100" y="100" z="1"/>
<Gap>0</Gap>
<Width>5</Width>

   <Types>Grain</Types>    
  </Region>
 </Steppable>

</CompuCell3D>
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  Listing 1.    CC3DML configuration file for 2D grain-growth simulation       .
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<Potts> tag pair), the  plugins section , and the  steppables section . 
The lattice section defines global parameters for the simulation: 
cell-lattice and field-lattice dimensions (specified using the syntax 
<Dimensions x=”x_dim” y=”y_dim” z=”z_dim”/>), 
the number of Monte Carlo Steps to run (defined within the 
<Steps> tag pair) the effective cell motility, Tm, (defined within 
the <Temperature> tag pair), and boundary conditions. The 
default boundary conditions are  no-flux . However, in this simu-
lation, we have changed them to be periodic along the  x  and  y  
axes by assigning the value Periodic to the <Boundary_x> 
and <Boundary_y> tag pairs. The value set by the <Neigh-
borOrder> tag pair defines the range over which source pixels 
are selected for index-copy attempts ( see   Fig.   4  and  Table   1 ). 

 The plugins section lists the plugins the simulation will use. 
The syntax for all plugins that require parameter specification is:  

  <Plugin Name=” PluginName   ”>  
  <ParameterSpecification/>  

  </Plugin>  

  <CellType TypeName=” Name ” TypeId=” Integer 
Number ”/>  

  <Energy Type1=” TypeName1 ” Type2=” TypeName1 ”> 
 EnergyValue </Energy>  

 The CellType plugin uses the parameter syntax  

 to map verbose generalized-cell-type names to numeric cell 
TypeIds for all generalized-cell types. It does not participate 
directly in index copies, but is used by other plugins for cell-type-
to-cell-index mapping. 

  Note : Even though the grain-growth simulation fills the 
entire cell lattice with cells of type Grain, the current imple-
mentation of CompuCell3D requires that all simulations define 
the Medium cell type with TypeId 0. Medium is a special cell 
type with unconstrained volume and surface area that fills all cell-
lattice pixels unoccupied by cells of other types. 

 The Contact plugin calculates changes in the boundary 
energy defined in  Eq. 1  for each index-copy attempt. The param-
eter syntax for the Contact plugin is:  

 where  TypeName1  and    TypeName2  are the names of the cell 
types and  EnergyValue  is the boundary-energy coefficient,   J 
( TypeName1,TypeName2 )  , between cells of  TypeName1  and 
 TypeName2  ( see   Eq. 1 ). The <NeighborOrder> tag pair spec-
ifies the interaction range of the boundary energy. The default 
value of this parameter is 1. 

 The steppables section includes only the UniformIni-
tializer steppable. All steppables have the following syntax:  
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 The Frequency attribute is optional and by default is 1 
MCS. 

 CompuCell3D simulations require specification of initial con-
dition. The simplest way to define the initial cell lattice is to use 
the built-in initializer steppables, which construct simple regions 
filled with generalized cells. 

 The UniformInitializer steppable in the grain-growth 
simulation defines one or more rectangular (parallelepiped in 3D) 
regions filled with generalized cells of user selectable types and 
sizes. We enclose each region definition within a <Region> tag 
pair. We use the <BoxMin> and <BoxMax> tags to describe the 
boundaries of the region, The <Width> tag pair defines the size 
of the square (cubical in 3D) generalized cells and the <Gap> tag 
pair creates space between neighboring cells. The <Types> tag 
pair lists the types of generalized cells. The grain-growth simula-
tion uses only one cell type, Grain, but we can also initialize cells 
using types randomly chosen from the list, as in  Listing   2 .  

  Note : The coordinate values in the  BoxMax   element  must 
be one more than the coordinates of the corresponding corner 
of the region to be filled. So to fill a square of side 10 beginning 
with pixel location  ( 5,5 )  we use the following region-boundary 
specification:  

 Listing the same type multiple times results in a proportion-
ally higher fraction of generalized cells of that type. For example,  

  Listing 2.    CC3DML code excerpt using the UniformInitializer steppable to initialize a rectangular region filled 
with 5 × 5 pixel generalized cells with randomly assigned cell types (either Condensing or NonCondensing)       .

<Steppable Type="UniformInitializer"

   <Region>

      <BoxMin x="10" y="10" z="0"/>

      <BoxMax x="90" y="90" z="1"/>

      <Gap>0</Gap>

      <Width>5</Width>

      <Types>Condensing,NonCondensing</Types>

   </Region>

</Steppable>

  <Steppable Type=” SteppableName ” Frequency=” 
   FrequencyMCS ”>  
  <   ParameterSpecification />  

  </Steppable>  

  <BoxMin x=”5” y=”5” z=”0”/>  
  <BoxMax x=”16” y=”16” z=”1”/>  

  <Types>Condensing,Condensing,NonCondensing 
</Types>  
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  Fig. 6.    Snapshots of the cell-lattice configuration for the grain-growth simulation on a 100 × 100 pixel third-neighbor 
square lattice, as specified in  Listing   1 . Boundary conditions are periodic in both directions       .

 will allocate approximately 2/3 of the generalized cells to type 
Condensing and 1/3 to type NonCondensing. Uniform-
Initializer allows specification of multiple regions. Each 
region is independent and can have its own cell sizes, types, and 
cell spacing. If the regions overlap, later-specified regions over-
write earlier-specified ones. If region specification does not cover 
the entire lattice, uninitialized pixels have type Medium. 

  Figure   6  shows sample output generated by the grain-growth 
simulation.  

 One advantage of GGH simulations compared to FE simu-
lations is that going from 2D to 3D is easy. To run a 3D grain-
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growth simulation on a 100 × 100 × 100 lattice we only need to 
make the following replacements in  Listing   1 :

   <Dimensions x=”100” y=”100” z=”1”/> →  
  <Dimensions x=”100” y=”100” z=”100”/>    

 and

   <BoxMax x=”100” y=”100” z=”1”/> → <BoxMax 
x=”100” y=”100” z=”100”/>    

 Grain growth simulations are particularly sensitive to lattice 
anisotropy, so running them on lower-anisotropy lattices is desirable. 
Longer-range lattices are less anisotropic but cause simulations to 
run more slowly. Fortunately, a hexagonal lattice of a given range 
is less anisotropic than a square lattice of the same range. To 
run the grain-growth simulation on a hexagonal lattice, we add 
<LatticeType>Hexagonal</LatticeType> to the lattice 
section in  Listing   1  and change the two occurrences of

   <NeighborOrder>3</NeighborOrder> 

  Figure   7  shows snapshots for this simulation.  
  Note : One inconvenience of the current implementation of Com-

puCell3D is that it does not automatically rescale parameter values 
when interaction range, lattice dimensionality or lattice type change. 
When changing these attributes, users must recalculate parameters 
to keep the underlying physics of the simulation the same. 

 CompuCell3D dramatically reduces the amount of code nec-
essary to build and run a simulation. The grain-growth simula-
tion took about 25 lines of CC3DML instead of 1,000 lines of 
C, C++ or Fortran.  

  Cell sorting is an experimentally observed phenomenon in which 
cells with different adhesivities are randomly mixed and reag-
gregated. They can spontaneously sort to reestablish coherent 
homogenous domains  (92,   93) . Sorting is a key mechanism in 
embryonic development. 

 The grain-growth simulation used only one type of generalized 
cell. Simulating sorting of two types of biological cell in an aggregate 
floating in solution is slightly more complex.  Listing   3  shows a simple 
cell-sorting simulation. It is similar to  Listing   1  with a few additional 
modules (shown in  bold ). The effective energy is that in  Eq. 6 .  

 The most significant departure from the lattice section in 
 Listing   1  is that we omit the boundary condition specification 
and use default no-flux boundary conditions. 

 5.3. Cell-Sorting 
Simulation 

to

<NeighborOrder>1</NeighborOrder>    
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 In the CellType plugin we introduce the two cell types, 
Condensing and NonCondensing, in place of Grain. In 
addition, we do not fill the lattice completely with Condensing 
and NonCondensing cells, so the interactions with Medium 
become important. The boundary-energy matrix in the Con-
tact plugin thus requires entries for the additional cell-type pairs. 
The hierarchy of boundary energies listed results in cell sorting. 

 We also add the Volume plugin, which calculates the vol-
ume-constraint energy as given in  Eq. 4 . In this plugin the 
<TargetVolume> tag pair sets target volume    V t = 25   for both 
Condensing and NonCondensing cells; similarly, the <Lambda-
Volume> tag pair sets the constraint strength   lvol = 2.0   for both 
cell types. We will see later how to define volume-constraint 
parameters for each cell type or each cell individually. 

 In the cell-sorting simulation we initialize the cell lattice 
using the BlobInitializer steppable, which specifies circular 
(or spherical in 3D) regions filled with square (or cubical in 3D) 
cells of user-defined size and types. The syntax is very similar to 
that for UniformInitializer. 

 Looking in detail at the syntax of BlobInitializer in 
 Listing   3 , the <Radius> tag pair defines the radius of a circular 

  Fig. 7.    Snapshots of the cell-lattice configuration for the grain-growth simulation on a 100 × 100 pixel first-neighbor hex-
agonal lattice as specified in  Listing   1  with substitutions described in the text. The  x  and  y  length units in an hexagonal lattice 
differ, resulting in differing  x  and  y  dimensions for a cell lattice with an equal number of pixels in the  x  and  y  directions       .



380 Swat et al.

<CompuCell3D>
 <Potts>

<Dimensions x="100" y="100" z="1"/>
  <Steps>10000</Steps>
  <Temperature>10</Temperature>
  <NeighborOrder>2</NeighborOrder> 
 </Potts>

 <Plugin Name="Volume">
  <TargetVolume>25</TargetVolume>
  <LambdaVolume>2.0</LambdaVolume>
 </Plugin>

<Plugin Name="CellType">
  <CellType TypeName="Medium" TypeId="0"/>
  <CellType TypeName="Condensing" TypeId="1"/>
  <CellType TypeName="NonCondensing" TypeId="2"/>
 </Plugin>

 <Plugin Name="Contact">
  <Energy Type1="Medium" Type2="Medium">0</Energy>
  <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy>
  <Energy Type1="Condensing"    Type2="Condensing">2</Energy>
  <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>
  <Energy Type1="NonCondensing" Type2="Medium">16</Energy>
  <Energy Type1="Condensing"    Type2="Medium">16</Energy>
  <NeighborOrder>2</NeighborOrder>
 </Plugin>

<Steppable Type="BlobInitializer">
  <Region>
   <Gap>0</Gap>
   <Width>5</Width>
   <Radius>40</Radius>

<Center x="50" y="50" z="0"/>
<Types>Condensing,NonCondensing</Types>

</Region>
</Steppable>

</CompuCell3D>

  Listing 3.    CC3DML configuration file simulating cell sorting between Condensing and NonCondensing cell 
types.  Highlighted text indicates modules absent in  Listing 1 . Notice how little modification of the grain-growth CC3DML 
 configuration file this simulation requires.       

(or spherical) domain of cells in pixels. The <Center> tag, 
with syntax <Center x=” x_position ” y=”   y_position ” 
z=” z_position ”/>, defines the coordinates of the center of 
the domain. The remaining tags are the same as for Uniform-
Initializer. As with UniformInitializer, we can define 
multiple regions. We can use both UniformInitializer and 
BlobInitializer in the same simulation. In the case of over-
lap, later-specified regions overwrite earlier ones. 

 We show snapshots of the cell-sorting simulation in  Fig.   8 . 
The less cohesive NonCondensing cells engulf the more cohe-
sive Condensing cells, which cluster and form a single central 
domain. By changing the boundary energies, we can produce 
other cell-sorting patterns  (94,   95) .   
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  In the two simulations we have presented so far, the cellular 
pattern develops without fields. Often, however, biological pattern-
ing mechanisms require us to introduce and evolve chemical fields 
and to have cells’ behaviors depend on the fields. To illustrate the 
use of fields, we model the in vitro behavior of bacteria and mac-
rophages in blood. In the famous experimental movie taken in the 
1950s by David Rogers at Vanderbilt University, the macrophage 
appears to chase the bacterium, which seems to run away from the 
macrophage. We can model both behaviors using cell secretion of 
diffusible chemical signals and movement of the cells in response to 
the chemicals ( chemotaxis ): the bacterium secretes a signal (a  che-
moattractant ) that attracts the macrophage and the macrophage 
secretes a signal (a  chemorepellant ) that repels the bacterium  (96) . 

  Listing   4  shows the CC3DML configuration file for the 
bacterium-and-macrophage simulation.  

 5.4. Bacterium-
and-Macrophage 
Simulation 

  Fig. 8.    Snapshots of the cell-lattice configurations for the cell-sorting simulation in  Listing   3 . The boundary-energy hier-
archy drives NonCondensing ( light gray ) cells to surround Condensing ( dark gray ) cells. The  white  background denotes 
surrounding Medium       .
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 Listing 4.       CC3DML configuration file for the bacterium-and-macrophage simulation.       

<CompuCell3D>
 <Potts>

<Dimensions x="100" y="100" z="1"/>
  <Steps>100000</Steps>
  <Temperature>20</Temperature>
  <LatticeType>Hexagonal</LatticeType>
 </Potts>

<Plugin Name="CellType">
  <CellType TypeName="Medium" TypeId="0"/>
  <CellType TypeName="Bacterium" TypeId="1" />
  <CellType TypeName="Macrophage" TypeId="2"/>    
  <CellType TypeName="Red" TypeId="3"/>    
  <CellType TypeName="Wall" TypeId="4" Freeze=""/>    
 </Plugin>

 <Plugin Name="VolumeFlex">
 <VolumeEnergyParameters CellType="Macrophage" TargetVolume="150"

LambdaVolume="15"/>
  <VolumeEnergyParameters CellType="Bacterium" TargetVolume="10"

LambdaVolume="60"/>
  <VolumeEnergyParameters CellType="Red" TargetVolume="100"

LambdaVolume="30"/>
 </Plugin>

 <Plugin Name="SurfaceFlex">
  <SurfaceEnergyParameters CellType="Macrophage" TargetSurface="50"

LambdaSurface="30"/>
  <SurfaceEnergyParameters CellType="Bacterium" TargetSurface="10"

LambdaSurface="4"/>
  <SurfaceEnergyParameters CellType="Red" TargetSurface="40"

LambdaSurface="0"/>
 </Plugin>

 <Plugin Name="Contact">
  <Energy Type1="Medium" Type2="Medium">0</Energy>
  <Energy Type1="Macrophage" Type2="Macrophage">150</Energy>
  <Energy Type1="Macrophage" Type2="Medium">8</Energy>
  <Energy Type1="Bacterium" Type2="Bacterium">150</Energy>
  <Energy Type1="Bacterium" Type2="Macrophage">15</Energy>
  <Energy Type1="Bacterium" Type2="Medium">8</Energy>
  <Energy Type1="Wall" Type2="Wall">0</Energy>
  <Energy Type1="Wall" Type2="Medium">0</Energy>
  <Energy Type1="Wall" Type2="Bacterium">150</Energy>
  <Energy Type1="Wall" Type2="Macrophage">150</Energy>
  <Energy Type1="Wall" Type2="Red">150</Energy>
  <Energy Type1="Red" Type2="Red">150</Energy>
  <Energy Type1="Red" Type2="Medium">30</Energy>
  <Energy Type1="Red" Type2="Bacterium">150</Energy>
  <Energy Type1="Red" Type2="Macrophage">150</Energy>
  <NeighborOrder>2</NeighborOrder>
 </Plugin>

 <Plugin Name="Chemotaxis">
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 The simulation has five generalized-cell types: Medium, Bac-
terium, Macrophage, Red (blood) cells, and a surrounding 
Wall. It also has two diffusible fields, representing a chemoattract-
ant, ATTR, and a chemorepellent, REP. Because the default bound-
ary-energy between any generalized-cell type and the edge of the 
cell lattice is zero, we define a surrounding wall to prevent cells from 
sticking to the cell-lattice boundary. As in our previous simulations, 
we assign cell types using the CellType plugin. Note the new syn-
tax in the line specifying the cell type making up the walls:   

<ChemicalField Source="FlexibleDiffusionSolverFE" Name="ATTR">
  <ChemotaxisByType Type="Macrophage" Lambda="1"/>
  </ChemicalField>

  <ChemicalField Source="FlexibleDiffusionSolverFE" Name="REP">
   <ChemotaxisByType Type="Bacterium" Lambda="-0.1"/>
  </ChemicalField>
 </Plugin>

 <Steppable Type="FlexibleDiffusionSolverFE">
  <DiffusionField>
   <DiffusionData>
    <FieldName>ATTR</FieldName>
    <DiffusionConstant>0.10</DiffusionConstant>
    <DecayConstant>0.00005</DecayConstant>
    <DoNotDiffuseTo>Wall</DoNotDiffuseTo> 
    <DoNotDiffuseTo>Red</DoNotDiffuseTo> 
  </DiffusionData>

<SecretionData>
<Secretion Type="Bacterium">200</Secretion>

</SecretionData>
</DiffusionField>

<DiffusionField>
<DiffusionData>
<FieldName>REP</FieldName>
<DiffusionConstant>0.10</DiffusionConstant>
<DecayConstant>0.001</DecayConstant>

  <DoNotDiffuseTo>Wall</DoNotDiffuseTo> 
 <DoNotDiffuseTo>Red</DoNotDiffuseTo> 

   </DiffusionData>
 <SecretionData>
 <Secretion Type="Macrophage">200</Secretion>

  </SecretionData>
 </DiffusionField>

 </Steppable>

 <Steppable Type="PIFInitializer">
  <PIFName>bacterium_macrophage_2D_wall_v3.pif</PIFName>
 </Steppable>

</CompuCell3D>

<CellType TypeName=”Wall” TypeId=”4” Freeze=””/>    
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 The Freeze=”” attribute excludes generalized cells of type 
Wall from participating in index copies, which makes the walls 
immobile. 

 We replace the Volume plugin with VolumeFlex and add 
the plugin SurfaceFlex. These plugins allow independent 
assignment of target values and constraint strengths in the volume-
constraint and surface-constraint energies ( Eqs. 4  and  5 ). These 
plugins require a line for each generalized-cell type, specifying the 
type name and the target volume (or target surface area), and lvol 
(or  lsurf   ) for that generalized-cell type:

  Fig. 9 .   Connecting a field to GGH dynamics using a chemotaxis-energy term. The difference in the value of the field  c  at the 
source ( i

Æ
¢ ) and target ( i

Æ
) pixels changes the ΔH of the index-copy attempt. Here c (i

Æ
) > c(i

Æ¢) and l > 0, so ΔH chem  < 0, 
increasing the probability of accepting the index-copy attempt in  Eq. 7        .

   <VolumeEnergyParameters CellType=” Name ” 
TargetVolume=” Value ” LambdaVolume=” Value “/>    

 We implement the actual bacterium-macrophage “chasing” 
mechanism using the Chemotaxis plugin, which specifies how a 
generalized cell of a given type responds to a field. The Chemotaxis 
plugin biases a cell’s motion up or down a field gradient by changing 
the calculated effective-energy change used in the acceptance func-
tion,  Eq. 7  by the addition of a term DHchem. For a field c (i→):

 chem chem ( ( ) ( )),H c i c il ¢Δ = − −
� �

   (9)     

 where   c (i→)    is the chemical field value at the index-copy target 
pixel, c (i→¢ ) is the field at the index-copy source pixel, and lchem   is 
the strength and direction of chemotaxis. If lchem > 0 and c (i→) >c 
c (i→¢ ), then DHchem is negative, increasing the probability of accept-
ing the index copy in  Eq. 7  ( Fig.   9 ). The net effect is that the 
cell moves up the field gradient with a velocity ∼ lchem ∇

→
c (i.e., the 

field describes a chemoattractant for the cell). If  lchem      is negative, 
the opposite occurs, and the cell will move down the field gradi-
ent (the chemo repellant for the cell). Plugins with more sophisti-
cated DHchem  calculations (e.g., including response saturation) are 
available within CompuCell3D (see the  CompuCell3D User Guide 
http://www.compucell3d.org ).  
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 In the Chemotaxis plugin we must identify the names of 
the fields, where the field information is stored, the list of the 
generalized-cell types that will respond to the fields, and the 
strength and direction of the response (Lambda = lchem    ). The 
information for each field is specified using the syntax   

<ChemicalField Source=” where field is stored ” 
Name=”   field name ”>  

  <ChemotaxisByType Type=” cell_type1 ” 
Lambda=” lambda1 ”/>  

  <ChemotaxisByType Type=” cell_type2 ” 
Lambda=” lambda1 ”/>  
  </ChemicalField>    

 In our current example, the first field, named ATTR, is stored 
in FlexibleDiffusionSolverFE. Macrophage cells are 
attracted to ATTR with   lchem = 1  . None of the other cell types 
responds to ATTR. Similarly, Bacterium cells are repelled by 
REP with l chem  = − 0.1 .

 Keep in mind that fields are  not  created within the Chem-
otaxis plugin, which only specifies how different cell types 
respond to the fields. We define and store the fields elsewhere. 
Here, we use the FlexibeDiffusionSolverFE steppable as 
the source of our fields. The FlexibleDiffusionSolverFE 
steppable is the main CompuCell3D tool for defining diffusing 
fields, which evolve according to the diffusion equation: 

 2( )
( ) ( ) ( ) ( ) ( ),

c i
D i c i k i c i s i

t
∂ = ∇ − +

∂

�
� � � � �    (10)   

 where   c (i→)   is the field concentration and   D (i→)  ,   k (i→)  , and   s (i→)   
denote the diffusion constant (in m 2 /s), decay constant (in s −1 ), 
and secretion rates (in concentration/s) of the field, respectively. 
  D (i→)  ,   k (i→)  , and   s (i→)   may vary with position and cell-lattice 
configuration. 

 As in the Chemotaxis plugin, we may define the behaviors of 
multiple fields, enclosing each one within <DiffusionField> 
tag pairs. For each field, users provide values for the name of the 
field (using the <FieldName> tag pair), the diffusion constant 
(using the <DiffusionConstant> tag pair), and the decay con-
stant (using the <DiffusionConstant> tag pair), all enclosed 
by the <DiffusionData> tag pair. 

  Note : Forward-Euler methods are numerically unstable for 
large diffusion constants, limiting the maximum nominal diffu-
sion constant allowed in CompuCell3D simulations. However, 
by increasing the PDE-solver calling frequency, which reduces 
the effective time step, CompuCell3D can simulate arbitrarily 
large diffusion constants. For more information, see the  Compu-
Cell3D User Guide . 
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 Each optional <DoNotDiffuseTo> tag pair, with syntax

 prevents the field from diffusing into field-lattice pixels where the 
corresponding cell-lattice pixel,   i→  , is occupied by a cell,   s (i→)  , of 
the specified type. In our case, chemical fields do not diffuse into 
the pixels occupied by Wall or Red cells. The optional <Secre-
tionData> tag pair defines a subsection which identifies cell 
types that secrete or absorb the field and the rates of secretion:

   <DoNotDiffuseTo> cell_type </DoNotDiffuseTo>    

   <SecretionData>  

  <Secretion Type=” cell_type1 ”> real_rate1 </
Secretion>  

  <Secretion Type=” cell_type2 ”> real_rate2 </
Secretion>  

  <SecretionData>    

 A negative  rate  simulates absorption. In the bacterium and 
macrophage simulation, Bacterium cells secrete ATTR and 
Macrophage cells secrete REP. 

 We load the initial configuration for the bacterium-and-mac-
rophage simulation using the PIFInitializer steppable. Many 
simulations require initial generalized-cell configurations that we 
cannot easily construct from primitive regions filled with cells using 
BlobInitializer and UniformInitializer. To allow 
maximum flexibility, CompuCell3D can read the initial cell-lattice 
configuration from Pixel Initialization Files (PIFs). A PIF is a text 
file that allows users to assign multiple rectangular (parallelepiped 
in 3D) pixel regions or single pixels to particular cells. 

 Each line in a PIF has the syntax

    Cell_id Cell_type x_low x_high y_low y_high 
z_low z_high     

 where  Cell_id  is a unique cell index. A PIF may have multiple, 
possibly non-adjacent, lines starting with the same  Cell_id ; all 
lines with the same  Cell_id  define pixels of the same generalized 
cell. The values  x_low ,  x_high ,  y_low ,  y_high ,  z_low , and 
 z_high  define rectangles (parallelepipeds in 3D) of pixels belong-
ing to the cell. In the case of overlapping pixels, a later line over-
writes pixels defined by earlier lines. The following line describes a 
6 × 6-pixel square cell with cell index 0 and type Amoeba:

   0 Amoeba 10 15 10 15 0 0    

 If we save this line to the file “amoebae.pif,” we can load it 
into a simulation using the following syntax:
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   <Steppable Type=”PIFInitializer”>  

  <PIFName>amoebae.pif</PIFName>  

  </Steppable>    

 Listing 5.       Simple PIF initializing two cells, one each of type Bacterium and Amoeba.       

0 Amoeba 10 15 10 15 0 0

1 Bacterium 25 30 25 30 0 0

0 Amoeba 16 16 15 15 0 0

1 Bacterium 25 27 31 35 0 0

  Fig. 10 .   Initial configuration of the cell lattice based on the PIF in  Listing   5 . In practice, because constructing complex PIFs 
by hand is cumbersome, we generally use custom-written scripts to generate the file directly, or convert images stored 
in graphical formats (e.g., gif, jpeg, png) from experiments or other programs       .

  Listing   5  illustrates how to construct arbitrary shapes using a 
PIF. Here we define two cells with indices 0 and 1, and cell types 
Amoeba and Bacterium, respectively. The main body of each 
cell is a 6 × 6 square to which we attach additional pixels.  

 All lines with the same cell index (first column) define a single cell. 
  Figure   10  shows the initial cell-lattice configuration speci-

fied in  Listing   5 .  
  Listing    6   shows the PIF for the bacterium-and-macrophage 

simulation.  
 In  Listing   4 , we read the cell-lattice configuration from the file 

“bacterium_macrophage_2D_wall_v3.pif” using the lines:
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  Listing 6.    PIF defining the initial cell-lattice configuration for the bacterium-and-macrophage simulation. The file is stored 
as “bacterium_macrophage_2D_wall_v3.pif”.       
0 Red 10 20 10 20 0 0

1 Red 10 20 40 50 0 0

2 Red 10 20 70 80 0 0

3 Red 40 50 0 10 0 0

4 Red 40 50 30 40 0 0

5 Red 40 50 60 70 0 0

6 Red 40 50 90 95 0 0

7 Red 70 80 10 20 0 0

8 Red 70 80 40 50 0 0

9 Red 70 80 70 80 0 0

10 Wall 0 99 0 1 0 0

10 Wall 98 99 0 99 0 0

10 Wall 0 99 98 99 0 0

10 Wall 0 1 0 99 0 0

11 Bacterium 5 5 5 5 0 0

12 Macrophage 35 35 35 35 0 0 

13 Bacterium 65 65 65 65 0 0

14 Bacterium 65 65 5 5 0 0

15 Bacterium 5 5 65 65 0 0

16 Macrophage 75 75 95 95 0 0 

17 Red 24 28 10 20 0 0

18 Red 24 28 40 50 0 0

19 Red 24 28 70 80 0 0

20 Red 40 50 14 20 0 0

21 Red 40 50 44 50 0 0

22 Red 40 50 74 80 0 0

23 Red 54 59 90 95 0 0

24 Red 70 80 24 28 0 0

25 Red 70 80 54 59 0 0

26 Red 70 80 84 90 0 0

27 Macrophage 10 10 95 95 0 0

   <Steppable Type=”PIFInitializer”>  

  <PIFName>bacterium_macrophage_2D_wall_
v3.pif</PIFName>  

  </Steppable>    

  Figure   11  shows snapshots of the bacterium-and-macrophage 
simulation. By adjusting the properties and number of bacteria, 
macrophages and red blood cells and the diffusion properties of 
the chemical fields, we can build a surprisingly good reproduction 
of the experiment.    
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 CC3DML is convenient for building simple simulations such as 
those we presented above. To describe more complex simulations, 
CompuCell3D allows users to write specialized, shareable modules 
in C/C++ (through the  CompuCell3D Application Programming 
Interface , or  CC3D API ) or Python (through a Python-scripting 
interface). C and C++ modules have the advantage that they run 
at native speed. However, developing them requires knowledge 
of both C/C++ and the CC3D API, and their integration with 
CompuCell3D requires recompilation of the source code. Python 
module development is less complicated, since Python has simpler 
syntax than C/C++ and users can modify and extend a library of 
Python-module templates included with CompuCell3D. Moreover, 
Python modules do not require recompilation. 

 Tasks performed by CompuCell3D modules either relate 
to index-copy attempts ( plugins ) or run either once, at the 
beginning or end of a simulation, or once every several MCS 
( steppables ). Tasks running every index-copy attempt, like 

 6. Python Scripting  

  Fig. 11 .   Snapshots of the bacterium-and-macrophage simulation from    Listing 4    and the PIF in    Listing 6    saved in the 
file “bacterium_macrophage_2D_wall_v3.pif.” The  upper row  shows the cell-lattice configuration with the Macrophages 
in  gray , Bacteria in  white with black  borders, red blood cells in  dark gray , and Medium in  white .  The middle row  shows 
the concentration of the chemoattractant ATTR secreted by the Bacteria. The  bottom row  shows the concentration of the 
chemorepellant REPL secreted by the Macrophages. The bars at the  bottom  of the field images show the concentration 
scales ( white , low concentration;  black , high concentration)       .
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 effective-energy-term calculations, are the most frequently-called 
tasks in a GGH simulation and writing them in Python may slow 
down simulations.  Steppables  and lattice monitors are called less 
frequently and thus they are good candidates for Python imple-
mentation. Using Python scripts users can perform cell param-
eter adjustments that depend on the state of the simulation,  e.g.  
simulating cell growth in response to a certain chemical, cell-type 
differentiation and changes in cell-cell adhesion,  etc .

    Python is an object-oriented scripting language with all the 
syntactic constructs present in any modern programming lan-
guage. Python supports popular flow-control statements such as 
if-elif-else conditional instructions and for and while 
loops. Unlike C/C++, Python does not use “;” to end lines or “{” 
and “}” to define code blocks. Instead, Python relies on inden-
tation to define blocks of code. if statements, for or while 
loops and their subsections are created by a “:” and increasing 
the level of indentation. The end of a block is indicated by a 
decrease in the level of indentation. Python uses the “=” operator 
for assignments and “= =” for checking equality between objects. 
For example, in the following code:

 6.1. A Short 
Introduction to Python 

 Here, real is a member of the Python class complex, which 
represents complex numbers. If the object has composite subob-
jects, we use the “.” operator recursively:

    b=2  

  vif b==2:  

  a=10  

  for c in range(0,a):  

  b=a+c  

  print b    

 we indent the body of the if statement and the body of the inner 
for loop. The for loop is executed inside the if statement. 
a=0 assigns the variable a a value of 10, while b==2 is true if 
b has a value of 2. The for loop assigns the variable c values 0 
through a−1 and executes instructions inside the loop body. 

 As an object-oriented language, Python supports  classes , 
 inheritance , and  polymorphism . Accessing  members  of  objects  uses 
the “.” operator. For example, to access the real part of a complex 
number, we use the following code:

   a=complex(2,3)  

  a=1.5+0.5j  

  print a.real    
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   object.subobject.member_of_subobject    

 Users may define Python objects without declaring their 
type. A single data structure such as a list or dictionary can store 
objects of multiple types. Python provides automatic memory 
management, which frees users from remembering to deallocate 
memory for objects that are no longer used. 

 Long source code lines can be carried over to the following 
line using the “\” character:

   very_long_variable_name = \ 
very_long_variable_name * very_important_constant  

    Note : Double underscore “__” has a reserved meaning in Python 
and should not be confused with a single underscore “_”. 

 We will present additional Python features in the subsequent sec-
tions and explain, step-by-step, some basic concepts of Python pro-
gramming (for more on Python, see  Learning Python , by Mark Lutz 
 (97) ). For more information on Python scripting in CompuCell3D, 
see our  Python Tutorials  and  CompuCell3D User Guide  (available 
from the CompuCell3D website,    http://www.compucell3d.org     ).  

   Python scripting allows users to augment their CC3DML configu-
ration files with Python scripts or to code their entire simulations 
in Python (in which case the Python script looks very similar to the 
CC3DML script it replaces).  Listing   7  shows the standard block 
of template code for running a Python script in conjunction with a 
CC3DML configuration file.  

 The import sys line provides access to standard functions 
and variables needed to manipulate the Python runtime environ-
ment. The next two lines

 6.2. Building 
Python-Based 
CompuCell3D 
Simulations 

   from os import environ  

  from os import getcwd    

 import environ and getcwd housekeeping functions into the 
current  namespace  (i.e., current script) and are included in all of 
our Python programs. In the next three lines,

   import string  

  sys.path.append(environ[“PYTHON_MODULE_\
PATH”])  

  import CompuCellSetup    

 we import the string module, which contains convenience func-
tions for performing operations on strings of characters; set the 
search path for Python modules; and import the CompuCell-
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Setup module, which provides a set of convenience functions 
that simplify initialization of CompuCell3D simulations. 

 Next, we create and initialize the core CompuCell3D modules:

 Listing 7.       Basic Python template to run a CompuCell3D simulation through a Python interpreter. Later examples will be 
based on this script.       
import sys

from os import environ

from os import getcwd

import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here

steppableRegistry=CompuCellSetup.getSteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

   sim,simthread = CompuCellSetup.getCoreSimu\ 
lationObjects()  

  CompuCellSetup.initializeSimulationObjects\
(sim,simthread)    

 We then create a steppable  registry  (a Python  container  that 
stores steppables, i.e., a list of all steppables that the Python code 
can access) and pass it to the function that runs the simulation:

   steppableRegistry=CompuCellSetup.getSteppable\
Registry()  

  CompuCellSetup.mainLoop(sim,simthread,\
steppableRegistry)    

 In  Subheading 6.3 , we extend this template to build a sim-
ple simulation.  
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  Suppose that we would like to add a caricature of oscillatory gene 
expression to our cell-sorting simulation ( Listing   3 ) so that cells 
exchange types every 100 MCS. We will implement the changes 
to cell types using a Python steppable, since it occurs at intervals 
of 100 MCS. 

  Listing     8   shows the changes to the Python template in  Listing   7  
that are necessary to create the desired type switching (changes are 
shown in  bold ).  

 A CompuCell3D steppable is a  class  (a type of  object ) that 
holds the parameters and functions necessary for carrying out a task. 
Every steppable defines at least four functions: __init__(self, 
_simulator, _frequency), start(self), step(self, 
mcs), and finish(self). 

 6.3. Cell-Type-
Oscillator Simulation 

 Listing 8.       Python script expanding the template code in  Listing 7  into a simple TypeSwitcherSteppable 
steppable. The code illustrates dynamic modification of cell parameters using a Python script. Lines added to  Listing 
7  are shown in  bold.        
import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup
sim,simthread = CompuCellSetup.getCoreSimulationObjects()

from PySteppables import *
class TypeSwitcherSteppable(SteppablePy):
   def __init__(self,_simulator,_frequency=100):
      SteppablePy.__init__(self,_frequency)
      self.simulator=_simulator
      self.inventory=self.simulator.getPotts().getCellInventory()
      self.cellList=CellList(self.inventory)

   def step(self,mcs):
      for cell in self.cellList:
         if cell.type==1:
            cell.type=2
         elif (cell.type==2):
            cell.type=1
         else:
            print "Unknown type. In cellsort simulation there should\
            only be two types 1 and 2"

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

typeSwitcherSteppable=TypeSwitcherSteppable(sim,100);
steppableRegistry.registerSteppable(typeSwitcherSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)
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 CompuCell3D calls the start(self) function once at the 
beginning of the simulation before any index-copy attempts. It 
calls the step(self, mcs) function periodically after every 
_frequency MCS. It calls the finish(self) function once 
at the end of the simulation.  Listing   8  does not have explicit 
start(self) or finish(self) functions. Instead, the class 
definition:

   class TypeSwitcherSteppable(SteppablePy):    

 causes the TypeSwitcherSteppable to inherit components 
of the SteppablePy class. SteppablePy contains default 
definitions of the start(self), step(self,mcs), and 
finish(self) functions. Inheritance reduces the length of the 
user-written Python code and ensures that the TypeSwitcher-
Steppable object has all needed components. The line

   from PySteppables import *    

 makes the content of the “PySteppables.py” file (or module) 
available in the current namespace. The PySteppables module 
includes the SteppablePy  base class . 

 The __init__ function is a  constructor  that accepts user-
defined parameters and initializes a steppable object. Consider 
the __init__ function of the TypeSwitcherSteppable:

   def __init__(self,_simulator,_frequency=100):  

  SteppablePy.__init__(self,_frequency)  

  self.simulator=_simulator  

  self.inventory=self.simulator.getPotts()\
.getCellInventory()  

  self.cellList=CellList(self.inventory)    

 In the def line, we pass the necessary parameters: self (which 
is used in Python to access class variables from within the class), 
_simulator (the main CompuCell3D kernel object which runs 
the simulation), and _frequency (which tells steppableReg-
istry how often to run the steppable here, every 100 MCS). Next 
we call the constructor for the inheritance class, SteppablePy, 
as required by Python. The statement

   self.simulator=_simulator    

 assigns to the class variable self.simulator a reference to 
the _simulator object, passed from the main script. We can 
think of a Python reference as a pointer variable that stores the 
address of some object but not a copy of the object itself. The 
last two lines construct a list of all generalized cells in the simula-
tion, a  cell inventory , which allows us to visit all of the cells with 
a simple for loop to perform various tasks. The cell inventory is 
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a dynamic structure, i.e., it updates automatically when cells are 
created or destroyed during a simulation. 

 The section of the TypeSwitcherSteppable steppable that 
implements the cell-type switching is found in the step(self, 
mcs) function:

   def step(self,mcs):  

  for cell in self.cellList:  

  if cell.type==1:  

  cell.type=2  

  elif (cell.type==2):  

  cell.type=1

else:  

  print “Unknown type”    

 We use the cell inventory to iterate over all cells in the sim-
ulation and reassign their cell types between cell.type 1 and 
cell.type 2. If we encounter a cell.type that is neither 1 
nor 2 (which we should not), we print an error message. 

 Once we have created a steppable (i.e., created an object of class 
TypeSwitcherSteppable) we must register it using the regis-
terSteppable function from the steppableRegistry object:

   typeSwitcherSteppable=TypeSwitcherSteppable\
(sim,100);  

  steppableRegistry.registerSteppable(typeSwi\
tcherSteppable)    

 CompuCell3D will not run unregistered steppables.
As we will see, much of the script is not specific to this exam-

ple. We will recycle it with slight changes in later examples.    Fig-
ure   12  shows snapshots of the cell-type-oscillator simulation.  

 We mentioned earlier that users can run simulations without a 
CC3DML configuration file.  Listing   9  shows the cell-type-oscilla-
tor simulation written entirely in Python, with changes to Listing 
 8  shown in  bold .  

 The configureSimulation function replaces the 
CC3DML file from Listing 3. After importing CompuCellSetup 
and ElementCC3D from XMLUtils module, we have access to 
functions and modules that provide all the functionality necessary 
to code the simulation in Python. The general Python syntax cor-
responding to the opening lines of each CC3DML block is:

    nameElem=parentElement.ElementCC3D(“Name”),     

 where “Name” refers to the name of the section in a CC3DML con-
figuration file ( e.g.  Compucell3D, Potts, Plugin, Step-
pable). parentElement denotes CC3DML element containing 
element “Name”. The rest of the block usually follows the syntax:



396 Swat et al.

    tagNameElem=parentElement.ElementCC3D\
(“TagName”,{attributes},value),     

  Fig. 12.    Results of the Python cell-type-oscillator simulation using the TypeSwitcherSteppable steppable implemented in  List-
ing   8  in conjunction with the CC3DML cell-sorting simulation in  Listing   3 . Cells exchange types and corresponding adhesivities 
and colors every 100 MCS; i.e., between  t  = 90 MCS and  t  = 110 MCS and between  t  = 1,490 MCS and  t  = 1,510 MCS       .

 where “TagName” corresponds to the tag pair used to assign a value 
to a the parameter in a CC3DML file or, for values within subsections:

    parentElement.ElementCC3D(“SubSection”,\
{att ributes},value).     

 In case CC3DML element has only value but no attributes ( e.g.  
<Temperature>10</Temperature>) we use the following 
syntax:

    tagName=parentElement.ElementCC3D(“TagName”,\
{},value).     

 For CC3DML elements with attributes only and no values ( e.g. 
 <Dimensions x=”100” y=”100” z=”1” />) the correct syn-
tax is shown below:

    tagName= parentElement.ElementCC3D(“TagName”,\
{attributes}).     
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Finally, for CC3DML elements with no attributes and no values 
( e.g.  <Potts>) we use syntax of the form:

 Listing 9.       Stand-alone Python cell-type-oscillator script containing an initial section that replaces the CC3DML con-
figuration file from  Listing 3 . Lines added to  Listing 8  are shown in   bold .        

tagName= parentElement.ElementCC3D(“TagName”).

In the first block, corresponding to the <Potts> section of 
CC3DML code, we input the cell-lattice parameter values using 
rules and syntax described above:

potts.ElementCC3D(“ParameterName”,{attributes},\
value)

where ParameterName matches a parameter name used in the 
CC3DML lattice section. 

Next we define the cell types using the syntax:

cellType.ElementCC3D(“CellType”,{“TypeName:\ 
type, “TypeId: id }).

The next section assigns contact energies between the cell 
types:

contact.ElementCC3D(“Energy”,{“Type1”: type,\ 
“Type2”: type },value).

We input the rest of the parameter values in a similar fashion, 
following the general syntax described above.

The examples in Listing 8 and Listing 9 define the Type-
SwitcherSteppable class within the main Python script, but 
separating extension modules from the main script and using an 
import statement to refer to modules stored in external files is 
more practical because it ensures that each module can be used in 
multiple simulations without duplicating source code, and makes 
the scripts more readable and editable. We will follow this conven-
tion in our remaining examples.
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   CompuCell3D can simulate simple physical experiments with 
foams. Indeed, GGH techniques grew out of foam-simulation 
techniques  (73) . Our next example shows how to use CC3DML 
and Python scripts to simulate quasi-2D foam flow. 

 The experimental apparatus ( Fig.   13 ) consists of a chan-
nel created by two parallel rectangular glass plates separated by 
5 mm, with the gap between their long sides sealed and that 
between their short sides open. A foam generator injects small, 
uniform-sized bubbles at one short end, pushing older bubbles 
toward the open end of the channel, creating a foam flow. The 
top glass plate has a hole through which we inject air. Bubbles 
passing under this point grow because of the air injected into 
them, forming characteristic patterns ( Fig.   14 )  (98) .   

 6.4. Two-Dimensional 
Foam-Flow Simulation 

  Fig. 13 .   Schematic of experiment for studying quasi-2D foam flow       .

  Fig. 14 .   Detail of processed experimental image of flowing quasi-2D bubbles. Image 
size is 15 cm × 15 cm       .
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 Generalized cells will represent bubbles in this simulation. To 
simulate this experiment in CompuCell3D we need to write Python 
steppables that (1) create bubbles at one end of the channel, (2) 
inject air into the bubble which includes a given location (the iden-
tity of this bubble will change in time due to the flow), and (3) 
remove bubbles at the open end of the channel. We will store the 
source code in a file called “foamairSteppables.py”. We will also 
need a main Python script to call these steppables appropriately. 

 We simulate bubble injection by creating generalized cells 
(bubbles) along the lattice edge corresponding to the left end of 
the channel (small- x  values of the cell lattice). We simulate air injec-
tion into a bubble at the injection point by identifying the bubble 
currently at the injection point and increasing its target volume at a 
fixed rate. Removing a bubble from the simulation simply requires 
assigning it a target volume of zero once it comes close to the right 
end of the channel (large- x  values of the cell lattice). 

 We first define a CC3DML configuration file for the foam-flow 
simulation ( Listing   10 ).    The CC3DML configuration file is sim-
ple: it initializes the VolumeLocalFlex, CellType, Contact 
and CenterOfMass plugins. We do not use a cell-lattice-initial-
izer steppable, because all bubbles are created as the simulation 
runs. We use VolumeLocalFlex because individual bubbles 
will change their target volumes during the simulation. We also 
include the CenterOfMass plugin to track the changing centroids 
of each bubble. 

  Note : The CenterOfMass plugin in CompuCell3D actually 
calculates   Cxs
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 The ability to track a generalized-cell’s centroid is useful if we 
need to pick a single reference point in the cell. In this example we 
will remove bubbles whose centroids have  x -coordinates greater 
than a cutoff value. 

 We will implement the Python script in four sections: (1) a 
main script ( Listing   11 ), which runs every MCS and calls the 
steppables that (2) create bubbles at the left end of the cell lattice 
(BubbleNucleator,  Listing   12 ), (3) enlarge the target volume 
of the bubble at the injector site (AirInjector,  Listing   13 ) 
and (4) set the target volume of bubbles at the right end of the cell 
lattice to zero (BubbleCellRemover,  Listing   14 ). We store 
classes (2–4) in a separate file called “foamairSteppables.py”.     

 The main script in  Listing   11  builds on the template Python 
code in  Listing   7 ; we show changes in  bold . The line
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    Listing 10.    CC3DML configuration file for the foam-flow simulation. This file initializes needed plugins but all of the 
interesting work is done in Python       .

<CompuCell3D>

 <Potts>

  <Dimensions x="200" y="50" z="1"/>

  <Steps>10000</Steps>

  <Temperature>5</Temperature>

  <LatticeType>Hexagonal</LatticeType>

 </Potts>

 <Plugin Name="VolumeLocalFlex"/>

 <Plugin Name="CellType">

  <CellType TypeName="Medium" TypeId="0"/>

  <CellType TypeName="Foam"   TypeId="1"/>

 </Plugin>

 <Plugin Name="Contact">

  <Energy Type1="Medium" Type2="Medium">5</Energy>

  <Energy Type1="Foam"   Type2="Foam">5</Energy>

  <Energy Type1="Foam"   Type2="Medium">5</Energy>

  <NeighborOrder>3</NeighborOrder>

 </Plugin>

 <Plugin Name="CenterOfMass"/>

</CompuCell3D>

   from foamairSteppables import BubbleNucleator    

 tells Python to look for the BubbleNucleator class in the file 
named “foamairSteppables.py”. The line

   bubbleNucleator=BubbleNucleator(sim, 20)    
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  Listing 11.    Main Python Script for foam-flow simulation. Changes to the template ( Listing 7 ) are shown in   bold .        

import sys

from os import environ

import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here

steppableRegistry=CompuCellSetup.getSteppableRegistry()

from foamairSteppables import BubbleNucleator

bubbleNucleator=BubbleNucleator(sim,20)

bubbleNucleator.setNumberOfNewBubbles(1)

bubbleNucleator.setInitialTargetVolume(25)

bubbleNucleator.setInitialLambdaVolume(2.0)

bubbleNucleator.setInitialCellType(1)

steppableRegistry.registerSteppable(bubbleNucleator)

from foamairSteppables import AirInjector

airInjector=AirInjector(sim,40)

airInjector.setVolumeIncrement(25)

airInjector.setInjectionPoint(50,25,0)

steppableRegistry.registerSteppable(airInjector)

from foamairSteppables import BubbleCellRemover

bubbleCellRemover=BubbleCellRemover(sim)

bubbleCellRemover.setCutoffValue(170)

steppableRegistry.registerSteppable(bubbleCellRemover)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

 creates the steppable BubbleNucleator that will run every 
20 MCS. The next few lines in this section pass the number of 
bubbles to create, which in our case is one:
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   bubbleNucleator.setNumberOfNewBubbles(1)    

  Listing 12.    Python code for the BubbleNucleator steppable, saved in the file “foamairSteppables.py.” This module 
creates bubbles at points with random  y  coordinates and  x  coordinate of 3.       

from CompuCell import Point3D
from random import randint

class BubbleNucleator(SteppablePy):
   def __init__(self,_simulator,_frequency=1):
      SteppablePy.__init__(self,_frequency)
      self.simulator=_simulator

   def start(self):
      self.Potts=self.simulator.getPotts()
      self.dim=self.Potts.getCellFieldG().getDim()

   def setNumberOfNewBubbles(self,_numNewBubbles):
         self.numNewBubbles=int(_numNewBubbles)

   def setInitialTargetVolume(self,_initTargetVolume):
      self.initTargetVolume=_initTargetVolume

   def setInitialLambdaVolume(self,_initLambdaVolume):
      self.initLambdaVolume=_initLambdaVolume

   def setInitialCellType(self,_initCellType):
      self.initCellType=_initCellType

   def createNewCell(self,pt):
      print "Nucleated bubble at ",pt
      cell=self.Potts.createCellG(pt)
      cell.targetVolume=self.initTargetVolume
      cell.type=self.initCellType
      cell.lambdaVolume=self.initLambdaVolume

   def nucleateBubble(self):
      pt=Point3D(0,0,0)
      pt.y=randint(0,self.dim.y-1)
      pt.x=3
      self.createNewCell(pt)

   def step(self,mcs):
      for i in xrange(self.numNewBubbles):
         self.nucleateBubble()

 the initial   Vt   for the new bubble, which is 25 pixels:

   bubbleNucleator.setInitialTargetVolume(25)    

 the initial   lvol   for the bubble:

   bubbleNucleator.setInitialLambdaVolume(2.0)    

 and the bubble’s type.id:

   bubbleNucleator.setInitialCellType(1)    

 Finally, we register the steppable:

   steppableRegistry.registerSteppable(bubble \
Nucleator)    
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 The next group of lines repeats the process for the AirInjector 
steppable, reading it from the file “foamairSteppables.py”:

 and increases   Vt   by 25:

   from foamairSteppables import AirInjector    
    airInjector=AirInjector(sim, 40)    

  Listing 13.    Python code for the  AirInjector  steppable which simulates air injection into the bubble currently 
occupying the cell-lattice pixel at location ( x , y , z ). Air injection begins after 5,000 MCS to allow the channel to partially 
fill with bubbles. The steppable is saved in file “foamairSteppables.py”.       

class AirInjector(SteppablePy):

   def __init__(self,_simulator,_frequency=1):

      SteppablePy.__init__(self,_frequency)

      self.simulator=_simulator

      self.Potts=self.simulator.getPotts()

      self.cellField=self.Potts.getCellFieldG()

   def start(self): pass

   def setInjectionPoint(self,_x,_y,_z):

      self.injectionPoint=CompuCell.Point3D(int(_x),int(_y),int(_z))

   def setVolumeIncrement(self,_increment):

      self.volumeIncrement=_increment

   def step(self,mcs):

      if mcs <5000:

         return

      cell=self.cellField.get(self.injectionPoint)

      if cell:

         cell.targetVolume+=self.volumeIncrement

   airInjector.setVolumeIncrement(25)    



 Multicell Simulations of Development and Disease Using the CompuCell3D 405

  Listing 14.    Python code for the  BubbleCellRemover  steppable. This module removes cells once the  x -coordi-
nates of their centroids > cutoffValue by setting their target volumes to zero and increasing their λvol to 10,000. 
Like the other steppables in the foam-flow simulation, we save it in the file “foamairSteppables.py”.       

class BubbleCellRemover(SteppablePy):

   def __init__(self,_simulator,_frequency=1):

      SteppablePy.__init__(self,_frequency)

      self.simulator=_simulator

      self.inventory=self.simulator.getPotts().getCellInventory()

      self.cellList=CellList(self.inventory)

   def start(self):

      self.Potts=self.simulator.getPotts()

      self.dim=self.Potts.getCellFieldG().getDim()

   def setCutoffValue(self,_cutoffValue):

      self.cutoffValue=_cutoffValue

   def step(self,mcs):

      for cell in self.cellList:

         if cell:

            if int(cell.xCM/float(cell.volume))>self.cutoffValue:

               cell.targetVolume=0

               cell.lambdaVolume=10000

 for the bubble occupying the pixel at the point (50, 25, 0) on the 
cell lattice:

   airInjector.setInjectionPoint(50,25,0)    

 As before, the final line registers the steppable:

   steppableRegistry.registerSteppable(airInjector)    

 The final new section reads the BubbleCellRemover steppable 
from the file “foamairSteppables.py”:
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 and invokes the steppable, telling it to run every MCS; note that 
we have omitted the number after sim:

   from foamairSteppables import BubbleCellRemover    

   bubbleCellRemover=BubbleCellRemover(sim)    

 Next we set 170 as the  x -coordinate at which we will destroy 
bubbles:

   bubbleCellRemover.setCutoffValue(170)    

 We must also write Python code to define the three steppables 
BubbleNucleator, AirInjector, and BubbleCellRe-
mover and save them in the file “foamairSteppables.py”. 

  Listing   12  shows the code for the BubbleNucleator 
steppable. 

 The first two lines import necessary modules, where the line

   from CompuCell import Point3D    

 allows us to access points on the simulation cell lattice, and the 
line

   from random import randint    

 allows us to generate random integers. 
 In the constructor of the BubbleNucleator steppable 

class we assign to the variable self.simulator a reference to 
the simulator object from the CompuCell3D kernel. In the 
start(self) function, we assign a reference to the Potts object 
from the CompuCell3D kernel to the variable self.Potts:

   self.Potts=self.simulator.getPotts()    

 and assign the dimensions of the cell lattice to self.dim:

   self.dim=self.Potts.getCellFieldG().getDim()    

 In addition to the four essential steppable member func-
tions (__init__(self, _simulator, _frequency), 
start(self), step(self, mcs) and finish(self)), 
BubbleNucleator includes several functions, some of which 
set parameters and some of which perform necessary tasks. The 
functions setNumberOfNewBubbles, setInitialTar-
getVolume, and setInitialLambdaVolume accept the val-
ues passed from the main Python script in  Listing   11 . 

 and, finally, register BubbleCellRemover:

   steppableRegistry.registerSteppable(bubble\
CellRemover)    
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 The CreateNewCell function requires that we pass the 
coordinates of the point, pt, at which to create a new bubble:

   def CreateNewCell (self,pt):    

 Then we use a built-in CompuCell3D function to add a new 
bubble at that location:

   cell=self.Potts.createCellG(pt)    

 assigning the new cell a target volume   Vt = target volume:  

   cell.targetVolume=self.initTargetVolume    

 type   (t = type)  :

   cell.type=self.initCellType    

 and compressibility   lvol= lambda Volume:  

   cell.lambdaVolume=initLambdaVolume    

 based on the values passed to the BubbleNucleator steppable 
from the main script. 

 The first three lines of the nucleateBubble function create 
a reference to a point on the cell lattice (pt=Point3D(0,0,0)), 
assign it a random  y -coordinate between 0 and y_dim-1:

   pt.y=randint(0,self.dim.y-1)    

 and an  x -coordinate of 3:

   pt.x=3    

 The line calls the createNewCell function and passes it 
the point (pt) at which to create the new bubble:

   self.createNewCell(pt)    

 Finally, the step(self,mcs) function calls the nucle-
ateBubble function self.numNewBubbles times per MCS. 

  Listing  13  shows the code for the AirInjector steppable. 
 The first three lines of the __init__(self,_simulator,_

frequency) function are identical to the same lines in the 
BubbleNucleator steppable ( Listing   12 ). The final line of the 
function loads the cell-lattice parameters:

   self.cellField=self.Potts.getCellFieldG()    

 The start(self) function in this steppable does not do any-
thing:
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 The next two functions read the injectionPoint and volu-
meIncrement passed to the AirInjector steppable by the main 
Python script ( Listing   11 ). The step function uses these values to 
identify the bubble at the injection site, self.injectionPoint:

   def start(self): pass    

   cell=self.cellField.get(self.injection\
Point)    

 and then increments that bubble’s target volume,   Vt   , by self.
volumeIncrement:

   if cell:  

  cell.targetVolume+=self.volumeIncrement    

 Note the syntax:

   if cell:    

 which we use to test whether a cell is Medium or not. Medium 
in CompuCell3D is assigned a NULL pointer, which, in Python, 
becomes a None object. Python evaluates the None object as 
False and other objects (in our case, bubbles) as True, so the 
task is only carried out on bubbles, not Medium. 

 In the first two lines of the step(self,mcs) function, we tell 
the function not to perform its task until 5,000 MCS have elapsed:

   if mcs <5000:  

  return    

 The 5,000-MCS delay allows the simulation to establish a 
uniform flow of small bubbles throughout a large portion of the 
cell lattice. 

 Finally, we define the BubbleCellRemover steppable 
( Listing   14 ). 

 At each MCS we scan the cell inventory looking for cells whose 
centroid has an  x -coordinate close to the right end of the lattice 
and remove these cells from the simulation by setting their target 
volumes to zero and increasing λvol to 10,000. 

 The first two lines of the __init__ (self,_simulator,_
frequency) function are identical to the corresponding lines 
in the BubbleNucleator and AirInjector steppables ( Listings  
 12  and  13 ). In the third line of the function, we gain access to 
the generalized-cell inventory:

   self.inventory=self.simulator.getPotts().\
getCellInventory()    
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 and in the fourth line we make a list containing all of the general-
ized cells in the simulation:

   if cell:    

   self.cellList=CellList(self.inventory)    

 The start(self) function is identical to that of the Bub-
bleNucleator steppable ( Listing   12 ), and performs the same 
function. 

 The next function reads the cutoffValue for the  x -coor-
dinate that we passed to BubbleCellRemover from the main 
Python script ( Listing   11 ): 

   setCutoffValue(self,_cutoffValue)    

 Finally, the step(self, mcs) function iterates through 
the cell inventory. We first check to make sure that the cell is not 
Medium:

 For each non-Medium cell, we test whether the  x -coordinate 
of the cell’s centroid is greater than the cutoffValue:

   if int(cell.xCM/float(cell.volume))>self.cut-\
offValue:    

 and, if it is, set that cell’s targetVolume,   Vt  , to zero:

   cell.targetVolume=0    

 and its   lvol to 10,000  :

   cell.lambdaVolume=10000    

 Running the CC3DML file from  Listing   10  and the main 
Python script from  Listing   11  (which loads the steppables in 
 Listings   12 – 14  from the file “foamairSteppables.py”) produces 
the snapshots shown in  Fig.   15 .   

  One of the most frequent uses of Python scripting in Compu-
Cell3D simulations is to modify cell behavior based on local field 
concentrations. To demonstrate this use, we incorporate stem-
cell-like behavior into the cell-sorting simulation from  Listing   1 . 
This extension requires including relatively sophisticated interac-
tions between cells and a diffusing chemical, FGF  (99) . 

 We simulate a situation where NonCondensing cells secrete 
FGF, which diffuses freely through the cell lattice and obeys:

6.5. Diffusing-Field-
Based Cell-Growth 
Simulation
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  Fig. 15 .   Results of the foam-flow simulation on a 2D third-neighbor hexagonal lattice. Simulation code is given in  List-
ings   10 – 14        .

 where [FGF] denotes the FGF concentration and Condensing 
cells respond to the field by growing at a constant rate propor-
tional to the FGF concentration at their centroids:

 td ( )
0.01[FGF]( ).

d
V

x
t s
s

= �    (14)   

 When they reach a threshold volume, the Condensing cells 
undergo mitosis. One of the resulting daughter cells remains a 
Condensing cell, while the other daughter cell has an equal prob-
ability of becoming either another Condensing cell or a Differ-
entiatedCondensing cell. DifferentiatedCondensing 
cells do not divide. 
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 Each generalized cell in CompuCell3D has a default list of 
attributes, e.g. type, volume, surface (area), target volume, etc. 
However, CompuCell3D allows users to add cell attributes during 
execution of simulations. For example, in the current simulation, we 
will record data on each cell division in a list attached to each cell. 

  Note : Generalized cell attributes can be added using either 
C+ or Python. However, attributes added using Python are not 
accessible from C+ modules. 

 As in the foam-flow simulation, we divide the necessary sim-
ulation tasks among different Python modules (or classes) which 
we save in a file “cellsort_2D_field_modules.py” and call from 
the main Python script. We reuse elements of the CC3DML files 
we presented earlier to construct the CC3DML configuration 
file, presented in  Listing   15 .  

 The CC3DML code is a slightly extended version of the 
cell-sorting code in  Listing   3  plus the FlexibleDiffusion-
SolverFE discussed in the bacterium-and-macrophage simulation 
( see   Listing   4 ). The initial cell lattice does not contain any Con-
densingDifferentiated cells. These cells appear only as the 
result of mitosis. We use the VolumeLocalFlex plugin to allow 
the target volume to vary individually for each cell, allowing cell 
growth as discussed in the foam-flow simulation. We manage the 
volume-constraint parameters using a Python script. The Center-
OfMass plugin provides a reference point in each cell at which we 
measure the FGF concentration. We then adjust the cell’s target 
volume accordingly. 

 To build this simulation in CompuCell3D we need to write 
several Python routines. We need (1) a steppable, Volume-
ConstraintSteppable, to initialize the volume-constraint 
parameters for each cell and to simulate cell growth by periodi-
cally increasing Condensing cells’ target volumes in propor-
tion to the FGF concentration at their centroids; (2) a plugin, 
CellsortMitosis, that runs the CompuCell3D mitosis algo-
rithm when any cell reaches a threshold volume and then adjusts 
the parameters of the resulting parent and daughter cells, and also 
appends information about the time and type of cell division 
to a list attached to each cell; (3) a steppable, MitosisDat-
aPrinterSteppable, that prints the cell-division information 
from the lists attached to each cell; (4) a class, MitosisData, 
which MitosisDataPrinterSteppable uses to extract and 
format the data it prints; and (5) a main Python script to call the 
steppables and the CellsortMitosis plugin appropriately. We 
store the source code for routines (1–4) in a separate file called 
“cellsort_2D_field_modules.py.” 

  Listing   16  shows the main Python script for the diffusing-
field-based cell-growth simulation, with changes to the template 
( Listing   7 ) shown in  bold .  



412 Swat et al.

  Listing 15.    CC3DML code for the diffusing-field-based cell-growth simulation.       

<CompuCell3D>

 <Potts>

   <Dimensions x="200" y="200" z="1"/>

   <Steps>10000</Steps>

   <Temperature>10</Temperature>

   <NeighborOrder>2</NeighborOrder>

 </Potts>

 <Plugin Name="VolumeLocalFlex"/>

 <Plugin Name="CellType">

  <CellType TypeName="Medium" TypeId="0"/>

  <CellType TypeName="Condensing" TypeId="1"/>

  <CellType TypeName="NonCondensing" TypeId="2"/>

  <CellType TypeName="CondensingDifferentiated" TypeId="3"/>

 </Plugin>

 <Plugin Name="Contact">

  <Energy Type1="Medium" Type2="Medium">0</Energy>

  <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy>

  <Energy Type1="Condensing"    Type2="Condensing">2</Energy>

  <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>

  <Energy Type1="NonCondensing" Type2="Medium">16</Energy>

  <Energy Type1="Condensing"    Type2="Medium">16</Energy>

  <Energy Type1="CondensingDifferentiated"  

      Type2="CondensingDifferentiated">2</Energy>

  <Energy Type1="CondensingDifferentiated"

      Type2="Condensing">2</Energy>

  <Energy Type1="CondensingDifferentiated"

      Type2="NonCondensing">11</Energy>

  <Energy Type1="CondensingDifferentiated" Type2="Medium">16</Energy>

  <NeighborOrder>2</NeighborOrder>

 </Plugin>

 <Plugin Name="CenterOfMass"/>
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<Steppable Type="FlexibleDiffusionSolverFE">

  <DiffusionField>

   <DiffusionData>

    <FieldName>FGF</FieldName>

    <DiffusionConstant>0.10</DiffusionConstant>

    <DecayConstant>0.00005</DecayConstant>

   </DiffusionData>

   <SecretionData>

    <Secretion Type="NonCondensing">0.05</Secretion>

   </SecretionData>

  </DiffusionField>  

 </Steppable>

 <Steppable Type="BlobInitializer">

  <Region>

   <Gap>0</Gap>

   <Width>5</Width>

   <Radius>40</Radius>

   <Center x="100" y="100" z="0"/>

   <Types>Condensing,NonCondensing</Types>   

  </Region>

 </Steppable>

</CompuCell3D>

 The first change to the template code ( Listing   7 ) is

   pyAttributeAdder,listAdder=CompuCellSetup.\
attachListToCells(sim)    

 which instructs the CompuCell3D kernel to attach a Python-
defined list to each cell when it creates it. This list serves as a 
generic container which can store any set of Python objects and 
hence any set of generalized-cell properties. In the current simu-
lation, we use the list to store objects of the class MitosisData, 
which records the Monte Carlo Step at which each cell division 
involving the current cell, or its parent, happened, as well as the 
cell index and cell type of the parent and daughter cells. 
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 Because one of our Python modules is a lattice monitor, 
rather than a steppable, we need to create stepperRegistry 
and changeWatcherRegistry objects, which store the two 
types of lattice monitors:

   changeWatcherRegistry=CompuCellSetup.\
getChangeWatcherRegistry(sim)  

  stepperRegistry=CompuCellSetup.\
getStepper Registry(sim)    

  Listing 16.    Main Python script for the diffusing-field-based cell-growth simulation. Changes to the template code 
( Listing   7 ) shown in  bold        .

import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#add additional attributes
pyAttributeAdder,listAdder=CompuCellSetup.attachListToCells(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#notice importing CompuCell to main script has to be
#done after call to getCoreSimulationObjects()
import CompuCell 
changeWatcherRegistry=CompuCellSetup.getChangeWatcherRegistry(sim)
stepperRegistry=CompuCellSetup.getStepperRegistry(sim)

from cellsort_2D_field_modules import CellsortMitosis
cellsortMitosis=CellsortMitosis(sim,changeWatcherRegistry,\
stepperRegistry)
cellsortMitosis.setDoublingVolume(50)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

from cellsort_2D_field_modules import VolumeConstraintSteppable
volumeConstraint=VolumeConstraintSteppable(sim)
steppableRegistry.registerSteppable(volumeConstraint)

from cellsort_2D_field_modules import MitosisDataPrinterSteppable
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable(sim)
steppableRegistry.registerSteppable(mitosisDataPrinterSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)
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 The CellsortMitosis plugin is a lattice monitor because 
it acts in response to certain index-copy events; it is invoked 
whenever a cell’s volume reaches the threshold volume for mito-
sis. The following lines create the CellsortMitosis lattice 
monitor and register it with stepperRegistry and change-
WatcherRegistry:

   from cellsort_2D_field_modules import Cell\
sortMitosis  

  cellsortMitosis = CellsortMitosis(sim,change\
WatcherRegistry,     stepperRegistry)    

 Because the base class inherited by CellsortMitosis, 
unlike our steppables, handles registration internally, we do not 
have to register CellsortMitosis explicitly. We can now set 
the threshold volume at which Condensing cells divide:

 Next we import the VolumeConstraintSteppable step-
pable, which initializes cells’ target volumes and compressibilities 
at the beginning of the simulation and also implements chemical-
dependent cell growth for Condensing cells, and register it:

   from cellsort_2D_field_modules import Vol\
umeConstraintSteppable  

  volumeConstraint=VolumeConstraintSteppable(sim)  

  steppableRegistry.registerSteppable(volumeCo
nstraint)    

 Finally, we import, create and register the MitosisData-
PrinterSteppable steppable, which prints the content of 
MitosisData objects for cells that have divided:

   from cellsort_2D_field_modules import\ 
MitosisDataPrinterSteppable  

  mitosisDataPrinterSteppable=MitosisDataPrin\
terSteppable(sim)  

  steppableRegistry.registerSteppable(mitosis\
DataPrinterSteppable)    

 The number of MitosisData objects stored in each cell at 
any given Monte Carlo Step depends on cell type (NonCondens-
ing cells do not divide, whereas Condensing cells can divide 
multiple times) and how often a given cell has divided. 

   cellsortMitosis.setDoublingVolume(50)    
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 Moving on to the Python modules, we consider the Vol-
umeConstraintSteppable steppable shown in  Listing   17 .  

 The __init__ constructor looks very similar to the one in 
 Listing   14 , with the difference that we pass _frequency=1 to 
update the cell volumes once per MCS. We also request the field-
lattice dimensions and values from CompuCell3D:

  Listing 17.    Python code for the VolumeConstraintSteppable, saved in the file “cellsort_2D_field_modules.
py,” for the diffusing-field-based cell-growth simulation. The VolumeConstraintSteppable  provides  dynamic 
volume constraint parameters for each cell, which depend on the cell type and the chemical field concentration at the 
cell’s centroid.       

class VolumeConstraintSteppable(SteppablePy):

   def __init__(self,_simulator,_frequency=1):

      SteppablePy.__init__(self,_frequency)

      self.simulator=_simulator

      self.inventory=self.simulator.getPotts().getCellInventory()

      self.cellList=CellList(self.inventory)

   def start(self):

      for cell in self.cellList:

         cell.targetVolume=25

         cell.lambdaVolume=2.0

   def step(self,mcs):

      field=CompuCell.getConcentrationField(self.simulator,"FGF")

      comPt=CompuCell.Point3D()

      for cell in self.cellList:

         if cell.type==1: #Condensing cell

            comPt.x=int(round(cell.xCM/float(cell.volume)))

            comPt.y=int(round(cell.yCM/float(cell.volume)))

            comPt.z=int(round(cell.zCM/float(cell.volume)))

            concentration=field.get(comPt) # get concentration at comPt

            # and increase cell's target volume

            cell.targetVolume+=0.1*concentration 
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  Listing   18  shows the code for the CellsortMitosis 
plugin. The plugin divides the mitotic cell into two cells and 
adjusts both cells’ attributes. It also initializes and appends Mito-

   self.dim=self.simulator.getPotts().get\
CellFieldG().getDim()    

 and specify that we will work with a field named FGF:

   self.fieldName=”FGF”    

 The script contains two functions: one that initializes the 
cells’ volume-constraint parameters (start(self)) and one 
that updates them (step(self, mcs)). 

 The start(self) function executes only once, at the begin-
ning of the simulation. It iterates over each cell (for cell in 
self.cellList:) and assigns the initial cells’ targetVolume 
(  Vt (s)= 25   pixels) and lambdaVolume (  lvol (s) = 2.0  ) parameters 
as the VolumeLocalFlex plugin requires. 

 The first line of the step(self, mcs) function extracts 
a reference to the FGF concentration field defined using the 
FlexibleDiffusionSolverFE steppable in the CC3DML 
file (each field created in a CompuCell3D simulation is regis-
tered and accessible by both C+ and Python). The function then 
iterates over every cell in the simulation. If a cell is of cell.
type 1 (Condensing – see the CC3DML configuration file, 
 Listing   15 ), we calculate its centroid:

   centerOfMassPoint.x=int(round(cell.xCM/\
float(cell.volume)))  

  centerOfMassPoint.y=int(round(cell.yCM/\
float(cell.volume)))  

  centerOfMassPoint.z=int(round(cell.zCM/\
float(cell.volume)))    

 and retrieve the FGF concentration at that point:

   concentration=field.get(centerOfMassPoint)    

 We then increase the target volume of the cell by 0.01 times 
that concentration:

   cell.targetVolume+=0.01*concentration    

 We must include the CenterOfMass plugin in the CC3DML 
code. Otherwise the centroid (cell.xCM, cell.yCM, cell.
zCM) will have the default value (0,0,0). 
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   from PyPluginsExamples import MitosisPyPlug\
inBase    

 lets us access the CompuCell3D base class MitosisPyPlug-
inBase. 

  Listing 18.    Python code for the CellsortMitosis plugin for the diffusing-field-based cell-growth simulation, saved 
in the file “cellsort_2D_field_modules.py.” The plugin handles division of cells when they reach a threshold volume.       

class VolumeConstraintSteppable(SteppablePy):

   def __init__(self,_simulator,_frequency=1):

      SteppablePy.__init__(self,_frequency)

      self.simulator=_simulator

      self.inventory=self.simulator.getPotts().getCellInventory()

      self.cellList=CellList(self.inventory)

   def start(self):

      for cell in self.cellList:

         cell.targetVolume=25

         cell.lambdaVolume=2.0

   def step(self,mcs):

      field=CompuCell.getConcentrationField(self.simulator,"FGF")

      comPt=CompuCell.Point3D()

      for cell in self.cellList:

         if cell.type==1: #Condensing cell

            comPt.x=int(round(cell.xCM/float(cell.volume)))

            comPt.y=int(round(cell.yCM/float(cell.volume)))

            comPt.z=int(round(cell.zCM/float(cell.volume)))

            concentration=field.get(comPt) # get concentration at comPt

            # and increase cell's target volume

            cell.targetVolume+=0.1*concentration 

sisData objects to the original cell’s (self.parentCell) and 
daughter cell’s (self.childCell) attribute lists.  

 The second line of  Listing   18 :
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   MitosisPyPluginBase.__init__(self,_simulator,\  

  _changeWatcherRegistry,_stepperRegistry)    

 We also need to reimplement the function update-
Attributes(self), which is called by MitosisPyPlug-
inBase after mitosis takes place, to define the postdivision 
cells’ parameters. The objects self.childCell and self.
parentCell that appear in the function are initialized and 
managed by MitosisPyPluginBase. In the current simula-
tion, after division we set Vt  for the parent and daughter cells to 
half of the   Vt   of the parent just prior to cell division.   lvol   is left 
unchanged for the parent cell and the same value is assigned to 
the daughter cell:

   self.parentCell.targetVolume=self.parentCell.\
volume/2.0  

  self.childCell.targetVolume=self.parentCell.\
targetVolume  

  self.childCell.lambdaVolume=self.parentCell.\
lambdaVolume    

 The cell type of one of the two daughter cells (childCell) 
is randomly chosen to be either Condensing (i.e., the same as 
the parent type) or CondensingDifferentiated, which we 
have defined to be cell.type 3 ( Listing   15 ):

   if (random()<0.5):  

  self.childCell.type=self.parentCell.type  

  else:  

  self.childCell.type=3    

 CellsortMitosis inherits the content of the Mito-
sisPyPluginBase class. MitosisPyPluginBase internally 
accesses the CompuCell3D-provided Mitosis plugin, which is 
written in C++ and handles the technicalities of plugin initializa-
tion behind the scenes. The MitosisPyPluginBase class pro-
vides a simple-to-use interface to this plugin. To create a customized 
version of MitosisPyPluginBase, CellsortMitosis, 
we must call the constructor of MitosisPyPluginBase from 
the CellsortMitosis constructor:
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   parentCellList.append(mitData)  

  childCellList.append(mitData)    

 then we access the lists attached to the two cells:

   parentCellList=CompuCell.getPyAttrib(self.\
parentCell)  

  childCellList=CompuCell.getPyAttrib(self.\
childCell)    

 and append the new mitosis data to these lists:

  Listing 19.    Python code for the MitosisData class for the diffusing-field-based cell-growth simulation, saved in 
the file “cellsort_2D_field_modules.py.” MitosisData objects store information about cell divisions involving the 
parent and daughter cells.       

class MitosisData:

   def __init__(self,_MCS,_parentId,_parentType,_offspringId,\

_offspringType):

      self.MCS=_MCS

      self.parentId=_parentId

      self.parentType=_parentType

      self.offspringId=_offspringId

      self.offspringType=_offspringType

   def __str__(self):

      return "Mitosis time="+str(self.MCS)+"\

      parentId="+str(self.parentId)+"\

      offspringId="+str(self.offspringId)

   mcs=self.simulator.getStep()  

  mitData=MitosisData(mcs,self.parentCell.\
id,self.parentCell.type,\  

  self.childCell.id,self.childCell.type)    

 The parent cell remains Condensing. We now add a descrip-
tion of this cell division to the lists attached to each cell. First, we 
collect the data in a list called mitData:
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  Listing 20.    The Python code for the MitosisDataPrinter steppable for the diffusing-field-based cell-growth 
simulation, saved in the file “cellsort_2D_field_modules.py.” The steppable prints the cell-division history for dividing 
cells ( see   Fig.   18 ).       

class MitosisDataPrinterSteppable(SteppablePy):

   def __init__(self,_simulator,_frequency=100):

      SteppablePy.__init__(self,_frequency)

      self.simulator=_simulator

      self.inventory=self.simulator.getPotts().getCellInventory()

      self.cellList=CellList(self.inventory)

   def step(self,mcs):

      for cell in self.cellList:

         mitDataList=CompuCell.getPyAttrib(cell)

         if len(mitDataList) > 0:

            print "MITOSIS DATA FOR CELL ID",cell.id

            for mitData in mitDataList:

               print mitData

  Listing   19  shows the Python code for the MitosisData 
class, which stores the data on the cell division that we append to 
the cells’ attribute lists after each cell division.  

 In the constructor of MitosisData, we read in the time 
(in MCS) of the division, along with the parent and daughter 
cell indices and types. The __str__(self) convenience func-
tion returns an ASCII string representation of the time and cell 
indices only, to allow the Python print command to print out 
this information. 

  Listing   20  shows the Python code for the MitosisDat-
aPrinterSteppable steppable, which prints the mitosis data 
to the user’s screen.  

 The constructor is identical to that for the VolumeCon-
straintSteppable steppable ( Listing   17 ). Within the 
step(self,mcs) function, we iterate over each cell (for cell 
in self.cellList:) and access the Python list attached to 
the cell (mitDataList=CompuCell.getPyAttrib(cell)). 
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  Figures   16  and  17  show snapshots of the diffusing-field-
based cell-growth simulation.  Figure   18  shows a sample screen 
output of the cell-division history.    

  Fig. 16 .   Snapshots of the diffusing-field-based cell-growth simulation obtained by running the CC3DML file in  Listing  
 15  in conjunction with the Python file in  Listing   16 . As the simulation progresses, NonCondensing cells ( light gray ) 
secrete diffusing chemical, FGF, which causes Condensing ( dark gray ) cells to proliferate. Some Condensing 
cells differentiate to CondensingDifferentiated ( white ) cells       .

   if len(mitDataList) > 0:  

  print “MITOSIS DATA FOR CELL ID”,cell.id  

  for mitData in mitDataList:  

  print mitData    

If a given cell has undergone mitosis, then the list will have entries, 
and thus a nonzero length. If so, we print the MitosisData 
objects stored in the list:
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 The diffusing-field-based cell-growth simulation includes 
concepts that extend easily to simulate biological phenomena that 
involve diffusants, cell growth, and mitosis, e.g., limb-bud devel-
opment  (58,   59) , tumor growth  (5–  9) , and  Drosophila  imaginal-
disc development.   

  Fig. 17 .   Snapshots of FGF concentration in the diffusing-field-based cell-growth simulation obtained by running the 
CC3DML file in  Listing   15  in conjunction with the Python files in  Listings   16 – 20 . The  bars  at the  bottom  of the field 
images show the concentration scales ( white , low concentration;  black , high concentration)       .
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 In most cases, building a complex CompuCell3D simulation 
requires writing Python modules, a main Python script, and a 
CC3DML configuration file. While the effort to write this code 
can be substantial, it is much less than that required to develop 
custom simulations in lower-level languages. Working from the 
substantial base of Python templates provided by CompuCell3D 
further streamlines simulation development. Python programs are 
fairly short, so simulations can be published in journal articles, greatly 
facilitating simulation validation, reuse, and adaptation. Finally, 
CompuCell3D’s modular structure allows new Python modules 
to be reused from simulation to simulation. The CompuCell3D 
Web site,   http://www.compucell3d.org,     allows users to archive 
their modules and make them accessible to other users. 

 We hope the examples we have shown will convince read-
ers to evaluate the suitability of GGH simulations using Compu-
Cell3D for their research. 

 All the code examples presented in this chapter are availa-
ble from   http://www.compucell3d.org.     They will be curated to 
ensure their correctness and compatibility with future versions of 
CompuCell3D.      

 7. Conclusion  

  Fig. 18 .   Sample output from the MitosisDataPrinterSteppable steppable in  Listing   20        .



 Multicell Simulations of Development and Disease Using the CompuCell3D 425

   References 

   1  .     Bassingthwaighte  ,   J. B.       (2000)     Strategies for 
the Physiome project  .    Ann. Biomed. Eng.       28   , 
  1043  –  1058  .  

   2  .     Merks  ,   R. M. H.   ,    Newman  ,   S. A.   , and    Glazier  ,   J. A.     
  (2004)     Cell-oriented modeling of  in vitro  
capillary development  .    Lect. Notes Comp. Sci.    
   3305   ,   425  –  434  .  

   3  .     Turing  ,   A. M.       (1953)     The chemical basis of 
morphogenesis  .    Philos. Trans. R. Soc. B       237   , 
  37  –  72  .  

   4  .     Merks  ,   R. M. H.    and    Glazier  ,   J. A.       (2005)     A 
cell-centered approach to developmental biol-
ogy  .    Phys. A       352   ,   113  –  130  .  

   5  .     Dormann  ,   S.    and    Deutsch  ,   A.       (2002)     Mod-
eling of self-organized avascular tumor growth 
with a hybrid cellular automaton  .    In Silico Biol.    
   2   ,   1  –  14  .  

   6  .     dos Reis  ,   A. N.   ,    Mombach  ,   J. C. M.   ,    Walter  , 
  M.   , and    de Avila  ,   L. F.       (2003)     The interplay 
between cell adhesion and environment rigid-
ity in the morphology of tumors  .    Phys. A       322   , 
  546  –  554  .  

   7  .     Drasdo  ,   D.    and    Hohme  ,   S.       (2003)     Individ-
ual-based approaches to birth and death in 
avascular tumors  .    Math. Comput. Model.       37   , 
  1163  –  1175  .  

   8  .     Holm  ,   E. A.   ,    Glazier  ,   J. A.   ,    Srolovitz  ,   D. J.   , 
and    Grest  ,   G. S.       (1991)     Effects of lattice ani-
sotropy and temperature on domain growth in 
the two-dimensional Potts model  .   Phys. Rev. A   
  43  ,   2662  –  2669  .  

   9  .     Turner  ,   S.    and    Sherratt  ,   J. A.       (2002)     Intercel-
lular adhesion and cancer invasion: A discrete 
simulation using the extended Potts model  .    J. 
Theor. Biol.       216   ,   85  –  100  .  

   10  .     Drasdo  ,   D.    and    Forgacs  ,   G.       (2000)     Modeling 
the interplay of generic and genetic mecha-
nisms in cleavage, blastulation, and gastrula-
tion  .    Dev. Dynam.       219   ,   182  –  191  .  

   11  .     Drasdo  ,   D.   ,    Kree  ,   R.   , and    McCaskill  ,   J. S.     
  (1995)     Monte-Carlo approach to tissue-cell 
populations  .    Phys. Rev. E       52   ,   6635  –  6657  .  

   12  .     Longo  ,   D.   ,    Peirce  ,   S. M.   ,    Skalak  ,   T. C.   ,    David-
son  ,   L.   ,    Marsden  ,   M.   , and    Dzamba  ,   B.       (2004)   
  Multicellular computer simulation of morpho-
genesis: Blastocoel roof thinning and matrix 
assembly in  Xenopus laevis   .    Dev. Biol.       271   , 
  210  –  222  .  

   13  .     Collier  ,   J. R.   ,    Monk  ,   N. A. M.   ,    Maini  ,   P. K.   , 
and    Lewis  ,   J. H.       (1996)     Pattern formation by 
lateral inhibition with feedback: A mathemati-
cal model of Delta-Notch intercellular signal-
ing  .    J. Theor. Biol.       183   ,   429  –  446  .  

   14  .     Honda  ,   H.    and    Mochizuki  ,   A.       (2002)     Forma-
tion and maintenance of distinctive cell pat-
terns by coexpression of membrane-bound 
ligands and their receptors  .    Dev. Dynam.       223   ,
  180  –  192  .  

   15  .     Moreira  ,   J.    and    Deutsch  ,   A.       (2005)     Pigment 
pattern formation in zebrafish during late lar-
val stages: A model based on local interactions  . 
   Dev. Dynam.       232   ,   33  –  42  .  

  

 We gratefully acknowledge support from the National Institutes 
of Health, National Institute of General Medical Sciences, grants 
1R01 GM077138–01A1 and 1R01 GM076692-01, and the 
Office of Vice President for Research, the College of Arts and 
Sciences, the Pervasive Technologies Laboratories and the Bio-
complexity Institute at Indiana University. Indiana University’s 
University Information Technology Services provided time on 
their BigRed clusters for simulation execution. Early versions of 
CompuCell and CompuCell3D were developed at the University 
of Notre Dame by J.A.G., Dr. Mark Alber and Dr. Jesus Izaguirre 
and collaborators with the support of National Science Founda-
tion, Division of Integrative Biology, grant IBN-00836563. Since 
the primary home of CompuCell3D moved to Indiana Univer-
sity in 2004, the Notre Dame team have continued to provide 
important support for its development.  

 Acknowledgments 



426 Swat et al.

   16  .     Wearing  ,   H. J.   ,    Owen  ,   M. R.   , and    Sherratt  ,   J. A.      
 (2000)     Mathematical modelling of juxtacrine 
patterning  .    Bull. Math. Biol.       62   ,   293  –  320  .  

   17  .     Zhdanov  ,   V. P.    and    Kasemo  ,   B.       (2004)     Simula-
tion of the growth of neurospheres  .    Europhys. 
Lett.       68   ,   134  –  140  .  

   18  .     Ambrosi  ,   D.   ,    Gamba  ,   A.   , and    Serini  ,   G.       (2005)   
  Cell directional persistence and chemotaxis in 
vascular morphogenesis  .    Bull. Math. Biol.       67   , 
  195  –  195  .  

   19  .     Gamba  ,   A.   ,    Ambrosi  ,   D.   ,    Coniglio  ,   A.   ,    de Candia  , 
  A.   ,    di Talia  ,   S.   ,    Giraudo  ,   E.   ,    Serini  ,   G.   ,    Preziosi  , 
  L.   , and    Bussolino  ,   F.       (2003)     Percolation, mor-
phogenesis, and Burgers dynamics in blood ves-
sels formation  .    Phys. Rev. Lett.       90   ,   118101  .  

   20  .     Novak  ,   B.   ,    Toth  ,   A.   ,    Csikasz-Nagy  ,   A.   ,    Gyorffy  ,   B.   , 
   Tyson  ,   J. A.   , and    Nasmyth  ,   K.       (1999)     Finish-
ing the cell cycle  .    J. Theor. Biol.       199   ,   223  –  233  .  

   21  .     Peirce  ,   S. M.   ,    van Gieson  ,   E. J.   , and    Skalak  , 
  T. C.       (2004)     Multicellular simulation predicts 
microvascular patterning and  in silico  tissue 
assembly  .    FASEB J.       18   ,   731  –  733  .  

   22  .     Merks  ,   R. M. H.   ,    Brodsky  ,   S. V.   ,    Goligorksy  ,   M. S.   , 
   Newman  ,   S. A.   , and    Glazier  ,   J. A.       (2006)     Cell 
elongation is key to  in silico  replication of  in 
vitro  vasculogenesis and subsequent remod-
eling  .    Dev. Biol.       289   ,   44  –  54  .  

   23  .   Merks, R. M. H. and Glazier, J. A. (2005) 
Contact-inhibited chemotactic motility can 
drive both vasculogenesis and sprouting ang-
iogenesis.  q-bio/0505033.   

   24  .     Kesmir  ,   C.    and    de Boer  ,   R. J.       (2003)     A spatial 
model of germinal center reactions: Cellular adhe-
sion based sorting of B cells results in efficient 
affinity maturation  .    J. Theor. Biol.       222   ,   9  –  22  .  

   25  .     Meyer-Hermann  ,   M.   ,    Deutsch  ,   A.   , and    Or-
Guil  ,   M.       (2001)     Recycling probability and 
dynamical properties of germinal center reac-
tions  .    J. Theor. Biol.       210   ,   265  –  285  .  

   26  .     Nguyen  ,   B.   ,    Upadhyaya  ,   A.   ,    van Oudenaarden  , 
  A.   , and    Brenner  ,   M. P.       (2004)     Elastic instabil-
ity in growing yeast colonies  .    Biophys. J.       86   , 
  2740  –  2747  .  

   27  .     Walther  ,   T.   ,    Reinsch  ,   H.   ,    Grosse  ,   A.   ,    Oster-
mann  ,   K.   ,    Deutsch  ,   A.   , and    Bley  ,   T.       (2004)   
  Mathematical modeling of regulatory mecha-
nisms in yeast colony development  .    J. Theor. 
Biol.       229   ,   327  –  338  .  

   28  .     Borner  ,   U.   ,    Deutsch  ,   A.   ,    Reichenbach  ,   H.   , 
and    Bar  ,   M.       (2002)     Rippling patterns in 
aggregates of  myxobacteria  arise from cell–cell 
collisions  .    Phys. Rev. Lett.       89   ,   078101  .  

   29  .     Bussemaker  ,   H. J.   ,    Deutsch  ,   A.   , and    Geigant  ,   E.     
  (1997)     Mean-field analysis of a dynamical phase 
transition in a cellular automaton model for col-
lective motion  .    Phys. Rev. Lett.       78   ,   5018  –  5021  .  

   30  .     Dormann  ,   S.   ,    Deutsch  ,   A.   , and    Lawniczak  ,   A. T.     
  (2001)     Fourier analysis of Turing-like pat-

tern formation in cellular automaton models  . 
   Future Gener. Comput. Syst.       17   ,   901  –  909  .  

   31  .     Börner  ,   U.   ,    Deutsch  ,   A.   ,    Reichenbach  ,   H.   , 
and    Bär  ,   M.       (2002)     Rippling patterns in 
aggregates of myxobacteria arise from cell–cell 
collisions  .    Phys. Rev. Lett.       89   ,   078101  .  

   32  .     Zhdanov  ,   V. P.    and    Kasemo  ,   B.       (2004)     Simula-
tion of the growth and differentiation of stem 
cells on a heterogeneous scaffold  .    Phys. Chem. 
Chem. Phys.       6   ,   4347  –  4350  .  

   33  .     Knewitz  ,   M. A.    and    Mombach  ,   J. C.       (2006)   
  Computer simulation of the influence of cellu-
lar adhesion on the morphology of the interface 
between tissues of proliferating and quiescent 
cells  .    Comput. Biol. Med.       36   ,   59  –  69  .  

   34  .     Marée  ,   A. F. M.    and    Hogeweg  ,   P.       (2001)     How 
amoeboids self-organize into a fruiting body: Mul-
ticellular coordination in  Dictyostelium discoideum   . 
   Proc. Natl Acad. Sci. USA       98   ,   3879  –  3883  .  

   35  .     Marée  ,   A. F. M.    and    Hogeweg  ,   P.       (2002)     Mod-
elling  Dictyostelium discoideum  morphogenesis: 
the culmination  .    Bull. Math. Biol.       64   ,   327  –  353  .  

   36  .     Marée  ,   A. F. M.   ,    Panfilov  ,   A. V.   , and    Hogeweg  ,   P.     
  (1999)     Migration and thermotaxis of  Dicty-
ostelium discoideum  slugs, a model study  .    J. 
Theor. Biol.       199   ,   297  –  309  .  

   37  .     Savill  ,   N. J.    and    Hogeweg  ,   P.       (1997)     Mod-
elling morphogenesis: From single cells to 
crawling slugs  .    J. Theor. Biol.       184   ,   229  –  235  .  

   38  .     Hogeweg  ,   P.       (2000)     Evolving mechanisms of 
morphogenesis: On the interplay between dif-
ferential adhesion and cell differentiation  .    J. 
Theor. Biol.       203   ,   317  –  333  .  

   39  .     Johnston  ,   D. A.       (1998)     Thin animals  .    J. Phys. 
A       31   ,   9405  –  9417  .  

   40  .     Groenenboom  ,   M. A.    and    Hogeweg  ,   P.     
  (2002)     Space and the persistence of male-kill-
ing endosymbionts in insect populations  .    Proc. 
Biol. Sci.       269   ,   2509  –  2518  .  

   41  .     Groenenboom  ,   M. A.   ,    Maree  ,   A. F.   , and 
   Hogeweg  ,   P.       (2005)     The RNA silencing path-
way: the bits and pieces that matter  .    PLoS 
Comp. Biol.       1   ,   155  –  165  .  

   42  .     Kesmir  ,   C.   ,    van Noort  ,   V.   ,    de Boer  ,   R. J.   , and 
   Hogeweg  ,   P.       (2003)     Bioinformatic analysis of 
functional differences between the immuno-
proteasome and the constitutive proteasome  . 
   Immunogenetics       55   ,   437  –  449  .  

   43  .     Pagie  ,   L.    and    Hogeweg  ,   P.       (2000)     Individual- 
and population-based diversity in restriction-
modification systems  .    Bull. Math. Biol.       62   , 
  759  –  774  .  

   44  .     Silva  ,   H. S.    and    Martins  ,   M. L.       (2003)     A cel-
lular automata model for cell differentiation  . 
   Phys. A       322   ,   555  –  566  .  

   45  .     Zajac  ,   M.   ,    Jones  ,   G. L.   , and    Glazier  ,   J. A.       (2000)   
  Model of convergent extension in animal mor-
phogenesis  .    Phys. Rev. Lett.       85   ,   2022  –  2025  .  



 Multicell Simulations of Development and Disease Using the CompuCell3D 427

   46  .     Zajac  ,   M.   ,    Jones  ,   G. L.   , and    Glazier  ,   J. A.     
  (2003)     Simulating convergent extension by 
way of anisotropic differential adhesion  .    J. 
Theor. Biol.       222   ,   247  –  259  .  

   47  .     Savill  ,   N. J.    and    Sherratt  ,   J. A.       (2003)     Control 
of epidermal stem cell clusters by Notch-medi-
ated lateral induction  .    Dev. Biol.       258   ,   141  –  153  .  

   48  .     Mombach  ,   J. C. M.   ,    de Almeida  ,   R. M. C.   , 
   Thomas  ,   G. L.   ,    Upadhyaya  ,   A.   , and    Glazier  ,   J. 
A.       (2001)     Bursts and cavity formation in  Hydra  
cells aggregates: Experiments and simulations  . 
   Phys. A       297   ,   495  –  508  .  

   49  .     Rieu  ,   J. P.   ,    Upadhyaya  ,   A.   ,    Glazier  ,   J. A.   , 
   Ouchi  ,   N. B.   , and    Sawada  ,   Y.       (2000)     Diffusion 
and deformations of single hydra cells in cel-
lular aggregates  .    Biophys. J.       79   ,   1903  –  1914  .  

   50  .     Mochizuki  ,   A.       (2002)     Pattern formation of the 
cone mosaic in the zebrafish retina: A cell rear-
rangement model  .    J. Theor. Biol.       215   ,   345  –  361  .  

   51  .     Takesue  ,   A.   ,    Mochizuki  ,   A.   , and    Iwasa  ,   Y.     
  (1998)     Cell-differentiation rules that generate 
regular mosaic patterns: Modelling motivated 
by cone mosaic formation in fish retina  .    J. 
Theor. Biol.       194   ,   575  –  586  .  

   52  .     Dallon  ,   J.   ,    Sherratt  ,   J.   ,    Maini  ,   P. K.   , and    Fer-
guson  ,   M.       (2000)     Biological implications of a 
discrete mathematical model for collagen dep-
osition and alignment in dermal wound repair  . 
   IMA J. Math. Appl. Med. Biol.       17   ,   379  –  393  .  

   53  .     Maini  ,   P. K.   ,    Olsen  ,   L.   , and    Sherratt  ,   J. A.     
  (2002)     Mathematical models for cell–matrix 
interactions during dermal wound healing  . 
   Int. J. Bifurcat. Chaos       12   ,   2021  –  2029  .  

   54  .     Kreft  ,   J. U.   ,    Picioreanu  ,   C.   ,    Wimpenny  ,   J. W. 
T.   , and    van Loosdrecht  ,   M. C. M.       (2001)     Indi-
vidual-based modelling of biofilms  .    Microbiology    
   147   ,   2897  –  2912  .  

   55  .     Picioreanu  ,   C.   ,    van Loosdrecht  ,   M. C. M.   , and 
   Heijnen  ,   J. J.       (2001)     Two-dimensional model 
of biofilm detachment caused by internal stress 
from liquid flow  .    Biotechnol. Bioeng.       72   ,   205  –
  218  .  

   56  .     van Loosdrecht  ,   M. C. M.   ,    Heijnen  ,   J. J.   , 
   Eberl  ,   H.   ,    Kreft  ,   J.   , and    Picioreanu  ,   C.       (2002)   
  Mathematical modelling of biofilm structures  . 
   Antonie Van Leeuwenhoek Int. J. General Mol. 
Microbiol.       81   ,   245  –  256  .  

   57  .     Pop awski  ,   N. J.   ,    Shirinifard  ,   A.   ,    Swat  ,   M.   , 
and    Glazier  ,   J. A.       (2008)     Simulations of sin-
gle-species bacterial-biofilm growth using 
the Glazier–Graner–Hogeweg model and the 
CompuCell3D modeling environment  .    Math. 
Biosci. Eng.       5   ,   355  –  388  .  

   58  .     Chaturvedi  ,   R.   ,    Huang  ,   C.   ,    Izaguirre  ,   J. A.   , 
   Newman  ,   S. A.   ,    Glazier  ,   J. A.   , and    Alber  ,   M. S.     
  (2004)     A hybrid discrete-continuum model 
for 3-D skeletogenesis of the vertebrate limb  . 
   Lect. Notes Comput. Sci.       3305   ,   543  –  552  .  

   59  .     Pop awski  ,   N. J.   ,    Swat  ,   M.   ,    Gens  ,   J. S.   , and 
   Glazier  ,   J. A.       (2007)     Adhesion between cells, 
diffusion of growth factors, and elasticity of 
the AER produce the paddle shape of the 
chick limb  .    Phys. A       373   ,   521  –  532  .  

   60  .     Glazier  ,   J. A.    and    Weaire  ,   D.       (1992)     The 
kinetics of cellular patterns  .   J. Phys.: Condens. 
Matter     4  ,   1867  –  1896  .  

   61  .     Glazier  ,   J. A.       (1993)     Grain growth in three 
dimensions depends on grain topology  .   Phys. 
Rev. Lett.     70  ,   2170  –  2173  .  

   62  .   Glazier, J. A., Grest, G. S., and Anderson, M. 
P. (1990) Ideal two-dimensional grain growth, 
in Simulation and Theory of Evolving Micro-
structures (Anderson, M. P. and Rollett, A. 
D., eds.), The Minerals, Metals and Materials 
Society, Warrendale, PA, pp. 41–54.  

   63  .     Glazier  ,   J. A.   ,    Anderson  ,   M. P.   , and    Grest  ,   G. 
S.       (1990)     Coarsening in the two-dimensional 
soap froth and the large-Q Potts model: a 
detailed comparison  .    Philos. Mag. B       62   , 
  615  –  637  .  

   64  .     Grest  ,   G. S.   ,    Glazier  ,   J. A.   ,    Anderson  ,   M. 
P.   ,    Holm  ,   E. A.   , and    Srolovitz  ,   D. J.       (1992)   
  Coarsening in two-dimensional soap froths 
and the large-Q Potts model  .   Mater. Res. Soc. 
Symp.     237  ,     101  –  112  .  

   65  .     Jiang  ,   Y.    and    Glazier  ,   J. A.       (1996)     Extended 
large-Q Potts model simulation of foam drain-
age  .   Philos. Mag. Lett.     74  ,   119  –  128  .  

   66  .     Jiang  ,   Y.   ,    Levine  ,   H.   , and    Glazier  ,   J. A.       (1998)   
  Possible cooperation of differential adhesion 
and chemotaxis in mound formation of  Dicty-
ostelium   .   Biophys. J.     75  ,   2615  –  2625  .  

   67  .     Jiang  ,   Y.   ,    Mombach  ,   J. C. M.   , and    Glazier  ,   J. 
A.       (1995)     Grain growth from homogeneous 
initial conditions: Anomalous grain growth 
and special scaling states  .   Phys. Rev. E     52  , 
  3333  –  3336  .  

   68  .     Jiang  ,   Y.   ,    Swart  ,   P. J.   ,    Saxena  ,   A.   ,    Asipauskas  , 
  M.   , and    Glazier  ,   J. A.       (1999)     Hysteresis and ava-
lanches in two-dimensional foam rheology simu-
lations  .   Phys. Rev. E     59  ,   5819  –  5832  .  

   69  .     Ling  ,   S.   ,    Anderson  ,   M. P.   ,    Grest  ,   G. S.   , and 
   Glazier  ,   J. A.       (1992)     Comparison of soap froth 
and simulation of large-Q Potts model  .   Mater. 
Sci. Forum     94–96  ,   39  –  47  .  

   70  .     Mombach  ,   J. C. M.       (2000)     Universality of the 
threshold in the dynamics of biological cell 
sorting  .    Phys. A       276   ,   391  –  400  .  

   71  .     Weaire  ,   D.    and    Glazier  ,   J. A.       (1992)     Model-
ling grain growth and soap froth coarsening: 
Past, present and future  .   Mater. Sci. Forum   
  94–96  ,   27  –  39  .  

   72  .     Weaire  ,   D.   ,    Bolton  ,   F.   ,    Molho  ,   P.   , and    Glazier  , 
  J. A.       (1991)     Investigation of an elementary 
model for magnetic froth  .   J. Phys.: Condens. 
Matter     3  ,   2101  –  2113  .  



428 Swat et al.

   73  .   Glazer, J. A., Balter, A., and Pop awski, N. 
(2007) Magnetization to morphogenesis: A 
brief history of the Glazier–Graner–Hogeweg 
model, in  Single-Cell-Based Models in Biology 
and Medicine  (Anderson, A. R. A., Chaplain, 
M. A. J., and Rejniak, K. A., eds.), Birkhauser 
Verlag, Basel, pp. 79–106.  

   74  .     Walther  ,   T.   ,    Reinsch  ,   H.   ,    Ostermann  ,   K.   , 
   Deutsch  ,   A.   , and    Bley  ,   T.       (2005)     Coordinated 
growth of yeast colonies: Experimental and 
mathematical analysis of possible regulatory 
mechanisms  .    Eng. Life Sci.       5   ,   115  –  133  .  

   75  .     Keller  ,   E. F.    and    Segel  ,   L. A.       (1971)     Model for 
chemotaxis  .    J. Theor. Biol.       30   ,   225  –  234  .  

   76  .   Glazier, J. A. and Upadhyaya, A. (1998) First 
steps towards a comprehensive model of tis-
sues, or: A physicist looks at development, in 
Dynamical Networks in Physics and Biology: 
At the Frontier of Physics and Biology (Bey-
sens, D. and Forgacs, G., eds.), EDP Sciences, 
Berlin, pp. 149–160.  

   77  .     Glazier  ,   J. A.    and    Graner  ,   F.       (1993)     Simula-
tion of the differential adhesion driven rear-
rangement of biological cells  .    Phys. Rev. E       47   , 
  2128  –  2154  .  

   78  .     Glazier  ,   J. A.       (1993)     Cellular patterns  .   Bussei 
Kenkyu     58  ,   608  –  612  .  

   79.       Glazier  ,   J. A.       (1996)     Thermodynamics of cell 
sorting  .   Bussei Kenkyu     65  ,     691  –  700  .  

   80  .   Glazier, J. A., Raphael, R. C., Graner, F., 
and Sawada, Y. (1995) The energetics of cell 
sorting in three dimensions, in Interplay of 
Genetic and Physical Processes in the Devel-
opment of Biological Form (Beysens, D., For-
gacs, G., and Gaill, F., eds.), World Scientific, 
Singapore, pp. 54–66.  

   81  .     Graner  ,   F.    and    Glazier  ,   J. A.       (1992)     Simula-
tion of biological cell sorting using a 2-dimen-
sional extended Potts model  .    Phys. Rev. Lett.    
   69   ,   2013  –  2016  .  

   82  .     Mombach  ,   J. C. M.    and    Glazier  ,   J. A.       (1996)   
  Single cell motion in aggregates of embryonic 
cells  .   Phys. Rev. Lett.     76  ,   3032  –  3035  .  

   83  .     Mombach  ,   J. C. M.   ,    Glazier  ,   J. A.   ,    Raphael  ,   R. C.   , 
and    Zajac  ,   M.       (1995)     Quantitative comparison 
between differential adhesion models and cell 
sorting in the presence and absence of fluctua-
tions  .    Phys. Rev. Lett.       75   ,   2244  –  2247  .  

   84  .     Cipra  ,   B. A.       (1987)     An introduction to the 
Ising-model  .    Am. Math. Monthly       94   ,   937  –  959  .  

   85  .     Metropolis  ,   N.   ,    Rosenbluth  ,   A.   ,    Rosenbluth  , 
  M. N.   ,    Teller  ,   A. H.   , and    Teller  ,   E.       (1953)   
  Equation of state calculations by fast comput-
ing machines  .    J. Chem. Phys.       21   ,   1087  –  1092  .  

   86  .     Forgacs  ,   G.    and    Newman  ,   S. A.       (2005)  .    Bio-
logical Physics of the Developing Embryo   .   Cam-
bridge University Press  ,   Cambridge  .  

   87  .   Alber, M. S., Kiskowski, M. A., Glazier, J. A., 
and Jiang, Y. (2002) On cellular automation 
approaches to modeling biological cells, in 
 Mathematical Systems Theory in Biology, Com-
munication and Finance  (Rosenthal, J. and 
Gilliam, D. S., eds.), Springer, New York, NY, 
pp. 1–40.  

   88  .     Alber  ,   M. S.   ,    Jiang  ,   Y.   , and    Kiskowski  ,   M. A.     
  (2004)     Lattice gas cellular automation model 
for rippling and aggregation in  myxobacteria   . 
   Phys. D       191   ,   343  –  358  .  

   89  .     Upadhyaya  ,   A.   ,    Rieu  ,   J. P.   ,    Glazier  ,   J. A.   , and 
   Sawada  ,   Y.       (2001)     Anomalous diffusion in 
two-dimensional  Hydra  cell aggregates  .   Phys. A   
  293  ,   549  –  558  .  

   90  .     Cickovski  ,   T.   ,    Aras  ,   K.   ,    Alber  ,   M. S.   ,    Izaguirre  , 
  J. A.   ,    Swat  ,   M.   ,    Glazier  ,   J. A.   ,    Merks  ,   R. M. H.   , 
   Glimm  ,   T.   ,    Hentschel  ,   H. G. E.   , and    Newman  , 
  S. A.       (2007)     From genes to organisms via the 
cell: A problem-solving environment for mul-
ticellular development  .    Comput. Sci. Eng.       9   , 
  50  –  60  .  

   91  .     Izaguirre  ,   J. A.   ,    Chaturvedi  ,   R.   ,    Huang  ,   C.   , 
   Cickovski  ,   T.   ,    Coffland  ,   J.   ,    Thomas  ,   G.   ,    For-
gacs  ,   G.   ,    Alber  ,   M.   ,    Hentschel  ,   G.   ,    Newman  , 
  S. A.   , and    Glazier  ,   J. A.       (2004)     CompuCell, a 
multi-model framework for simulation of mor-
phogenesis  .    Bioinformatics       20   ,   1129  –  1137  .  

   92  .     Armstrong  ,   P. B.    and    Armstrong  ,   M. T.     
  (1984)     A role for fibronectin in cell sorting 
out  .    J. Cell Sci.       69   ,   179  –  197  .  

   93  .     Armstrong  ,   P. B.    and    Parenti  ,   D.       (1972)     Cell 
sorting in the presence of cytochalasin B  .    J. 
Cell Sci.       55   ,   542  –  553  .  

   94  .     Glazier  ,   J. A.    and    Graner  ,   F.       (1993)     Simula-
tion of the differential adhesion driven rear-
rangement of biological cells  .    Phys. Rev. E       47   , 
  2128  –  2154  .  

   95  .     Glazier  ,   J. A.    and    Graner  ,   F.       (1992)     Simula-
tion of biological cell sorting using a two-
dimensional extended Potts model  .    Phys. Rev. 
Lett.       69   ,   2013  –  2016  .  

   96  .     Ward  ,   P. A.   ,    Lepow  ,   I. H.   , and    Newman  ,   L. J.     
  (1968)     Bacterial factors chemotactic for poly-
morphonuclear leukocytes  .    Am. J. Pathol.       52   , 
  725  –  736  .  

   97  .     Lutz  ,   M.       (1999)      Learning Python   .   O’Reilly & 
Associates  ,   Sebastopol, CA  .  

   98  .     Balter  ,   A. I.   ,    Glazier  ,   J. A.   , and    Perry  ,   R.     
  (2008)     Probing soap-film friction with 
two-phase foam flow  .    Philos. Mag. Lett.       88   , 
  679  –  691  .  

   99  .     Dvorak  ,   P.   ,    Dvorakova  ,   D.   , and    Hampl  ,   A.     
  (2006)     Fibroblast growth factor signaling in 
embryonic and cancer stem cells  .    FEBS Lett.    
   580   ,   2869  –  2287  .      



      Chapter 14

 BioLogic: A Mathematical Modeling 
Framework for Immunologists       

     Shlomo   Ta’asan   and      Rima   Gandlin     

  Summary 

 The immune response to pathogens is a result of complex interactions among many cell types and a large 
number of molecular processes. As such it poses numerous challenges for modeling, simulation, and analy-
sis. In this work we aim at addressing major issues regarding modeling of large biological systems with a 
special focus on the immune system. We address (1) the hierarchy in the system, from genes to organelles to 
cells to organs to organism, (2) the high variability due to experimentation, (3) the high variability among 
organisms, and (4) the need to bridge between immunologists/experimentalists and mathematicians/
modelers. We provide an intuitive syntax to describe biological knowledge in terms of interactions (reac-
tions) and objects (cells, organs, etc.) and illustrate how to use it in describing very complex systems. We 
describe the main elements of a simulation program that use that syntax to define models and to automati-
cally simulate them. We restrict our discussion to modeling using logical network, although other modeling 
techniques, for example, differential equations and probabilistic/stochastic modeling, are also possible. 
Examples demonstrating the different features of the framework are given throughout the chapter.  

  Key words:   BioLogic ,  Biological systems ,  Modeling ,  Simulation .    

 

 Mathematical modeling and simulation technique are common 
in most areas of science and engineering. They assist in gaining 
deeper insights into physical phenomena; they help in estimating 
unknown parameters, and they help performing design tasks and 
more. Experimentalists in numerous areas such as materials sci-
ence and engineering, civil engineering, aerospace engineering, 
etc. use mathematical models routinely. In biology, in contrast, 

 1. Introduction  
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we encounter mostly statistical methods that are used to handle 
noisy measurements and for hypotheses testing. Mathematical 
modeling for gaining insight into how biological systems work 
and evolve is hardly used. Yet in biology the problems are more 
complex and the need for exploring mathematical techniques is 
essential. An example is an immune response to pathogens, which 
is a result of complex interactions among many cell types and 
a large number of molecular processes – a grand challenge for 
modeling simulation as well as analysis and interpretation. 

 Advances in experimental techniques in biology over the 
last decade allow the interrogation of systems at multiple levels 
yielding abundant data that call for new tools for its understand-
ing. These experimental techniques include gene microarrays, 
high-dimensional flow cytometry, multiplex assays, and more. 
The information processing involved in an immune response is 
becoming progressively available through the use of these multi-
ple techniques. Thus, advances in experimentation make it necessary 
to use modeling and simulation techniques for interpreting and 
analyzing these data due to their large scale. 

 This work aimed at answering some aspects of the grand chal-
lenge of modeling the immune system. Our study here is focused 
toward developing a general framework and toolbox for mathe-
matical modeling of the immune system that is targeted toward 
immunologists. The rationale behind this is that the vast amount of 
information in immunology is known only to expert immunologists 
and it is best if we can supply them with a tool for modeling, rather 
than have a mathematician learn all the details of the immune sys-
tem. Our framework is based on a few important observations. First, 
the large number of interactions and processing that take place in an 
immune response call for a new paradigm to capture the complex 
behavior of the system. The system is multiscale in nature, compris-
ing genes, proteins, organelles, cells, and organs. Second, there is a 
high variability among genetically identical organisms in expression 
level of mRNA, receptors, and secreted cytokines. Similarly, reac-
tions rates (on rate, off rate) are not known for most processes, and 
probably have high variability as well even among genetically identi-
cal organisms. Third, there is a large body of knowledge regarding 
molecular interactions in immune response, and this knowledge is 
rapidly growing, reflecting that a lot is still unknown. 

 Our modeling and simulation framework includes three 
components. The first is syntax for expressing experimental setups, 
data, and knowledge regarding states and interactions in the system. 
This part can be regarded as a bridge between immunologists 
and mathematicians as it is intuitive and can be understood eas-
ily by immunologists, yet it is formal enough so it defines the 
system precisely. This syntax also answers the challenge of the 
rapid growth in immunological knowledge since it allows for easy 
updates of hypothesis and knowledge. The second component 
of this framework is a database for storing such knowledge and 
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information. This allows for reuse of previously defined objects or 
systems. The third component is a computer simulation environ-
ment that uses the aforementioned syntax to define realization of 
models and to simulate them. The framework addresses limitations 
in available measurements and in their high variability by using 
logical networks, in which molecular abundance and reaction 
rates are described qualitatively using just a few levels, denoted 
by 0, 1, 2, etc. The use of the logical network paradigm removes 
the need for detailed parameter estimation, such as association/
dissociation constants. 

  Subheadings    2   and   3   are written for a potential user of this 
framework, a person with immunology background. Part of 
 Subheading   4  includes some mathematical arguments that can 
be skipped without hurting the ability to use the framework. The 
mathematical arguments are intended for readers with mathemat-
ical background who may question the relation of our approach 
to the classical approach using differential equations.  

 

 The complex and dynamic nature of the immune system has stim-
ulated many mathematicians and modelers to use mathematical 
modeling to gain an understanding of its functioning and regula-
tion. Indeed several mathematical models of different aspects of the 
immune system have been developed  (1) . Mathematical models 
have proved very useful in the study of some aspects of the dynam-
ics of HIV infection and progression to AIDS  (2) , particularly in 
relation to the development of novel treatment regimens  (3–  5)  
and the latent phase  (6) . The study of T-cell activation and the 
cognate interaction with peptide/MHC complexes  (7,   8)  has ben-
efited from the use of mathematical models  (9–  11) . They are more 
quantitative and as a result allow for a more precise and refined 
analysis of how the dynamics of receptor interaction leads to activa-
tion of the cells of the immune system  (12–  14) . Simple mathemati-
cal models were used to discuss the immune memory  (15) . 

 None of the aforementioned approaches were designed to 
model the immune response in a biologically realistic manner. 
Computer-based approaches such as cellular automata or com-
plex system modeling have been used in attempting to describe 
adequately such complex processes. Seiden and Celada have used 
cellular automata to model the immune system  (15–  19) . Further 
development in this direction was carried out in    (20 – 21) , includ-
ing parallel implementation and the capability to simulate both 
humoral and cellular responses. The package PARIMM is one of 
the most complete simulators of the immune system developed. 
These approaches are, however, too rigid in the sense that if the 

 2. Mathematical 
Approaches and 
Models  
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model needs to be updated due to new immunological data, it 
has to be done at the software level, which can be cumbersome 
and time consuming. 

 More flexible approaches, yet in different areas, have been 
developed to modeling biology. In these approaches a simula-
tion environment is created, rather than a particular model. We 
cite a few examples only. In    (22) , an automation-based semantic 
of temporal evolution of complex biochemical reactions is used 
starting from the representation of the system as given as a set 
of differential algebraic equations (DAE). Reasoning about the 
system is done using temporal logic. The software package for 
this approach is Simpathica/xssys. Another approach  (23)  for a 
rigorous formalism in modeling biological systems involves Petri 
nets. This is a mathematical formalism developed by computer 
scientists that allows biologists to focus on the content of their 
model rather than on the implementation. A software package 
UltraSAN is dedicated to this approach. In this approach one 
obtains probability distributions for molecular species; thus, it 
addresses low-abundance molecular species, where differential 
equations are not appropriate. Addressing the hierarchy in bio-
logical systems and building complex objects have been done 
 (24) . This involves continuous system modeling, and it produces 
a self-contained independently executable model, which allows 
for multimodel multicomponent hierarchy. An attempt to cre-
ate logic for biological systems  (25)  involves a language together 
with hybrid projection temporal logic of modeling, analyzing, 
and verifying biological systems, and deals with nontrivial mix-
ture of discrete and continuous systems. That approach is too 
mathematical to be useful for immunologists. 

 In designing our framework we have focused on (1) modu-
larity, (2) ease of understanding and use by immunologists, (3) a 
simple approach to modeling hierarchical structure, (4) address-
ing the high variability in experimental data, and (4) the insuf-
ficient information regarding reaction rates.  

 

 Our framework describes the immune system structure and function 
by defining the space (which may include multiple compartments), 
the objects (which may be hierarchical), and the interaction rules 
among them. We begin by discussing objects and interactions 
without specifying concentration or cell count. This will make the 
presentation easier to follow. We adopt a free style in defining 
concepts instead of using precise mathematical definition in order 
to make the material accessible for nonmathematicians. 

 3. BioLogic: 
A Modeling 
Framework  
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  Immunology deals with different types of objects such as cells 
and organs whose interactions are facilitated through molecu-
lar mediators. Our modeling approach will mimic this and will 
therefore be very intuitive for immunologists. At the abstract 
mathematical level we deal with  objects , which may represent 
molecules, cells, organs, etc. However, we distinguish between 
simple objects and complex objects. 

  Simple objects  are used to model biological entities whose 
internal structure is not needed for the specific modeling. Bio-
logically these may include description cytokines, chemokines, 
genes, etc. However, in simplified models, even a cell may be 
modeled as a simple object as we see later. To allow the flexibil-
ity of modeling from the gene level all the way to the organism 
level using a simple syntax, we have introduced three types of 
simple objects, which we refer to by their biological significance: 
 genes ,  molecules , and  transporters . Genes can be either up  (1)  
or down (0). Molecules and transporters can have arbitrary levels. 
Names for objects can include characters a–z, A–Z, numbers, and 
the symbols: − (minus) and _ (underscore). They cannot include 
other characters. Simple objects in our frameworks are the ones 
that perform actions (interactions). 

  Complex objects  are containers for simple objects and addi-
tional complex objects, and the hierarchy is limitless. The syntaxes 
for describing complex objects are the square brackets []. For 
example, the object [] is the empty object, i.e., it contains no sim-
ple objects and is of only mathematical interest (there is no biology 
for it to represent). We move to more interesting objects. 

  Example I : The object depicted in  Fig.   1  and having the syntax  

 X = [A,B,C, [D E]] 

 3.1. Syntax for Objects 

  Fig. 1 .    A complex object       .
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 is a complex object that contains three simple objects A, B, and C, 
and one complex object [D,E] consisting of two simple objects 
D and E. 

  Some terminology : An important concept is that of  parents  and 
 children  in these hierarchical structures. In the last example we may 
think of the object [D,E] as a child of the object that contains it, 
which we call the  parent . We may need to refer to a  grandparent  
later on, so keep this in mind as well.  Disjoint objects  are objects 
such that none contains the other. In the case of [[A,B],[C,[D,E]], 
the objects [A,B] and [C,[D,E]] are disjoint. The  innermost con-
tainer  for an object, X, is the container, [], that contains X and 
no child of this container contains X. For example, in the object 
[[A,B],[C,[D,E]], the outermost brackets belong to the innermost 
container for both objects [A,B] and [C,[D,E]], but it is not the 
innermost container for [D,E] that is contained in a child, which 
contains both the simple object C and [D,E]. 

  Example II . Suppose that we want to model the interaction 
between a macrophage (M) and a natural killer (NK) cell, but we 
do not want to go into description of signaling. This is an exam-
ple in which we use simple objects of our framework to model 
complex biological objects. The model is defined as 

 Model = [M, NK], 
 which includes a description of structure but not of any interac-
tion. We need to supply also a set of interaction rules that follow 
the biology and that would make this model interesting. As it is, 
it cannot evolve or perform any action. Before going to describ-
ing interaction we give some more examples. 

  Example III:  A complex object describing a macrophage is 
shown in  Fig.   2 . In our syntax it is written as  

 Macrophage = [TLR4, TNF-R, IFNg-R, IL12-R, 
     [TLR3, TLR9, Phagosome, 
      [geneTNF, geneIL-6 
      ] 
     ] 
   ]. 

 We have used here indentation to show the beginning, [, and end, 
], of each compartment. In this object we distinguish three levels. 
The outer level contains the simple objects TLR4, TNF-R, IFNg-
R, and IL12-R – all known receptors of a macrophage at its naive 
state. This outer level may be regarded as the membrane. In the 
next inner level we find TLR3, TLR9, and phagosome. In real-
ity a phagosome is a complex object consisting of a membrane, 
receptors, and molecules in its interior; here, it is modeled as a 
simple object. The object containing TLR3, TLR9, and phago-
some is the parent of the object [geneTNF, geneIL-6], while the 
top-level object containing TLR-4, etc., is the grandparent. 
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 The object that contains the whole model is called the  space . 
It may contain simple objects, complex objects, or both. It has a 
single copy of itself, and all interactions are within this object. In 
the last example  Model  is the parent object and thus defines the 
space for our simulation.  

  In the current version of our framework, interactions happen 
between simple objects only. We use the following syntax: 

  {reactants} {speed} {products} , 
 where  {reactants}  and  {products}  contain lists of simple objects 
separated by the symbol +. For now, we will assume that speed is 
represented by the symbol ->. Later when we discuss logical vari-
ables we will extend this to include symbols such as ->>, ->>>, 
->>>>, etc. We list a few examples of interactions (left) and their 
interpretation (right): 

  TNFaR + TNFa -> TNFa: TNFaR    receptor ligand binding  
  Caspase3 -> Apoptosis           molecule initiating 

a process  
  ProInflammatoryResponse ->TNFa   process results in
 cytokine production  
  Inflammation -> Cancer          one complex process 

initiates another  

 Note the use of names to represent real molecules and the results 
of their binding (first reaction); molecules that result in a complex 
biological process, such as apoptosis (second reaction); processes 
that result in production of cytokines (third reaction); a com-
plex biological process that results in another complex biological 
process, both modeled as simple objects (fourth reaction). 

 3.2. Syntax and Rules 
for Interactions 

  Fig. 2 .    A macrophage: graphical representation       .
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 The use of a hierarchical structure limits the possible interac-
tions between simple objects. For example, simple objects that 
reside in disjoint objects may not be able to interact since they 
are meant to model physically different regions in the organism. 
We define the allowable interactions across compartments using 
the following rules:
    Rule 1 :    Simple objects that belong to the same innermost con-
tainer can interact.  
    Rule 2 :    Simple objects can interact with other simple objects of 
the parent’s outermost level.  
    Rule 3 :    Simple objects in the outermost level of two disjoint objects 
that belong to the same innermost container can interact.     

 These rules are based on the intuitive idea of proximity in 
hierarchical structures. Rule 1 is obvious, implying that simple 
objects residing in different compartment may not be able to 
interact unless they obey rules 2 and 3. Rule 2 allows us to model 
signaling, as it mimics the situation in biology where molecules 
in the membrane can interact with molecules in the cytosol or 
molecules outside the cell. Rule 3 will allow us to model cell–cell 
interactions through surface molecules. We give an example to 
illustrate the rules. 

  Example IV:  Consider the complex object that is shown in 
 Fig.   3 . The syntax for it is  

 Object = [[A,B,C, [D,E]], [F,G, [H, [K,L,M]]]]. 

 In this example, A, B, and C are in the same container, and D and 
E are in another container, etc. From rule 1, the simple objects A, 
B, and C can interact; D and E can interact; F and G can interact; 
and K, L, and M can interact. From rule 2 we conclude that D 
and E can interact with A, B, and C but not with others; K, L, 
and M can interact with H. In addition, H can interact also with 
F and G. From rule 3 we have that A, B, and C can interact with 
F and G. 

  Fig. 3 .    A complex object containing two (children) complex objects       .
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  Example V: Macrophage activation by bacteria.  In this example 
we demonstrate the use of simple objects alone in modeling a 
biological scenario: the activation of a macrophage by bacteria. 
We start by defining the initial objects, bacteria (Bac), macro-
phage (M), and natural killer (NK), 

 Model = [Bac, M, NK], 

 together with all the possible interactions in the system,  

 R1:   M + Bac -> paM + Bac + Bac 
 R2:   paM -> paM + IL-12 
 R3:   NK + IL-12 -> aNK 
 R4:   aNK -> aNK + IFNg 
 R5:   paM + IFNg -> aM 
 R6:   aM + Bac -> aM 

 The first reaction, M + Bac -> paM + Bac + Bac, indicates that a 
macrophage (M), when interacting with bacteria (Bac), becomes 
a partially activated macrophage (paM), and the bacteria multiply 
(it appears twice on the right and only once on the left). The 
second reaction, paM -> paM + IL-12, describes the action of a 
partially active macrophage: it secretes IL-12. The fact that paM 
appears on both sides of the reaction means that the active mac-
rophage does not change its state as a result of this secretion. 
Note that this is not the case in the first reaction: the naive mac-
rophage (M) does not appear in the right hand side – it changed 
into a partially active macrophage (paM). The third reaction, NK 
+ IL-12 -> aNK, means that a natural killer cell in the presence of 
IL-12 becomes activated, and the IL-12 is consumed. The fourth 
reaction, aNK -> aNK + IFNg, describes the action of an active 
natural killer: it secretes IFNg and does not change its state. The 
fifth reaction, paM + IFNg -> aM, indicates that a partially active 
macrophage (paM) becomes fully activated (aM) in the presence 
of IFNg. The last reaction, aM + Bac -> aM, describes the killing 
of bacteria by an active macrophage. Note that the object Bac 
appears on the left but not in the right-hand side of the reaction. 
This indicates that it disappears at the end of this reaction. 

 Our model can evolve only in accordance with the possible 
reactions available to it. The following is the evolution of the 
model, where we have indicated the reaction (R1–R6) that is 
responsible for each change: 

 [Bac, M, NK] (R1) ⇒ [Bac, paM, NK] (R2) ⇒ [Bac, paM, 
IL-12, NK] (R3) ⇒ [Bac, paM, IL-12, aNK] (R4) ⇒ [Bac, paM, 
aNK, IFNg] (R5) ⇒ [Bac, aNK, aM] (R6) ⇒ [aNK, aM]. 

 In this sequence of events we assumed that there is a single mac-
rophage, a single NK, and a single bacterium. In reality there is a 
population of each, and the reaction M + Bac -> aM + Bac does 
not change all macrophages but only those that encounter bacteria. 
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The sequence of states of the system will have the objects M, NK, 
etc. during the whole progression. 

  Syntax for transporter interactions . To allow for secretion 
of molecules and complex interaction such as phagocytosis, we 
introduced a special type of reactions, which we refer to as trans-
porter reaction. It has the syntax  

{transporter}:: {simpleObject} @ {origin} {speed} {sim-
pleObject} @ {destination},  

 where  {transporter}  is a simple object, and  {origin}  and  {des-
tination}  are one of the following keywords: SELF, PARENT, 
GPARENT (for grandparent). The origin and destination are 
with reference to the location of the transporter. The convention 
is to put the transporter in the innermost object involved, since 
the parent and grandparent are unique while an object may have 
several children. An example will clarify this. Consider again the 
case of a macrophage that was partially activated, by LPS, for 
example, and has produced IL-12 but not secreted it yet. The 
secretion can be facilitated using a transporter object, which is 
placed in the container of the IL-12. Let the object be 

 [ [TLR4, [Tr, IL-12]] ], 

 and the transporter reaction, 

 Tr :: IL-12 @ SELF -> IL-12 @ GPARENT. 

 This transporter reaction is read as “the transporter (Tr) takes (::) 
IL-12 molecules from its own compartment (SELF) and to the 
grandparent compartment (GPARENT).” It results in the fol-
lowing transformation of our object: 

 [ [ TLR4, [ Tr, IL-12]] ] ⇒ [ IL-12 [ TLR4, [ Tr ]] ]. 

 This example shows the reason for introducing GPARENT; the 
parent compartment here, containing the TLR4, is viewed as the 
membrane, and the secretion of the IL-12 needs to be done into 
the extracellular region. 

 The syntax introduced so far does not specify how to model 
the system. It describes only the structure and its logic. Certain 
things can happen while others cannot, etc. The actual dynamical 
modeling of systems described with the syntax explained here can 
be implemented in a variety of ways. One possibility is to use differ-
ential equations by translating all reactions into dynamical equations 
using the law of mass action. Another possibility is to use proba-
bilistic models where each interaction happens only with a certain 
probability (also following the law of mass action). We will adopt 
a third approach that uses logical networks. We start with a brief 
description of what the logical variables are and how we add and 
subtract them, followed by their use in modeling interactions.   
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 As we have outlined in the introduction, a robust modeling 
approach to the immune system must address the high vari-
ability in molecular abundance and reaction rates. The system is 
robust and shows the same qualitative behavior even if the actual 
measurements differ from one organism to another. This suggest 
that instead of using real numbers to describe quantities such 
as molecular concentration, cell number, and reaction rates we 
might as well reduce the complexity by considering a few levels in 
each of these quantities. This is not a foreign idea to experimen-
tal immunologists. When discussing the results of an experiment 
they often use statements such as “the response was strong,” “the 
number of cells was low,” and “TNF-R level was high.” These 
statements are not a use of an imprecise language by the immu-
nologist. They reflect something very fundamental about the sys-
tem; because of high variability across experiments and organisms 
we cannot use a more precise language. 

  The mathematical concept of logical variables seems to fit the vari-
ability and the inability to be precise quite well. The simplest case 
is that of Boolean variables, which attain only two values, 0 and 1, 
referred to also as false and true, or in our case may represent high 
and low or fast and slow; the interpretation is up to us. A richer 
case that is more appropriate for modeling immunology would use 
a few such levels describing molecular abundance. For example, 
0 would represent no expression, 1 – low expression, 2 – high 
expression, etc. Similarly, reaction rates will use the same numbers 
and 0 would mean slow rate, 1 – moderate, 2 – fast rate, etc. 

 Since molecular abundance may change during an immune 
response we may also need to define how to add and subtract 
logical variables. For example, suppose that we had two popula-
tions of the same cell type, and we have combined them. What is 
the size of the new combined population? If we follow our intui-
tion from biology we know that if we add two small quantities 
we get a new quantity that is small, and by adding a small and a 
high quantity get a high quantity, etc. This is summarized in the 
following rules for addition. 

 None + None = None 0 + 0 = 0 
 Low + None = Low 1 + 0 = 1 
 Low + Low = Low 1 + 1 = 1 
 Low + High = High 1 + 2 = 2 
 High + High = High 2 + 2 = 2 

 The table on the right may look strange since we know that 
1 + 1 = 2; nevertheless in modeling with logical variables the 
aforementioned has to be kept in mind. 

 4. Implementation 
Using Logical 
Variables  

 4.1. Nonstandard 
Arithmetic 
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 The problem with the arithmetic described earlier is that it 
does not allow for the following: Low + Low +… + Low = High, 
i.e., adding a small quantity many times results in a large quantity. 
To fix this we change the aforementioned arithmetic by making it 
probabilistic. That is, 1 + 1 = 1 most of the time, but with a small 
probability it is 2; for example, one of ten times it is 2, and in the 
other nine times it is 1. Of course, we do not want to determine 
in advance in which of the ten times it is 2, so we introduce a 
random element into our addition. The probabilities involved in 
the outcome of addition should be related to our interpretation 
of the logical variables in terms of real abundance. If we decide 
that 2 represents abundance that is 10 times larger than the abun-
dance represented by 1, then the probability of 1 + 1 = 2 should 
be 0.1, and the probability of 1 + 1 = 1 should be 0.9. We can 
generalize this idea and consider the logical variables, 0,…,  N , 
assuming that successive numbers represent abundances that dif-
fer by a factor of   β   (in the earlier example   β   = 10). If we also agree 
that the number 0 represents negligible amount and not really 0, 
it makes the addition more uniform, i.e., 0 + 0 + 0 +… + 0 = 1 in 
small probability. In summary, we will use the following general 
rule, using the notation  a ∨ b  ≡ max( a , b ) and  a ∧ b  ≡ min( a , b ):

 ( ) 1 for a ,P a N N N+ = = ≤  

 and

 
∧ − ∨ −+ = ∨ = − <1( ) 1 for , ,a b a bP a b a b a b Nb

 1( 1) for , ,a b a bP a b a b a b Nb ∧ − ∨ −+ = ∨ + = <  

 where the symbol  P  stands for probability. A definition of subtrac-
tion follows from the relation  c  –  a  =  b  being equivalent to  a  +  b  =  c , 
and we have for given  a  and  c  with  a   ≤   c ,

     
( ) ( ) / ( ),

x
P c a b P a b c P a x c− = = + = + =∑

 where ∑  x   denotes sum over all possible values of  x . Note that 
with this definition ∑  b   P ( c  −  a  =  b ) = 1, which is necessary for the 
definition to make sense. Note that we do not deal here with 
negative numbers; we did not define 1 − 2, for example. Our syn-
tax uses the following symbols to distinguish among reaction 
rates: -> (0), ->>  (1) , ->>>  (2) , ->>>>  (3) , etc. 

 To specify the number of objects of each type we use the 
brackets, (), and enclose in it both name and numbers. For example, 
(M,2) will represent macrophage at a high concentration.  

  To motivate our approach for modeling interactions with logical 
variables, it is useful to keep in mind their intuitive relation to the 
real quantities. The most natural way to do it is to say that logical 
variables are proportional to the logarithm of the concentration 
(or number). We will obey the law of mass action translated into 
logical variables. We will explain it for three reaction types.

 4.2. Modeling 
of Interactions with 
Logical Variables 
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    I.     Production at a constant rate : -> A. The law of mass action 
here is simple, d A /d t  =  c , where  c  is some constant. Since 
our logical variable is ln( A ) (natural logarithm of  A ) and not 
 A  itself, we need to construct an equation for ln( A ). We will 
use natural logarithm, although any other base is suitable as 
well, and denote it by ln( A ). Since d ln( A )/d t  = (1/ A ) d A /
d t  we have d ln( A )/d t  =  c / A  =  c /e ln( A ) . This shows that as  A  
increases, its rate of change decreases. This is quite intuitive.  

    II.     Unary interaction :  A  ->  B . Here, the law of mass action is 
simple as well, d A /d t  = −d B /d t  =  cA . Translating this into 
logical variables that are proportional to ln( A ) and ln( B ) we 
have d ln( A )/d t  =  c , d ln( B )/d t  = − c . That is per unit of 
time our logical variable in unary reaction changes by a fixed 
amount.  

    III.     Binary interaction :  A  +  B  ->  C . This is slightly more complex. 
According to the law of mass action we have d A /d t  = − cAB , 
d B /d t  = − cAB , d C /d t  =  cAB . In translating these into log 
quantities we get d ln( A )/d t  = − cB  = − c e ln( B ) ; d ln( B ) = − cA = 
− c e ln( A ) ; d ln( C ) =  cAB / C  =  c  e ln( A ) + ln( B ) − ln( C ) . The quantities 
ln( A ), ln( B ), and ln( C ) are the logical variables and their rate 
of change according to the earlier equation follows the law 
of mass action.     

 A small difficulty arises here since ln( A ) may not be an integer, 
or may even be negative, and we need to define what exactly 
we do in these cases. The idea is simple: simulations are done 
with a given time step, Δ t , and all changes are proportional to Δ t . 
We accept only changes by integer values, so if a change is as a 
fractional part, we perform the fractional part in probability. For 
example, suppose that we need to make a change of 1.5, we make 
a change of 1, the integral part of 1.5, and we implement an addi-
tional change of ½ as a change of 1 but in probability ½.   

 

 Our framework allows modeling of a biological system using dif-
ferent levels of resolutions. The coarsest description is in terms of 
the simple objects only and it is the closest to ordinary differential 
equation models. In this case there is usually one compartment 
only and all objects reside in it. This level of modeling is recom-
mended as an initial step. It is done in order to gain an insight 
into the dynamical features of the system. Once the dominant 
aspects of the model are identified, a more refined model can be 
constructed. This process should continue as long as there are 
experimental data to back it up. When done in conjunction with 
experimental data, it can provide a feedback to experiments and 

 5. Discussion  
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in turn more experimental data to refine the model. The modeling 
framework described here allows us to combine elements that are 
represented crudely, using simple objects, together with elements 
that are represented with indefinite hierarchy. This allows accom-
modating existing gaps in knowledge. The modularity allows 
changing a model very easily; making updates as new information 
is becoming available is a straightforward task. 

 A web-based interface (  http://www.math.cmu.edu/~shlomo/
BioLogic.html    ) that implements the ideas described here, and gives 
additional details that have been omitted here, will be available by 
June 2008.      
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      Chapter 15

 Dynamic Knowledge Representation Using 
Agent-Based Modeling: Ontology Instantiation 
and Verification of Conceptual Models       

     Gary   An      

  Summary 

 The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively 
process this information. Adding to this challenge is the multiscale nature of both biological systems and 
the research community as a whole. Given this volume and rate of generation of biomedical informa-
tion, the research community must develop methods for robust representation of knowledge in order 
for individuals, and the community as a whole, to “know what they know.” Despite increasing empha-
sis on “data-driven” research, the fact remains that researchers guide their research using intuitively 
constructed conceptual models derived from knowledge extracted from publications, knowledge that 
is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a compu-
tational modeling method that is suited to translating the knowledge expressed in biomedical texts into 
dynamic representations of the conceptual models generated by researchers. The hierarchical object-class 
orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontolo-
gies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that 
often “break” conceptual models. Verification in this context is focused at determining the plausibility of 
a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. 
Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods 
within the research process, as well as providing a metamodeling framework to enhance the evolution of 
biomedical ontologies.  

  Key words:   Agent-based modeling ,  Individual-based modeling ,  Mathematical models ,  Systems 
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 The biomedical research community today faces a challenge that 
has paradoxically arisen from its own success: as greater amounts 
of information become available at increasingly finer levels of bio-
logical mechanism it is also progressively difficult for individual 
researchers to effectively survey and integrate information even 
within their own area of expertise. While technology, via tools 
such as PubMED, the introduction of new publication formats 
like open-access journals, and the development of a whole slew of 
bioinformatics tools, has aided the distribution and availability of 
biomedical information, it still falls upon the individual researcher 
to concatenate that information into a conceptual mental model 
that represents that knowledge. These mental models guide the 
direction of their individual research and, in aggregate, they form 
the components of the evolving structure of community knowl-
edge. However, the formal expression of mental models remains 
poorly defined, leading to limitations in the ability to share, cri-
tique, and evolve the knowledge represented in these conceptual 
models, particularly across disciplines. As a result it is increas-
ingly difficult for both the individual researcher, and the commu-
nity as a whole, to “know what it knows.” Effective translational 
methodologies for knowledge representation need to move both 
“vertically” from the bench to the bedside, and be able to link 
“horizontally” across multiple researchers focused on different 
diseases. Information is generated by research endeavors at multi-
ple scales and hierarchies of organization: gene ⇒ protein/enzyme 
⇒ cell ⇒ tissue ⇒ organ ⇒ organism. The mirroring of these 
multiple levels in the organization of biomedical research has led 
to a disparate and compartmentalized research community and 
resulting organization of information. Recognition of this organ-
izational challenge has led to extensive work in the area of devel-
oping biomedical ontological structures. These are classification 
systems, often hierarchical and “tree-like” in structure, to group 
biological objects together based on the rules of the particular 
ontology. However, while useful, these ontological structures are 
by and large static representations of knowledge, and do not help 
to address the “intuitive limit” in attempts to parse out cause and 
effect in complex, multiscale systems. The consequences of this 
intuitive limit are seen primarily in attempts to develop effective 
therapies for diseases resulting from disorders of internal reg-
ulatory processes, when the integration of knowledge requires 
crossing the multiple scales of organization (seen in  Fig.     1A–C ) 
to determine the organ and organism level consequences of 
molecular level manipulations  (1) . Examples of such diseases are 
cancer, autoimmune disorders, and sepsis, all of which demonstrate 
 complex, nonlinear behavior.  

 1. Introduction: 
The Need for 
Dynamic 
Representation 
of Biomedical 
Knowledge  
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  These limitations can be potentially overcome by developing 
methods of dynamically instantiating knowledge to allow research-
ers to express and evaluate conceptual models more effectively. 
Computer modeling can be seen as a means of dynamic knowledge 
representation to form a basis for formal means of testing, evalu-
ating, and comparing what is currently known within the research 
community. To be able to “see” the consequences of a particular 
hypothesis structure/conceptual model, the formally represented 
knowledge is moved from a static depiction of relationships (as 
depicted in a flowchart or state diagram, similar to those seen in 
 Fig.   1C ) to a dynamic model in which the mechanistic conse-
quences of each hypothesis can be observed and evaluated. This 
process can be termed Conceptual Model Verification: dynamic 
representation of a conceptual model is a means of its  verification , 
analogous to model checking in computer science, i.e., does the 
model perform as expected based on its construction? It should 
be noted that  verification  in this context is distinct from  valida-
tion , which can be considered the fidelity of a particular model 
to observed reality. For purposes of this discussion,  validation  is 
a process applied to the computational model, which in turn is 
used to  verify  the plausibility of a conceptual model. 

 Agent-based modeling (ABM) is an object-oriented compu-
tational modeling technique that is centered on the behaviors 
and interactions of the individual components of a system, and 
has been used to demonstrate the potential benefit of conceptual 
model verification  (2) . ABM is a discrete event modeling system, 
meaning that the model cycles through a series of steps/loops/
ticks during its execution. It has characteristics that make it well 
suited for creating aggregated modular multiscale models  (3,   4) . 
ABM focuses on the rules and interactions between the indi-

 1.1. A Possible 
Solution: Dynamic 
Knowledge 
Representation via 
Agent-Based Modeling 

  Fig. 1 .   Abstract demonstration of the expansion of information resulting from reductionist investigation of multiscale 
biological systems. (A  ) The highest level of clinically observed phenomenon at the organ level. ( B ) The mechanistic knowledge 
that organ function results from the interactions of multiple cells and types of cells. ( C ) What a conceptual mechanistic 
model would look like when a further finer grained level of resolution is used. This is where the overwhelming bulk of 
biomedical research is currently being conducted, particularly with respect to the search for drug candidates and mecha-
nisms of disease. Note that the “indistinctness” of the last panel is intentional: attempts to “zoom in” on the figure may 
increase local clarity, but at the loss of being able to see the range of potential consequences to a particular manipulation. 
This figure is reproduced with the author’s permission from  ref.   1  under the terms of Creative Commons License       .
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vidual components of a system, generating populations of those 
components and simulating their interactions in a  “virtual world” to 
create an in silico experimental model  (2,   5–  8) . With its emphasis 
on parsing a system into groups or “classes” of  system components 
ABM essentially requires the formulation of an ontological structure 
in order for its construction. As such, agent-based models are well 
suited to translating existing biomedical ontologies into a dynamic 
model. Furthermore, ABM rules are often expressed as condi-
tional statements (“if–then” statements), which makes agent-based 
model suited to translating the hypotheses (expressed in natural 
language) that are generated from basic science research. There are 
three characteristics of ABM that deserve particular emphasis:
   1.    ABM is  spatial . ABM has its origins in two-dimensional cellu-

lar automata, and as such many agent-based models are “grid-
based.” This spatial legacy makes ABM suited to representing 
structural relationships in a system under study. Nonmathemati-
cians can model fairly complex topologies with greater ease and 
flexibility than may be possible with partial differential equations, 
leading to more intuitive knowledge translation into a model. 
The spatial nature of ABM also allows for modeling agents with 
“limited knowledge,” i.e., input constrained by locality rules that 
determine its immediate environment. This property emphasiz-
ing local interactions also matches closely with the mechanisms 
of stimulus and response observed in biology.  

   2.    ABM utilizes  parallelism . This property of ABM sets it apart 
from other object-oriented modeling methods such as Petri 
nets or finite state machine models. In ABM each agent class has 
multiple instances within the model, forming a population of 
agents that interact in an emulated (usually) parallel processing 
environment. Within the execution of an agent-based model, 
heterogeneous individual agent behavior within a population 
of agents results in systemic dynamics that result in observable 
output that mirrors the behavior at the higher hierarchical level. 
A classic example of this is how relatively simple interaction 
rules among birds can lead to sophisticated flocking patterns.  

   3.    ABM utilizes  stochasticity . Many systems, particularly biologi-
cal ones, include behaviors that appear to be random. “Appear 
to” is an important distinction, since what may appear to be 
random is actually deterministic from a mathematical stand-
point. However, from a practical point of view, despite the fact 
that a particular system may follow the rules of deterministic 
chaos, at a higher-order observational level it is impossible to 
actually define the initial conditions from whence its behavior 
evolves. ABM addresses this issue via the generation of popu-
lations of agents. Once one is dealing with populations then 
it is possible to establish probabilities of a particular behavior 
for the population as a whole, and therefore also a probability 
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function for the behavior of a single agent. This probability 
function is incorporated into the agent’s rules. When instanti-
ated and run in parallel with other agents, each agent follows a 
particular trajectory of behavior as probabilities of its behavior 
rules “collapse” with each step of the model’s run. In this 
fashion it is possible to generate a “population” of behavioral 
outputs from a single agent-based model, and move beyond the 
“behavior curves” seen in differential equation models toward 
“behavior spaces” more consistent with biological observation.  

   4.    ABM reproduces  emergent properties . Because of the parallelism, 
intrinsic stochasticity, and enforcement of locality resulting 
from its spatial architecture, a central hallmark of agent-based 
models is the fact that they generate systemic dynamics that 
often could not have been reasonably inferred from examina-
tion of the rules of the agents, resulting in so-called  emergent  
behavior. To return to the example of the bird flock, superfi-
cial observation would seem to suggest the need for an overall 
“leader” to generate flock behavior, and therefore rules would 
seem to need to include a means of determining rules for flock-
wide command and control communication. This, however, is 
not true; birds function via a series of locally constrained inter-
action rules and the flocking behavior emerges from the aggre-
gate of these interactions. The capacity to generate emergent 
behavior is a vital advantage of using ABM for conceptual model 
verification, as it is often the paradoxical, nonintuitive nature of 
emergent behavior that “breaks” a conceptual model.     

 Although the use of ABM was pioneered in the areas of ecology, 
social science, and economics, it has been used to study biomedical 
processes such as sepsis  (2,   7) , cancer  (4,   9) , inflammatory cell traf-
ficking  (10,   11) , wound healing  (12) , and intracellular structure 
and signaling  (13–  15) . In general, most biomedical ABM focuses 
on cells as the primary agent level (with notable exceptions from 
earlier  refs.   13–15 ). Cells are a natural agent level dictated by the 
organizational structure of biology, and from a knowledge transla-
tion standpoint, form a ready level of “encapsulated complexity” 
that can be addressed with relatively straightforward input–output 
rules. Furthermore, while the number of cells present in an organ-
ism is considerable, it is still magnitudes less than the number of 
molecules involved in intracellular signaling. Because of their spa-
tial and structural relationships cellular populations are less amena-
ble to the application of the mean field approximations and mass 
action kinetics that provide the basis for effective ordinary differen-
tial equation models. Equation-based modeling is generally consid-
ered to be the method of choice when dealing with interactions at 
the molecular level, where molecule populations can be considered 
to be well mixed and homogeneous. However, in circumstances 
where those approximations break down [such as in control of 
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gene expression  (13)  or molecular crowding  (15)] , ABM becomes 
a useful modeling option. The following sections will outline the 
steps in constructing an agent-based model, using as an example 
a previously published component agent-based model that repre-
sents relatively direct knowledge translation from an in vitro cell 
culture model to an agent-based model  (1) .   

 

 Many of the basic principles for developing a biomedical com-
putational model are applicable to the construction and use of 
ABM. These steps typically involve (1) delineation of the sys-
tem being modeled, (2) determination of the intended use of 
the model, and (3) the suitability of the modeling method in 
question to the answers to the aforementioned steps 1 and 2. As 
mentioned earlier, the structure of agent-based model facilitates 
its translational use for modeling both ontological structures and 
mechanistic information expressed in natural language, and as 
such is often more intuitive for nonmathematicians to grasp. 

  An agent-based model based on an in vitro cell model is presented 
as an example of how knowledge generated from a basic science 
model/experiment can be effectively translated and dynamically 
represented. The ABM rule system focuses on particular molecular 
pathways in a specific cell type: tight junction protein metabolism 
and proinflammatory signaling as pertaining to gut epithelial bar-
rier function seen in the enterocyte component of the gut. This 
model, then, will be called a gut epithelial barrier agent-based 
model (GEBABM). Calibration and validation follow the estab-
lished pattern-oriented method well described for ABM  (2,   7, 
  16,   17) . Pattern-oriented modeling suggests that models should 
be designed such that their properties and behaviors reflect those 
aspects of the system under study. Pattern-oriented modeling there-
fore consists of a “front-end” component: translating as directly as 
possible an accepted conceptual model of the mechanisms associ-
ated with enterocyte tight junction metabolism and inflammatory 
signaling, and a “back-end” component: comparing the behavior 
of the model with the in vitro reference model data.  

  This is a very basic, but often overlooked aspect of model con-
struction. The question serves to remind us that models should 
not be created just because they can be; the justification of their 
development must be framed as to serve some particular purpose, 
even if that purpose is merely to demonstrate the capability of a 
particular type of model construction. Answering this question 

 2. Steps in the 
Development and 
Use of an Agent-
Based Model: An 
Example Agent-
Based Model of an 
In Vitro Model of 
Enterocyte 
Barrier  

 2.1. Example 

 2.2. What Is the Purpose 
of the Model? 
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explicitly sets the groundwork for expectations with respect to 
interpretations of the model’s output, and any conclusions that 
can be drawn from its behavior. 

  In this case, the GEBABM is intended to serve two purposes. 
First, it is a method demonstration model to transparently illus-
trate the process of translating the basic science knowledge into 
an agent-based model. As such, it is a relatively direct and linear 
model, referenced to a tightly constrained in vitro preparation 
and therefore not expected or intended to vividly demonstrate 
the capacity of agent-based models to produce unexpected and 
paradoxical behavior. Second, the GEBABM is intended to be an 
example of a modular component in a cell-level, multiscale inflam-
matory modeling architecture  (18,   19)  (a more detailed descrip-
tion of this architecture is beyond the scope of this chapter).   

  The reference model defines the informational basis of the agent-
based model: its topology, the agents, and a starting point for 
identifying the literature-basis of the agent rules. Note that the 
reference model may be a particular experimental preparation (as 
is the case of the GEBABM) or an aggregated conceptual model 
in the mind of the researcher. If the latter is the case, then it is 
important to define as explicitly as possible the knowledge foun-
dation of the conceptual model, particularly with respect to capa-
bilities and limitations of the wet lab experiments that provide the 
basis of the conceptual model. 

  The reference model for the GEBABM is a well-described human 
cultured enterocyte model (Caco-2) and its responses to inflam-
matory mediators including nitric oxide (NO) and a proinflam-
matory cytokine mix (“cytomix”) that includes tumor necrosis 
factor (TNF), interleukin-1 (IL-1), and interferon-gamma (IFN-g) 
 (20–  22) . Integrating the information in these publications results 
in a conceptual model where enterocyte tight junction (TJ) pro-
teins are involved in the integrity of gut epithelial barrier func-
tion, and where the production and localization of TJ proteins 
are impaired in a proinflammatory cytokine milieu.   

  As mentioned earlier, many agent-based models are based 
on two-dimensional grids in which the edges “wrap” to form 
toruses. Other potential topologies include three-dimensional, 
cube-based structures and various network structures (such as 
scale-free, giant component or small-world configurations). In 
general, two-dimensional grids are sufficient to represent systems 
in which there is primarily one plane of agent interactions (along 
the surface of the grid), though it is possible to model multiple 
“layers” of data at a particular grid square [akin to the data struc-
tures of Geographical Information Systems (GIS)]. 

 2.2.1. Example 

 2.3. What Is the 
Reference Model? 

 2.3.1. Example 

 2.4. What Is the 
Topology of the 
Model? 
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  The in vitro reference model consists of a monolayer of Caco-2 
gut epithelial cells grown in a well with a chamber above the 
monolayer representing the luminal aspect of the enterocytes, 
and the chamber below representing the tissue interaction side of 
the enterocyte. Therefore, the GEBABM is modeled with a two-
dimensional grid, with three “layers” per grid space: a central 
layer that holds the gut epithelial agent, one layer representing 
the apical extracellular space (from which the diffusate originates), 
and another layer representing the basal extracellular space (into 
which the diffusate flows if there is permeability failure).   

  This is often the critical question and decision when constructing 
an agent-based model. Agents need to be a well-circumscribed 
group of components that can be treated as input–ouput devices 
(essentially finite state machines) following similar (if not identi-
cal) state-transition rules. The state of an agent is determined by a 
series of state variables internal to the agent, which are then mod-
ified based on external state variables in some spatially defined 
interaction environment for the agent. Therefore, selection of an 
agent level necessarily leads to some “compression of complexity” 
of the internal workings of the agent; an assumption implies that 
the informational basis of the input–output rules is valid irrespec-
tive of the particular mechanisms internal to the agent (the “black 
box” phenomenon). This is a critical point in determining the 
agent level. In general, the intended use of the model, vis-a-vis a 
planned intervention or particular targeted mechanism for study, 
will determine the resolution or  granularity  of the agent-based 
model. At the granularity chosen there needs to be a fairly certain 
linear approximation of mechanistic causality: i.e., how certain are 
you that state variable  a  goes to state variable  a`  with mechanism 
 b ? Explicit delineation of the granularity of the model and the 
corresponding assumptions are critical in avoiding  petito principii , 
or “programming the proof.” This can manifest as either treating 
the agent as a “black box” and focusing purely on its response as 
an input–ouput object, or, more commonly, with some degree 
of abstraction with respect to the progression of its internal state 
variables, such as by abstracting signaling and synthetic pathways. 

  The GEBABM includes a single agent class that represents Caco-2 
gut epithelial cells.   

  Once the agent level has been selected, attention is then turned 
to examination of the literature concerning the potential mech-
anisms to be modeled, and determining an interaction scheme 
between those mechanisms. It is often useful to express the latter 
goal in the form of a state or influence diagram that can be used to 
guide the actual coding of the agent-based model. The determina-
tion of the agent rules forms the primary translational step in ABM. 

 2.4.1. Example 

 2.5. What Are the 
Agents? 

 2.5.1. Example 

 2.6. What Are the 
Agent Rules? 
Knowledge 
Translation and 
“Front-End” Validation 
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A qualitative approach is recommended at the outset in order 
to maintain a clear mapping between the basis of the reference/
conceptual model and the ABM computer code; too great an 
attention to specific details with respect to kinetic rate constants 
(for instance) in the initial translation phase can prove to be over-
whelming in terms of how complicated the model appears to need 
to be. Therefore, it is useful to classify processes into relatively gen-
eral groups of magnitude. For instance, with respect to determin-
ing the “time” it takes for a particular process it is usually sufficient 
to classify processes as “very fast (order of seconds),” “fast (order 
of minutes),” slow (order of hours),” and “very slow (order of days 
to weeks).” It should be acknowledged that this grouping is highly 
subjective; the overall subjectivity of the divisions is less important 
than (1) consistency within a particular agent-based model, (2) an 
awareness of the assumptions implicit upon the choice of the level 
of granularity, and (3) making this explicit and transparent when 
communicating the model. 

  The GEBABM models the metabolism of TJ proteins, occludin, 
claudin-1, ZO-1, and ZO-3, involved in barrier function and 
their intersection with inflammatory signaling pathways. Acti-
vation of nuclear factor kappa-B (NF-kB) by proinflammatory 
cytokines leads to activation of inducible nitric oxide synthetase 
(iNOS). The nitric oxide (NO) produced inhibits synthesis of 
occludin, ZO-1, and ZO-3, while increasing production of clau-
din-1. Furthermore, NO impairs localization to the cell wall of 
synthesized occludin, claudin-1, and ZO-1. This appears to be 
due to the interference of NO with  N -ethylmaleimide-sensitive 
factor (NSF), a molecule needed for localization of TJ proteins 
to the cell membrane  (23) . These effects are seen with adminis-
tration of both exogenous NO and intrinsic production of NO 
via the cytomix-NF-kB-iNOS pathway. These papers go on to 
investigate the effects of certain blocking agents. Addition of a 
NO scavenger  (22)  eliminates the effects of exogenous NO and 
cytomix. Administration of ethyl pyruvate  (20)  and nicotina-
mide adenine dinucleotide (NAD+)  (21)  both thought to inhibit 
NF-kB also attenuate the effects of cytomix. Data points for levels of 
NO, TJ protein expression and permeability were at 12, 24, and 
48 h in all the experiments.  Figure   2  demonstrates a graphical 
representation of the general control logic underlying the agent 
rule systems based on the knowledge translated from the follow-
ing references  (20–  23) .    

  There are two primary options when it comes time to write the code 
for an agent-based model: (1) a stand-alone program can be written 
in a basic computer language, such as C, or (2) a program can be 
written using an established ABM toolkit. Option 2 has the advan-
tage that many of the programming underpinnings of ABM, 

 2.6.1. Example 

 2.7. Putting It Together: 
Programming the 
Model 
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such as object-class definition, emulated parallelization, creation 
of a graphical user interface, and data collection tools, are not 
trivial programming tasks, and having these issues preaddressed 
in an established ABM toolkit allows a researcher to focus on 
the modeling aspect of the project rather than on the program-
ming aspect. A list of available ABM toolkits/modeling environ-
ments can be seen in  Subheading    4  . Since ABM is a discrete 
event modeling system and the program progresses in a stepwise 
fashion, there must be a selection of the base time interval for 
each step. This selection is based upon the qualitative process-time 
course determined in the previous  Subheading    2.5  . Mechanisms 
to be translated into agent rules are broken into steps based on 
the duration of those mechanisms, and further translated into 
program code. It is important to keep in mind that a particular 
code block will run sequentially (even in an emulated parallel 
environment); therefore, the order or  schedule  of process events 
needs to free of inadvertent internal feedback loops. For instance, 
if a particular agent has a rule where it produces an external state 
variable that in turn affects the agent’s subsequent production 
of that same external state variable, then placing the production 
code at the beginning of the code block will lead to an artifactual 
enhancement of any forward feedback effects of that particular 
rule. 

  The GEBABM was constructed using the freeware software 
toolkit Netlogo  (24) . The entire model, along with extensive 
documentation, is available on the Netlogo Community Models 
Website (  http://ccl.northwestern.edu/netlogo/models/com-
munity/Shock2004_Gut_Epithelial_Barrier    ). The code for the 

 2.7.1. Example 

  Fig. 2 .   Graphical representation of the control logic extracted from the basic science  (20,  22,  23)  on gut epithelial barrier 
function. General flowchart of the components and mechanisms of TJ protein synthesis and localization, the effects of 
proinflammatory stimulation, and the effects of interventions with ethyl pyruvate and NAD+. All labeled boxes corre-
spond to agent or environment state variables within the GEBABM. In the actual code of the GEBABM there are distinct 
pathways for the different TJ proteins (not shown here for clarity purposes). This figure is reproduced with the author’s 
permission from  ref.   1  under the terms of Creative Commons License       .
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model is included in  Subheading    3.5  . The GEBABM is a two-
dimensional square grid, 21 × 21 cells, in each of which there 
is a gut epithelial cell agent (“epi-cell”). The size of this grid 
was arbitrarily chosen. A screenshot of the GEBABM during an 
experimental run can be seen in  Fig.   3 . Each epi-cell has eight 
immediate neighbors, and at each contact point there is a simu-
lated tight junction (TJ). The integrity of the TJ requires both 
epi-cells opposite to have adequate production and localization 
of TJ proteins. The epi-cell agent class contains variables that 
represent the precursors, cytoplasmic levels, and cell wall levels of 
the TJ proteins, as well as intracellular levels of activated NF-kB 
and iNOS mRNA. Furthermore, there are “milieu” variables that 
represent NO, cytomix, and the diffusate. Algorithmic commands 
were written for the synthesis of TJ proteins as well as the pathway 

  Fig. 3 .   Screen shot of the graphical user interface of the GEBABM. Control buttons are on the left; graphical output of the 
simulation is in the center. Graphs of variables corresponding to levels of mediators and tight junction proteins are at the 
bottom and right. In the graphical output Caco-2 agents are seen as  squares ; those with intact tight junctions are bordered in 
light color (letter A); those with failed tight junctions are bordered in dark color (letter B). This particular run is with the addi-
tion of cytomix (letter C), seen after 12 h of incubation (letter D). The heterogeneous pattern of tight junction failure can be 
seen in the graphical output. Levels of Caco-2 iNOS activation can be seen in graph’s letter E, and produced nitric oxide (NO) 
can be seen in graph’s letter F. Of note, the total amount of tight junction protein occludin does decrease slightly (graph’s 
letter G), but the amount of occludin localized in the cell membrane drops much more rapidly (graph’s letter H), reflecting the 
impairment of occludin transport due to NO interference with NSF and subsequent loss of tight junction integrity. This figure 
is reproduced with the author’s permission from  ref.   1  under the terms of Creative Commons License       .
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for NO induction ( see   Subheading    3.5  ). The time courses for 
these processes are primarily in the minutes to hours range, and 
therefore the program iterates with each step representing 5 min 
of simulated time. Since the reference data sets extend out to 
48 h of observation, the simulation runs will terminate at that 
period of simulated time.    

  Once the general control logic of the rule systems has been 
extracted from the reference texts, then the specifics of the rule 
algorithms need to be determined. Thus far, there has been a 
primarily qualitative translation of the mechanistic hypotheses 
derived from the reference literature into an abstracted influence 
diagram ( Fig.   2 ) and then into conditional statements within the 
computer code ( see   Subheading    3.5  ). Running the agent-based 
model at this point will generate a set of behaviors that may have 
some qualitative utility, but in all likelihood will not be able to 
be matched to experimental data. Therefore, the qualitative rep-
resentation of the modeled mechanisms must be calibrated to 
existing experimental reference data to produce, at least, a semi-
quantitative model that can be more closely linked to the real 
world. This is done by “tuning” the stepwise rules that update 
the various state variables, usually via the addition of various con-
stants and/or adjusting the algebraic relationships between the 
variables. Since these rules can be considered as computational 
equivalents to difference equations, changing a constant is akin 
to changing the slope of a particular kinetic curve, while changing 
the algebraic relationship from summation to multiplication will 
change the kinetic curve from linear to exponential. Care must 
be taken, however, not to change the actual variables associated 
with each rule in order to get a better “fit.” Doing so constitutes 
rewriting the underlying knowledge representation of the agent-
based model to match the observable; resorting to this in order to 
match real world observables is to deny the verity of the conceptual 
model being represented. Calibration, then, is done to establish 
the fidelity of baseline behavior of the model compared with the 
real-world data in order for additional interventions to be simu-
lated. Inability to effectively calibrate a model at this point suggests 
an intrinsic flaw in the underlying conceptual model. A common 
challenge to calibration is the lack of sufficient experimental data 
against which to “fit” the model; not enough reference points exist 
to refine the agent-based model to a particular level of confidence. 
In these cases one must fall back upon qualitative interpretation 
of the agent-based model’s behavior, making sure to be explicit 
with respect to that limitation when conclusions are drawn and 
communicated. Another challenge to calibration, which is actu-
ally more common in equation-based models, is overfitting the 
model to data, leading to “brittle” models with little applicabil-
ity to additional conditions. This problem is relatively rare with 

 2.8. Calibration 
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ABM, since due to the parallelism of agent-based models the 
direct predictability of the effect of rule adjustment to model 
output is less direct. 

  Calibration of the GEBABM was done at three command points 
each with a different data set. The first calibration was for the 
basal diffusion rate. The diffusion coefficient in the unperturbed 
system was adjusted to match the rate of diffusion in the refer-
ence data set at times 12, 24, and 48 h. This established the 
baseline control permeability. The second calibration was done 
to reproduce the levels of administered cytomix and NO. The 
reference data sets were the levels of measured NO in both the 
exogenous NO donor arm and the cytomix administration arm 
(as seen in  Fig.   1  from  ref.   22 ). Calibration occurred by modi-
fying the coefficients of the NO induction pathway algorithm. 
The third calibration was done with respect to the TJ protein 
synthesis/breakdown algorithms. Steady state TJ protein levels 
were established using the inhibition data extrapolated from the 
western blot results from  ref.   22 . In silico experiments were run 
using these interventions with data points at 12, 24, and 48 h 
as per the reference papers. Data collection looked at permea-
bility reflecting TJ integrity, levels of TJ proteins, and localiza-
tion of TJ proteins. The results of the calibration runs of the 
GEBABM can be seen in  Figs.   4  and  5 . Note that the values of 
the in silico experiments are unitless, but the results qualitatively 
mirror the reference data set. Both of these figures include runs 
with exogenous NO, cytomix, and cytomix in the presence of a 
NO scavenger. The NO scavenger was simply modeled by reducing 
the level of the NO milieu variable after production.  Figure   4  
demonstrates the calibrated levels of NO production, while  
Fig.   5  demonstrates the permeability calibration results. These 
figures essentially reproduce the data generated in  ref.   22 . These 
three levels of calibration established the baseline GEBABM. 
Note that this includes the GEBABM perturbed with both NO 
and cytomix. The next step is to perform “back-end” validation 
through the simulation of additional experimental interventions 
– ethyl pyruvate and NAD +.     

  By now it should be evident that agent-based models are relatively 
“complex” models, in so much that they derive a great deal of their 
behavior through parallel interactions that result in behaviors and 
dynamics that often cannot be completely described via a series of 
equations that can be subjected to formal mathematical analysis or 
proof. There is a paradox in that the need to build increasingly 
complex models to effectively represent complex systems results in 
models that may be too complex for analysis, or even to formally 
validate. With respect to ABM, pattern-oriented modeling has been 
proposed as a solution to this problem  (16,   17) . Pattern-oriented 
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modeling has already been utilized in both the transparent transla-
tion of biomedical knowledge into agent rules (“front-end” valida-
tion) and in the calibration process in order to “tune” the model. 
However, the true test of the validity of a model is its ability to 
 predict  a behavior that has not already been used in the construc-
tion of the model. This is accomplished by performing “in silico” 
experiments in a fashion similar to performing experiments in the 
basic science lab: a particular intervention is planned based on a par-

  Fig. 4 .   Simulated nitrogen oxide (NO) production and response to NO scavenger. ( A ) Calibration data are seen in the black 
bars (cytomix) and the gray bars (NO) with respect to simulation rules for NO production. The NO data match the liter-
ature-reported levels of exogenous NO added in the experiments from  ref.   22  in order to establish baseline responses 
of the epi-cell agent’s TJ protein synthesis/localization algorithms and link them to the permeability data seen in the 
corresponding bars in  Fig.   5 . The Cytomix bars in panel ( A ) are used to calibrate the iNOS-NO production algorithms 
within the epi-cell agents. The middle data set (bars = cytomix + NO scavenger) shows the effect of exogenous NO 
reduction/elimination on the generated levels of NO in the face of cytomix. Panel ( B ) shows the literature-reported data 
from the upper portion of  Fig.   1    from  ref.   22  (reproduced with permission from Lippincott Williams & Wilkins, © 2003). 
This demonstrates levels of NO in the control (“Cont”), cytomix of proinflammatory cytokines (“CM”), cytomix with the 
addition of a NO scavenger (“Cyto + PTIO”) and with a free NO donor (“DETA”). Panel ( A ) of this figure is reproduced with 
the author’s permission from  ref.   1  under the terms of Common Creative License       .
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ticular mechanism of action within the experimental model, and the 
behavior of the model after the intervention is examined to see if 
a significant difference in the model’s behavior arises. Agent-based 
models, as relatively direct translations of basic science hypotheses, 
can be treated as experimental templates in a similar fashion. Pro-
gramming a particular intervention and its effect on the existing 
code represents the translation of a particular conceptual model of 
how that mechanism will affect the system as a whole. Notably, it 
does not (necessarily) address issues as to whether the physical com-
pound that would be used in the real-world lab actually does what 
it is intended to do; rather the agent-based model tests the concep-
tual basis or justification for why that intervention should work. 
Therefore, ABM can be considered a “test of proof-of-concept” 
for a particular experiment. Matching the output of a proposed 

  Fig. 5 .   Simulated permeability to NO, cytomix, and cytomix + NO scavenger. ( A ) Graph of calibration data of the perme-
ability effects of NO and cytomix, representing the diffusion rate through a failed epithelial barrier and the effect of NO 
on the algorithms for epi-cell TJ protein synthesis/localization. As with  Fig.   4 , the black bars (cytomix) and gray bars 
(exogenous NO) are the calibration arms. This graph can be compared with panel ( B ), which is the lower panel of  Fig.   1  
in  ref.   22  (reproduced with permission from Lippincott Williams & Wilkins, © 2003). Panel ( B ) demonstrates permeability 
under the following conditions: control (“Cont”), cytomix of proinflammatory cytokines (“CM”), cytomix with the addition 
of a NO scavenger (“Cyto + PTIO”) and with a free NO donor (“DETA”). Panel ( A ) of this figure is reproduced with the 
author’s permission from  ref.   1  under the terms of Creative Commons License       
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mechanism of intervention instantiated in the agent-based model 
with the results of a similarly designed wet lab experiment is thus 
evidence of the predictive capacity and robustness of the agent-
based model, and enhances its claim toward being a valid model. 

  As mentioned earlier, the reference papers  (20,   21,   25)  suggest 
that administration of both ethyl pyruvate  (20)  and nicotinamide 
adenine dinucleotide (NAD+)  (21)  inhibits NF-kB as a mechanism 
for their attenuation of the effects of cytomix. Of note, neither of 
these compounds or their presumptive effects was included in the 
development of the GEBABM. For the in silico experiments both 
NAD+ and ethyl pyruvate were modeled using their presumptive 
mechanisms of NF-kB inhibition by their insertion as negative 
influences in the NO induction pathway algorithm. No further 
modifications were done to the internal metabolism algorithms 
of the epi-cell class. For the complete code  see   Subheading    3.5  . 

 In-silico experiments were run using these interventions 
with data points at 12, 24, and 48 h as per the reference papers. 
Data collection looked at permeability reflecting TJ integrity, 
levels of TJ proteins, and localization of TJ proteins. The results 
of these in silico interventions on the GEBABM can be seen in 
 Figs.   6–8 . Again, note that the values of the in silico experiments 
are unitless, but the results qualitatively mirror the reference 
data set.  Figure   6  demonstrates the effects of ethyl pyruvate 
and NAD+ on permeability, with the data in  Fig.   5  represent-
ing the control arm. The reference data for the effect of these 
interventions on the permeability changes with cytomix admin-
istration can be seen in  Fig.   1  from  ref.   20  with ethyl pyruvate 
at 1.0-mM dose, and  Fig.   1A  from  ref.   21  with NAD+ at 100-
mcM dose.  Figures   7  and  8  reproduce the results seen extrapo-
lated from the western blot data on the effect of ethyl pyruvate 
and NAD+ administration on TJ proteins, specifically ZO-1 and 
occludin ( Fig.   6  from  ref.   20  and  Fig.   2  from  ref.   21 ). ZO-1 is 
significantly decreased at 48 h, while occludin starts to drop at 
24 h with the cytomix and continues to decrease at 48 h, but has 
a profile more similar to ZO-1 when run with the exogenous 
NO only. The simulation of adding both ethyl pyruvate and 
NAD+ obviated the effects of both exogenous NO and cytomix 
on both ZO-1 and occludin.       

 

 Many of the points described later have been alluded to in the pre-
ceding text. However, the following sections provide summaries 
of the key aspects of ABM with respect to design and utilization. 

 2.9.1. Example 

 3. Notes  



  Fig. 6 .   Simulated permeability effects of ethyl pyruvate and NAD+ compared to literature-reported experimental exper-
iments. Graph ( A ) demonstrating the effects of simulated addition of ethyl pyruvate and NAD+ on the proinflamma-
tory algorithms within the epi-cell agents. Both of these substances interfere with NF-kB localization, and therefore are 
“upstream” from the iNOS-NO pathways as represented in those rules. This graph can be compared to panel ( B ):  Fig.   1  
from  ref.   20  with ethyl pyruvate at 1.0-mM dose, and panel ( C ):  Fig.   1a  from  ref.   21  with NAD+ at 100-mcM dose (“CYM” 
= addition of cytomix). Panel ( A ) of this figure is reproduced with the author’s permission from  ref.   1  under the terms of 
Creative Commons License, and panels ( B ,  C ) are reproduced with permission from the American Society for Pharmacology 
and Experimental Therapeutics, © 2003       .
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  The strengths of ABM as a modeling method have been empha-
sized in the preceding text: intuitive structure facilitating knowl-
edge translation and representation, intrinsic management of 
spatial issues, the ability to capture complex behavior, and simi-
larity in behavior and output to traditional wet lab experiments. 
These benefits would seem to suggest a fairly generous application 
of ABM in the biomedical arena. However, there are significant 
limitations to ABM, as with all modeling methods. These include 
high computational requirements for large-scale models, inability 
to “formally” analyze the inner workings of the model, difficulty 
in calibration due to the nonlinear relationships between agent 
rules and behavior, and difficulty in matching a specific run of 
a model’s evolving conditions with a real-world reference (such 
as the case of attempting to predict the outcome of a specific 
patient). In the discussion of when one should use ABM it may 
be more useful to determine those instances where ABM does 
not suit the modeling problem at hand and the limitations listed 
aforementioned factor into that determination. These instances 

 3.1. Deciding When 
to Use ABM: 
Strengths and 
Weaknesses of ABM 

  Fig. 7 .   Simulated levels of ZO-1 expression. ( A ) Graph demonstrating the levels of simulated ZO-1 expression in control, 
exogenous NO, cytomix, cytomix with NO scavenger, cytomix with ethyl pyruvate, and cytomix with NAD+ at 12, 24, and 
48 h. Compare with ( B ):  Fig.   6a  from  ref.   20  (reproduced with permission from the American Society for Pharmacology 
and Experimental Therapeutics, © 2003). Also compare with ( C ): data extrapolated from western blot analysis seen in 
 Fig.   2  from  ref.   21 . Panel ( A ) of this figure is reproduced with the author’s permission from  ref.   1  under the terms of 
Creative Commons License       .
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can mostly be expressed in terms of the suitability of using equa-
tion-based modeling, which remains the default method of math-
ematical modeling of dynamic system behavior:
   1.    Ordinary differential equation (ODE) modeling is preferable if 

the system can be characterized by well-mixed compartments/
populations. In these situations mean field approximations will 
hold, and mass action kinetics approaches can be utilized.  

   2.    Equation-based modeling is preferable if it appears possible to 
derive “formal” insights into the system’s behavior. Systems 
whose behavior can be characterized with relatively simple 
order ordinary differential equations may be analyzed math-
ematically, leading to more comprehensive and general under-
standing of their dynamics.  

   3.    Equation-based modeling is preferable if the development 
and calibration reference data already exists in equation form. 
This is particularly true when calibration is to be performed 
using an optimization algorithm. Again, in this situation the 

  Fig. 8 .   Simulated level of occludin expression. ( A ) Graph demonstrating the levels of simulated occludin expression in 
control, exogenous NO, cytomix, cytomix with NO scavenger, cytomix with ethyl pyruvate, and cytomix with NAD+ at 12, 
24, and 48 h. Compare with ( B ):  Fig.   6b  from  ref.   20  (reproduced with permission from the American Society for Phar-
macology and Experimental Therapeutics, © 2003). Also compare with ( C ): data extrapolated from western blot analysis 
seen in  Fig.   2  from  ref.   21 . Panel ( A ) of this figure is reproduced with the author’s permission from  ref.   1  under terms 
of the Creative Commons License       .
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nonlinearities between rule modification and model behavior 
make this extremely challenging.  

   4.    Equation-based modeling is preferable when the number of 
agents needed to be modeled is extremely high. The compu-
tational demands of ABM when the number of agents reaches 
millions and billions are prohibitive.     

 In general, equation-based modeling remains the initial approach 
to modeling dynamic systems (including biological ones) and is 
well suited to modeling processes such as molecular kinetics, bio-
chemical reactions, and gross physiologic behavior. However, if 
the criteria mentioned earlier do not hold, ABM can offer an 
advantageous modeling approach.  

  Most of the construction pitfalls have been mentioned earlier 
in  Subheading    2.1   (identifying the purpose of the agent-based 
model),  Subheading    2.2   (linking the agent-based model to its 
reference experimental/conceptual model),  Subheading    2.5   
(agent level/class selection), and  Subheading    2.6   (agent rule 
determination). When trying to address these challenges, it is 
recommended to keep two goals in mind:
   1.    Minimize assumptions. It is important to remember the old 

computer programming adage: “Garbage in, garbage out.” 
Agent rules should be tied as closely as possible to causal mech-
anisms defined by experiment. When generating state or influ-
ence diagrams, each individual step should be identified, and if 
there is not sufficient data or an intermediate step is unknown, 
this should be explicitly noted (see later). Recognize that each 
assumption made raises the risk of  petito principii.   

   2.    Be explicit, in both defining rules and their underlying justifi-
cation and assumptions involved. Not only does this avoid the 
programming issues noted earlier, it also rigorously forces an 
objective assessment of a particular conceptual model. Many 
researchers are unpleasantly surprised when concepts that are 
taken as “given” are dissected in this fashion. This process is, 
of itself, beneficial in determining where the next set of wet lab 
experiments may need to be done. But it is also critical in being 
able to assess why a model has been “broken.” An explicit rep-
resentation of the underpinnings of a model provides a guide 
to where adjustments need to be made for improvement in the 
next generation. Finally, explicitness in model description is a 
vital component of being able to effectively communicate a 
model to other researchers. Transparent explicitness facilitates 
the evaluation, understanding, and eventual acceptance of a 
particular model in the research community at large.      

  Perhaps the greatest danger in interpreting the behavior of an 
agent-based model (or any model, for that matter) is assuming 
that the model represents some sort of objective truth. In other 

 3.2. Construction 
Pitfalls 

 3.3. Interpretation 
Pitfalls 
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words, a model that appears to match the behavior seen in the 
real world is possibly only one of many  plausible  models that fit 
the data. Therein lies the key to using ABM as a test of the verity 
of a conceptual model: only a negative result can provide defini-
tive information, i.e., the conceptual model is incorrect, whereas 
a positive result can only suggest that the conceptual model  may  
be correct. The goal of model interpretation, then, is to develop 
models that, when broken, can provide some insight as to why 
they are broken, and the process of model utilization is to sequen-
tially generate models, break them through falsification, and use 
that information to generate the next model.  

  Given the strengths and weaknesses of ABM as a method, it is 
possible to give some general suggestions for situations in which 
ABM can be effectively utilized. In addition to situations that do 
not suit equation-based modeling ( see   Subheading    3.2  ), the 
following areas deserve mention:
   1.    ABM is suited to modeling the behavior of cellular populations. 

As mentioned earlier, biology has provided a natural agent level 
in cells. Cells exhibit many of the preferable characteristics of a 
good agent level: there are readily defined classes; their aggre-
gate behavior is relatively accessible for measurement; their 
behavior can be characterized in population-derived probability 
functions, and a great many conceptual models of the biologi-
cal behavior are derived at the cellular level. Cells occupy the 
“middle ground” that appears to be an optimal resolution for 
effective modeling of biomedical systems  (8,   15,   16,   26,   27) , 
and are suited as a translational level at the center of multiscale 
models  (27–  29) . Therefore, projects that involve representing 
cellular populations are suited to modeling with ABM.  

   2.     Multiscale problems . Two aspects of ABM facilitate multiscale 
modeling. The first is their ability to generate emergent behav-
ior, and therefore translate the complexity of structure and 
mechanism at a lower level into the behavior at a higher one. 
Second, agent-based models are intrinsically modular, so much 
that they can be organized and combined based on their spatial 
architecture and can communicate via commonalities in their 
constituent agent classes. For an example, see the multiscale, 
multiorgan architectures described in  (18,   19) , of which the 
GEBABM is a component. However, it bears noting that due 
to computational limitations “pure” agent-based models of 
true multiscale processes are unlikely. Rather, drawing on the 
suitability of certain methods to modeling certain levels of bio-
logical organization  (28)  these multiscale models will almost 
certainly be “hybrid” models incorporating multiple different 
modeling methods  (15,   30) .  

   3.     Biomedical ontology representation and evolution . One of the 
most exciting possible applications for ABM architecture is 

 3.4. Suggested 
Applications 
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in being able to map directly to biomedical ontologies in an 
automated fashion, and thereby enhance the use, communi-
cation, and evolution of biomedical ontologies. It is in this 
area that meta-ABM methods hold great promise. Meta-ABM 
methods are attempts to create a general modeling interface 
that consists of representing the “essential” components of 
an agent-based model and allowing the metarepresentation 
to be instantiated via a series of different ABM toolkits. There 
is a marked similarity between this goal and the concept of a 
general-purpose biomedical ontology: both need to be gen-
eral and robust enough to fit yet unspecified systems, but need 
to be specific enough to be of practical use. The likelihood is 
that a perfectly general ontology does not exist; however, as 
with the scientific process in general the important goal is to 
develop a developmental structure that facilitates an evolu-
tionary process. Since the structure of ABM maps so well to 
ontological structure it would seem a natural fit for evolving 
meta-ABM architectures and their ability to instantiate bio-
medical ontologies to provide a means of conceptual model 
verification that will form the basis for the selection pressure 
on competing ontologies within the biomedical community.      

  The following code is in Netlogo language, a programming lan-
guage specific to Netlogo. Of note, copying this code directly 
into a blank Netlogo file will not result in a functioning model, 
as Interface control commands are expressed directly through 
the graphical user interface. This code is made available so that 
interested individuals can examine the specific logic in the model 
and see the relationship between the code and the interpreted 
knowledge from the reference papers. This is done in the interest 
of complete transparency, as the interpretation of the knowledge 
into the code is inevitably subjective to some degree, and this 
degree of transparency is necessary for the appropriate evaluation 
and acceptance (either yea or nay) of the validity of the modeling 
assumptions. The entire model can be accessed and downloaded from 
  http://ccl.northwestern.edu/netlogo/models/community/
Shock2004_Gut_Epithelial_Barrier.       

 

 It is recommended to use existing general purpose ABM toolkits 
for at least the initial attempts in constructing a biomedical 
agent-based model. Even if the researcher/modeler is an experi-
enced computer programmer and wants to write a special purpose 
agent-based model, developing a familiarity with existing meth-

 3.5. Code for the 
GEBABM 

 4. Software 
Resources  
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ods of implementing an agent-based model will aid in addressing 
some specific programming challenges involved (i.e., object class 
definition, emulated parallel actions, spatial topography devel-
opment, etc). One of those toolkits, Netlogo  (24) , was used to 
create the GEBABM. Netlogo was originally designed to teach 
primary and secondary school students the dynamics of complex 
systems such as bird flocking, fish schooling, traffic, and ant col-
ony behavior, and as such is very amenable to novices to computer 
programming. It has subsequently evolved into a very powerful 
modeling environment, particularly for developing the qualita-
tive/semiquantitative knowledge translation models described in 
this chapter. Netlogo is freely available for download at   http://ccl.
northwestern.edu/netlogo/,     and is available for Windows, Mac-
intosh, and Linux. The GEBABM itself is available for download 
at   http://ccl.northwestern.edu/netlogo/models/community/
Shock2004_Gut_Epithelial_Barrier.     Netlogo is also closely related 
to another introductory ABM toolkit called Starlogo, which is 
available for download at   http://education.mit.edu/starlogo/.     

 Perhaps the prototypical ABM development tool is Swarm, 
an open source ABM platform originally developed at the Santa 
Fe Institute. Information on Swarm, and the ABM community 
in general, is available at   http://www.swarm.org/wiki.     Swarm 
spawned a series of open source ABM toolkits, such as Repast 
(  http://repast.sourceforge.net/index.html    ), JAS (  http://jasli-
brary.sourceforge.net/index.html    ), Ascape (  http://ascape.source-
forge.net/    ), and Mason (  http://cs.gmu.edu/~    eclab/projects/
mason/), all of which have their own active development com-
munities (a more comprehensive list of resources can be found on 
the Swarmwiki site). Finally, there is a strong trend toward “meta-
modeling” in the ABM community, reflected by the recent release 
of meta-ABM (  http://www.metascapeabm.com/    ), and reflected 
in an active research and development community that can be fol-
lowed at   http://www.openabm.org/site/.          
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      Chapter 16

 Systems Biology of Microbial Communities       

     Ali   Navid      , Cheol-Min   Ghim ,      Andrew T.   Fenley ,      Sooyeon   Yoon    , 
  Sungmin   Lee , and      Eivind   Almaas      

  Summary 

 Microbes exist naturally in a wide range of environments in communities where their interactions are sig-
nificant, spanning the extremes of high acidity and high temperature environments to soil and the ocean. 
We present a practical discussion of three different approaches for modeling microbial communities: 
rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with 
detailed examples. Each approach is best fit to different levels of system representation, and they have 
different needs for detailed biological input. Thus, this set of approaches is able to address the operation 
and function of microbial communities on a wide range of organizational levels.  

  Key words :  Microbial community ,  Rate equation ,  Agent-based modeling ,  Population dynamics , 
 Quorum sensing ,  Biofilm .    

    

 Microorganisms contribute a considerable fraction of the living 
biomass on Earth. While traditional studies of microbes have been 
based on the isolation and laboratory cultivation of pure species, 
relatively little is known about an estimated >99% of environmental 
microbes due to their difficulty of cultivation under standard labo-
ratory conditions. In fact, the vast majority of microbes naturally 
only occurs and thrives when in microbial  communities : there is 
frequently a synergistic partitioning of metabolic function between 
different microbial species  (1) . The recent development of tech-
niques to probe microorganisms in their natural environments, 
such as metagenomic sequencing, has uncovered an unanticipated 
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level of phylogenetic diversity and valuable insights into lifestyle 
and metabolic capabilities of microbial communities occupying a 
broad range of environmental niches  (2–  4) . 

 The function and operation of microbial communities has 
received significant interest with the introduction of these new 
technologies. There is also a growing realization that microbes 
contribute extensively to important environmental questions 
such as carbon sequestration and nitrogen cycling. It has been 
proposed that microbes and microbial communities may provide 
novel avenues for the degradation of lignocellulosic material and, 
thus, the generation of biofuels. Recently, new findings indicate 
that the activity and composition of microbial communities in, 
e.g., the intestine is of direct relevance to human obesity  (5) , and 
revisiting the activity of pathogens, such as  Vibrio cholerae , from 
the community context has revealed surprising insight with imme-
diate consequences for generating clean drinking water  (6) . Ques-
tions related to the function and interaction of microbial consortia 
has therefore taken a place of prominence in the current science 
literature. 

 In this chapter, we will address three methods that have 
proven useful in modeling the behavior of microbial communities. 
These methods have different requirements for the level of detail 
needed to model a multicellular microbial system. The first 
method we will discuss is based on representing a microbe by rate 
equations, requiring the highest level of detail. Not surprisingly, 
this approach has been limited in applicability due to the lack 
of measured kinetic parameters. However, it seems plausible 
that this drawback will be significantly tempered in the near 
future. We will then describe individual-based approaches (often 
called agent-based modeling (ABM)) capable of simulating the 
interaction of multiple microbes with a relatively narrow set of 
variables. While the focus is still on the individual microbes, this 
method is capable of addressing the spatial aggregation of large 
populations. We will complete this chapter with a discussion of 
population dynamics modeling, a method for which the species is 
the focal point. This class of approaches has become well known 
through the Lotka–Volterra representation of a predator–prey 
system  (7,   8) .  

    

  For good reasons, all developed genome-level models of micro-
bial metabolism are based on the assumption that the system is 
at steady state ( see  Chapter “Flux-Balance Analysis: Interrogat-
ing Genome-Scale Metabolic Networks”). Although steady-state 

2. Rate-Equation 
Models

 2.1. Background 
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models (SSM) have shown great utility for assessing the metabolic 
capabilities of an organism, they ignore a number of crucial 
details needed to attain greater insights into the dynamics of a cell. 
For example:
  •  After an environmental or genetic perturbation, SSM only 

characterize the new steady state. SSM do not calculate how 
long it will take for the system to reach the new steady state 
and visited intermediary states.  

 •  SSM ignore enzymatic capacity and thus cannot identify rate-
limiting steps and metabolic bottlenecks.  

 •  SSM do not account for the concentration of intermediates and 
thus cannot predict deleterious buildup of toxic metabolites.    

 Development of genome-scale kinetic models can overcome 
these failings; however, currently such undertakings are impracti-
cal. In order to develop a kinetic model of cellular metabolism, 
we must account for the time-dependent changes in metabolite 
concentrations. This requires the knowledge of a large number 
of kinetic parameters. Unfortunately, while recently developed 
analytical tools have accelerated genetic and proteomic analyses 
immensely, measurements of enzymatic kinetic parameters are 
still tedious and time consuming. 

 Kinetic models are usually developed only for well-studied 
pathways, such as central carbon metabolism in  Escherichia coli   (9) , 
urea cycle in  Rattus norvegicus   (10) , and glycolysis in a variety of 
organisms ranging from single cell organisms such as  Saccharomyces 
cerevisiae  (e.g.  refs.   11–  13 , for a review  see   ref.   14)  and  Trypanosoma 
brucei   (15,   16)  to cells from organs such as skeletal muscle  (17)  and 
pancreatic  b -cells  (18) . Despite their limited metabolic scope, these 
models have been invaluable in enhancing our understanding of the 
complex collective dynamics of cellular groupings.  

  Perhaps the most important question that one should consider 
prior to developing a kinetic model is: “How detailed should 
the model be?” The answer to this question is directly related to 
other questions that have to be answered early in the modeling 
process. For example:
  •  What kinetic parameters are available?  
 •  Is it possible to bypass or generalize certain details of a pathway 

and still develop a sufficiently predictive model ( see   ref.  19) ?  
 •  Which reactions are reversible and which are irreversible?  
 •  Which metabolites can be transported across the cellular mem-

brane? Are these processes passive or active (i.e., require energy 
expenditure)? Are they facilitated by (transporters) chaperones 
or are they nonfacilitated?  

 •  What is the volume and surface area of a cell, and should the 
model account for changes to these physical characteristics?    

 2.2. Theory 
and Methodology 
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 These questions can be answered through a thorough exami-
nation of the available literature, and searching through databases 
such as BRENDA (  http://www.brenda-enzymes.info    ). These 
answers will also determine how the dynamics of metabolic reac-
tions are formulated. 

 Developing kinetic models of metabolic pathways involves 
writing the concentration changes of each metabolite as ordinary 
differential equations (ODEs). For example, given the two meta-
bolic reactions:

   2C and ,kQA B C D+ ←⎯⎯→ ⎯⎯→     

 where  Q  is the equilibrium constant equal to the ratio of forward 
and reverse reaction coefficients ( k  1  /k  −1 ), the change in concen-
tration of the metabolites is written as:
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 By thus writing and solving similar ODEs for all metabolites, 
we may monitor the dynamic changes that occur in a microbe.  

       One of the most studied problems of cellular nonlinear dynamics 
has been the coupling and synchronization of metabolic oscilla-
tors, such as baker’s (or brewer’s) yeast,  S. cerevisiae . The initial 
reports of glycolytic oscillation with a frequency of several minutes 
in cell-free extracts of yeasts date back to 1964  (20–  22) . Prolonged 
oscillations in biochemical systems require that at least one of the 
reactions obey nonlinear kinetics. Thus, it is not surprising that 
asynchronous  (23,   24)  and even chaotic  (25–  27)  dynamics have 
been proposed. A large number of theoretical studies have exam-
ined oscillatory behavior in glycolysis, particularly in yeasts (for a 
review  see   ref.   28) . The majority of theoretical studies involve the 
coupling of only a few metabolic pathways  (24,   29,   30) , and the 
interaction is mediated through a common extracellular pool of 
metabolites that can be imported to and/or exported from differ-
ent cells. In the case of  S. cerevisiae  suspensions, acetaldehyde (Acld) 
has been identified as the primary coupling metabolite  (31) . 

  The model of glycolysis in yeast  (32)  was designed with the 
criterion that it should describe the observed experimental 
observations  (31,   33) . A schematic of the modeled system is 
presented in  Fig.   1 . The characteristics of the model are:

 2.3. Examples 

2.3.1. Coupling 
of Glycolytic Oscillations 
in Saccharomyces 
cerevisiae

 Glycolysis Oscillations and 
Synchronization 
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  •  Several chemical steps are lumped together, such as reactions 
catalyzed by hexokinase and phosphofructokinase (PFK) ( v  1 ) 
and multistep conversions of dihydroxyacetone phosphate to 
glycerol (Gly) ( v  3 ) and 3-phosphoglycerate (3PG) to pyruvate 
(Pyr) ( v  7 ).  

 •  Simulation is for anaerobic conditions with ethanol (Etoh) as 
the major product.  

 •  Concentrations of Gly and Etoh are considered constant 
(reservoir). Import of glucose and export of Acld are the only 
modeled extracellular fluxes: Import of glucose ( I ) is assumed 
constant, and transport of Acld ( X ) is modeled as passive 
diffusion dependent on the concentration gradient of Acld 
across the membrane:

   ( )[Acld( )] [Acld( )] ,
AJ

X c m
V

= −         

 where  A  and  V  are the surface area and volume of the cell, 
respectively.  J  is the coefficient of permeability of the cellular 
membrane for Acld.  c  and  m  denote cytosolic and medium 
concentrations.
  •  Consumption of ATP by the cell is accounted for by an ATPase 

reaction. Intracellular pools of adenine nucleotides (ATP and 
ADP) and nicotinamide adenine dinucleotides (NAD +  and 
NADH) are conserved:

   Total Total[ATP] [ADP] and [NAD ] [NADH] .A N++ = + =     

•  All reactions are considered irreversible, except for glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) ( v  4 ) and phos-
phoglycerate kinase (PGK) ( v  5 ).  

 •  Reactions catalyzed by GAPDH and PGK are near equilib-
rium ( Q  GAPDH  = 0.0056,  Q  PGK  = 3,225,  (34) ), justifying a 

  Fig. 1 .   Schematic diagram of anaerobic glycolysis.  Glc  Glucose;  TRP  Triose-phosphates;  v  1  Hexokinase and PFK;  v  2  Aldo-
lase;  v  3  Glycerol-3-phosphate dehydrogenase and glycerol kinase;  v  4  GAPDH;  v  5  PGK;  v  6  ATPase;  v  7  Phosphoglycerate 
mutase, enolase, and pyruvate kinase;  v  8  Pyruvate decarboxylase;  v  9  Alcohol dehydrogenase;  v  10  Degradation of Acld       .
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quasi-steady-state approximation for 1,3-bisphosphoglycerate 
(13BPG), thus   d[13BPG]

0.
dt

=
  And since,
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 we can write the equation for concentration of 13BPG as
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 Thus, the reaction equation for  v  4  and  v  5  becomes
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•  Simple rate laws are used for all enzymatic reactions ( see   

Table   1 ).       
 •  The only regulatory behavior that is accounted for is the 

inhibitory effect of ATP on the hexokinase-PFK reaction ( v  1 ) 
using  K  and  n  as the inhibition constant and cooperativity 
coefficient for ATP, respectively
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 Metabolites are distributed homogenously in the cytosolic 
and external medium.  

    The model can be used to study the mechanism of intracellular 
propagation of nonlinear dynamics. It is reasonable to assume that 
when nonlinear dynamics are transmitted down the main back-
bone of the glycolytic pathway, the amplitude of substrates should 
be greater than that of the products it produces  (33) , i.e., each 
enzymatic step dampens the oscillations. Not surprisingly, a series 
of simulations has shown that oscillations in glycolysis can be 
transmitted throughout the cell via the cofactors ADP and NAD. 

 As a follow up, Wolf and coworkers  (32)  examined whether 
it is possible for cells to synchronize their oscillating dynamics if 
oscillations are not propagated through the backbone of the gly-
colytic pathway. To this end, cells of yeast with identical kinetic 
capabilities, but different concentrations of metabolites, were 
coupled together via a shared extracellular Acld pool. In  Fig.   2 , 
we have simulated the coupled dynamics of three such cells. As 
it can be seen in  Fig.   2a , the cells oscillate at the same frequency 
but with different amplitudes and phases. Gradually, the phase 

Transduction of 
Oscillations
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shift disappeared, and in less than 20 min the dynamics of the 
cells were completely synchronized ( Fig.   2b ).    

  Many bacteria synchronize the activation of particular functions 
by communicating their local cell density to each other through 
autoinducer (AI) molecules, an effect called “quorum sensing” 
 (35) . As the cell population increases, the AIs accumulate in the 
surroundings, eventually reaching a critical concentration caus-
ing the differential expression of certain sets of genes, e.g., genes 
involved in bioluminescence. Experiments have shown that sev-
eral necessary processes to bacterial colonization and virulence 

 2.3.2. Quorum Sensing 

 Table 1 
  List of differential equations for a simplified model of glycoly-
sis  (32)   

  V  m , Volume of the medium 

 Model differential equations 
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such as biofilm formation, bioluminescence, type III secretion, 
and secretion of virulence factors are regulated via quorum sens-
ing  (36–  41) . 

 The machinery of the gene regulatory networks that produce 
the AIs, detect the AIs, and respond to the changes in AI con-
centration differs depending on the bacteria.  Vibrio harveyi  and 
 V. cholerae  use sensors at the membrane to track changes in the 
AI concentration  (38,   42–  45) , while the AIs diffuse through the 
membrane and form a complex with a particular protein neces-
sary for gene activation in  Vibrio fischeri  and  Pseudomonas aerugi-
nosa   (35,   36,   46–  49) . The latter type of quorum sensing bacteria 
will be the focus of this instructional example. 

  Fig. 2.    Coupled dynamics of glycolysis in three cells with identical kinetic capabilities but 
different starting metabolite concentrations. ( A ) Oscillating concentration of NADH. The 
oscillation frequency is the same for all three cells while the starting amplitudes (Am) 
and phases differ (Am A  > Am B  > Am C ).  (B)  Amplitude differences in NADH oscillations 
between two pairs of cells (A−B and B−C). Time course is represented by  shading  (early 
= white, late = black)       .
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    We present a model of quorum sensing in  V. fischeri  introduced 
by James et al.  (50) .  V. fischeri  is a gram-negative bioluminescent 
marine bacterium that uses acyl-homoserine lactones as its AIs 
to directly control the luminescence ( lux ) operon  (51–  54) . The 
model tracks the concentration of AIs ( A ), the concentration of 
the protein LuxR that the AI forms a complex with ( R ), and the 
concentration of the AI–protein complex ( C ) ( see   Fig.   3 ). The 
first interaction, AI forming a complex with LuxR, is described 
by the binding rate constant  k  1 , and the complex can break apart 
with dissociation rate constant  k  2 , giving the reactions:

 
1 2and .k kA R C C A R+ ⎯⎯→ ⎯⎯→ +        

 The resulting three differential equations for  A ,  R , and  C  are
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d d d
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= − = − = −
      

 Through binding to the  lux  box, the complex ( C ) is respon-
sible for promoting the production of the  lux  operons, which 
include the genes responsible for light production,  luxCDABEG , 
the gene responsible for producing the AI,  luxI , and the gene 
that translates into the protein AI complexes with  luxR . When 
the concentration of the complex is low (high), the  lux  box is 
predominantly unoccupied (occupied). This is accounted for by 
including a term

Quorum Sensing Model 
for  Vibrio fi scheri 

  Fig. 3.    Schematic of quorum sensing network used by  Vibrio fischeri  to regulate lumi-
nescence. AI (A) binds the protein LuxR (R) to form complex (C) with a forward rate of 
 k  1  and a dissociation rate of  k  2 , and diffusion of AI through cellular membrane with con-
stant  n . LuxR is degraded at a rate  b . The C complex occupies the  lux  box proportional 
to  fC /(1 +  fC ) and promotes the transcription of  luxR ,  luxI , and  luxCDABEG  with rate  q . 
AI is produced at rate  p  from LuxI       .
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box occupancy ,

1
fC

lux
fC

=
+       

 where  f  is a proportionality constant. 
 Since the complex promotes the transcription of  luxI  and 

 luxR , the rates of transcription are proportional to the  lux  box 
occupancy time. The model does not explicitly include the trans-
lation step of  luxI  and  luxR  into LuxI and LuxR, or the direct 
synthesis of the AI from LuxI. Instead, it is assumes these reac-
tions to be integrated into an additional proportionality constant 
times the occupancy of the  lux  box.

 
LuxR synthesis rate , AI synthesis rate .
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 The differential equations for  A  and  R  are thus updated to be
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 The LuxR protein concentration is naturally reduced via 
enzymatic degradation and cellular volume changes from cell 
replication at a rate proportional to the LuxR concentration, and 
the chemically stable AIs freely diffuse through the cell mem-
brane into the surrounding environment at a rate assumed to be 
proportional to the cellular AI concentration: 

 Degradation rate of LuxR=  bR , Diffusion rate of AI= nA  
 Including this effect, the differential equations for  A ,  R , and 

 C  then become:
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 Finally, an external concentration of AI ( A  ex ) generated 
by a colony of bacteria can be added to the model by includ-
ing a forward rate of diffusion of AI proportional to the 
external concentration. This only modifies the equation for 
 A  by adding  nA  ex :
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    To illustrate how the system of three coupled differential equa-
tions can exhibit quorum sensing behavior, we solve for the time 
series solutions of the differential equations for two values of  A  ex  
( A  ex  = 1 nM and  A  ex  = 50 nM; see figure captions for parameter 
choices). Note that the model formulation in itself does not dic-
tate a particular choice of units. The low value of  A  ex  corresponds 
to the low cell-density limit where the external concentration of 
AIs from surrounding bacteria is minimal.  Figure   4  shows the 
cellular concentrations of AI (dashed line) and the LuxR–AI com-
plex (sold line). Both molecules are given initial concentrations of 
1 nM. The system quickly reaches steady-state conditions where 
the internal AI concentration matches the external one, and the 
concentration of the LuxR–AI complex drops to a minimal value. 
Since the LuxR–AI complex is responsible for activating lumines-
cence, this situation corresponds to a dark colony. Upon increas-
ing the concentration of external AI (corresponding to high cell 
density), the LuxR–AI complex is able to reach a considerably 
larger steady-state concentration. Since the threshold concentra-
tion of the LuxR–AI complex necessary for light production is 
not known, the results in  Fig.   5  serve as an illustration of the 
cell’s response to a large increase in external AI concentration.   

 Using the model for quorum sensing in  V. fischeri  proposed 
by James et al.  (50) , it is clear that this relatively simple set of 
coupled differential equations is capable of exhibiting a quorum 
sensing-like response when the concentration of external AI is 
changed. Other models exist that include more interactions in 
the genetic regulatory network  (55,   56) . There are also models 
of  P. aeruginosa , a similar quorum-sensing bacteria to  V. fischeri  
 (57,   58) .    

Model Analysis

  Fig. 4.    Low cell density response of 
LuxR–AI complex ( solid line ) and AI 
( dotted line ) concentrations. Starting 
concentrations are 1 nM for LuxR–AI, AI, 
and AI ext . The system quickly reaches its 
steady-state values where LuxR–AI com-
plex concentration is minimal and the AI 
concentration matches AI ext . The other 
parameters are  k  1  = 25 nM –1  min −1 ,  k  2  
= 10 min −1 ,  n  = 10 min −1 ,  b  = 10 min −1 , 
 p  = 5 nM/min,  q  = 2.5 nM/min, and  f  = 
0.25 nM −1        .
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    ODEs can easily be solved by general scientific and engineering 
software such as Matlab (Mathworks, Natick, MA,   http://www.
mathworks.com    ) and Mathematica (Wolfram Research, Cham-
paign, IL,   http://www.wolfram.com    ). Many programs have 
been developed primarily to facilitate the modeling of dynamical 
systems:
  •  Virtual cell (  http://www.vcell.org    )  
 •  E Cell (  http://www.e-cell.org    )  
 •  CellDesigner (  http://www.celldesigner.org    )  
 •  Karyote (biodynamics.indiana.edu/CellModeling)  
 •  MathSBML (  http://www.sbml.org/Software/MathSBML    ).    

 There are also a number of databases, such as   http://www.
siliconcell.net,     where metabolic models are stored.   

 

    The history of individual-based modeling, also often called agent-
based modeling (ABM), goes back to the late 1940s and early 
1950s work by John von Neumann where he invented cellular 
automata (CA). CA are most frequently simulated on finite grids, 
and the state of a grid cell’s neighbors is used to determine its 
state for the next time step. In a simple one-dimensional exam-
ple, only two states (0 or 1) are available per cell and only nearest 
neighbors, and the CA update rules would then determine for 
which of the 2 3  = 8 possible states (the cell itself and its two near-
est neighbors) a cell would change its value. An example set of 
rules could be that a cell should only switch state if both of the 

2.4. Tools

 3. Individual-
Based Modeling  

3.1. Background

  Fig. 5.    High cell density response of 
LuxR–AI complex ( solid line ) and AI ( dotted 
line ). Starting concentrations are 1 nM for 
LuxR–AI, AI, and 50 nM for AI ext . The system 
quickly reaches its steady-state values 
where LuxR–AI complex concentration can 
initiate light production and the AI concen-
tration matches AI ext . The other parameters 
are as in  Fig.   4        
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neighbors are in an opposite state (majority rule): 101→111, and 
010→000. 

 Individual-based models (IbMs) were suggested in the 1980s 
as a possible method for studying social systems on a computer. 
Differently from the CA, the IbMs are typically not occupying 
all available grid cells and, in fact, need not be based on a grid 
at all. However, similarly to the CA, each entity carries with it 
a predestined set of rules that it acts upon after polling its local 
environment. Due to the rapid increase in computational power 
for desktop PCs, IbMs started receiving serious attention in the 
1990s  (59–  61) . 

 In the following, we will enlist the IbM framework to model 
microbial communities, and the agents will represent individual 
cells, being either bacteria, archaea, or single-cell eukaryotes. 
Contrasting the IbM framework with that of the rate equation 
approach, we quickly see that the chasm in representation can 
be bridged. For instance, one can imagine that the internal rule-
set for an agent is based on monitoring the output of a set of 
rate equations, such as growth, internal ATP concentration, or 
autoinducer concentration in quorum sensing. However, the 
computational cost of including a highly detailed internal descrip-
tion should be measured carefully against the feasible number of 
simultaneous agents and the duration of the simulation.  

  When a system is comprised of many agents whose interactions 
generate system-level dynamics that cannot be explained by their 
individual properties (emergent behavior), individual-based mod-
eling is well suited for simulating the system function. Typically, 
IbMs of microbial communities are simulated on two-dimen-
sional or three-dimensional grids where a single entity occupies a 
grid cell. Before taking on the task of designing or implementing 
an IbM, it is necessary to clearly define the contents and scope of 
the project. Important questions to clarify include:
  •  How many species will exist in the system?  
 •  Will the microbes be allowed to move?  
 •  What will be the inputs and outputs of each microbe?  
 •  How much will a microbe eat before it divides?  
 •  After cell division, how will the two cells be placed?  
 •  Which boundary conditions will be chosen (e.g., hard walls, 

nutrient reservoir)?  
 •  Which metabolic strategies, e.g., dormant or growing maxi-

mally, may be used?  
 •  How will the microbes interact; through competition for 

nutrients or through more direct channels, e.g., quorum sensing, 
physical contact, or production of toxins?    

 3.2. Theory and 
Methodology 
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 Additionally, it is necessary to decide how nutrients and 
other chemicals will move in the system, as well as the shape and 
function of the system boundaries. In the modeling of biofilms, 
nutrient levels are sometimes chosen to be fixed along one of the 
system boundaries to simulate the presence of a reservoir, while 
a different boundary is chosen to be impermeable to both nutri-
ents and cells, emulating a hard surface such as a wall. 

 The basis for any IbM is the set of “behavioral” rules that 
each microbe may follow. For every time increment, each microbe 
is visited and taken through the list of possible rules. In simple 
cases the rule set is deterministic: whenever the local conditions 
are identical, a given outcome is repeated. For more sophisticated 
models, the microbe may choose among the available strategies 
with a probability that depends on past history, the local environ-
ment, or both. While implemented behavioral rules frequently 
have been discrete in nature, this is not a requirement of the 
modeling approach. For instance, a common choice in calculat-
ing the growth of a microbe from one time-point to the next is 
to increment an “energy storage” variable with a fixed amount. 
However, one may alternatively describe the growth (rate) using 
Michaelis–Menten, or even double-saturation kinetics  (62) . 

 It is in the selection of behavioral rules that IbM intersects 
with game theory. In simple IbMs, the rule set only allows for 
interactions through the use of nutrients or occupation of space 
(e.g., a microbe is not allowed to grow when adjacent grid cells 
are occupied). However, microbes may cooperate or compete 
through the production of chemical signals (quorum sensing) 
and toxins  (63) . It is relatively straightforward to include a wide 
variety of competitive or cooperative behaviors in the behavioral 
rules. For instance, we can generate a class of cooperative microbes 
simply by lowering their possible growth rate while they produce 
a beneficial byproduct, such as extracellular polymeric substance 
(EPS) or a molecule that aids the function of a different micro-
bial species. The competing behavioral class of “cheaters” will be 
allowed to avoid this burden (e.g., no EPS production) and can 
grow at the maximal rate. In such a scenario, it is possible either 
for the cooperators or for the cheaters to have the highest fitness, 
depending on the growth conditions and the structure of the 
environment  (62,   64) . 

 When designing an IbM, it is also necessary to carefully con-
sider how the nutrients are distributed. In the simplest models, 
nutrient concentrations are chosen to be constant, while more 
complex realizations include discretized differential equations for 
the diffusive nutrient transport. These hybrid methods, combining 
IbM dynamics for the microbes with differential equations for 
the nutrients, have given highly detailed insights into the dynamics 
of biofilms (see  ref.   65  for an example of three-dimensional 
simulation). In these approaches, it is beneficial to utilize the 
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difference in time scales between diffusion (fast process) and 
microbial activities (slow process) such as growth. The follow-
ing two-step iterative process is frequently used (1) calculate the 
quasi-steady-state solution for the diffusive molecules and (2) 
use the identified local concentrations as input for the micro-
bial IbM dynamics. Assuming that both microbial locations and 
their uptake and production rates are fixed, we may easily find the 
steady-state solution of the diffusion equations of, e.g., oxygen, 
glucose, and an autoinducer. Note that the microbes may act as 
both sinks (consumption of nutrient) and sources (production of 
signaling molecules). 

 Alternatively, we may consider the nutrients and other chemi-
cals as discrete particles that conduct independent random walks. 
For instance, the nutrient particles may move with equal probabil-
ity to an adjacent site, and multiple nutrient particles are allowed 
to occupy the same grid site. In this representation, the effective 
diffusion coefficient is determined by the number of steps in the 
walk. Fluid flow may be incorporated by biasing the direction of 
the random walk. Note that one must conduct the random walk 
step for all particles before updating the microbial states.  

  In a simple, deterministic two-dimensional system where the only 
interaction between the microbes is competition over nutrients 
and available space, the rule set is:
   1.    Nutrient uptake:

   (a)    If amount of nutrient  E  >  e  is available in current and adja-
cent grid cells, eat amount  e . Add to internal energy storage: 
 w → w + e  (and appropriately subtract from  E ).  

   (b)    If not, maintenance cost  m < e  is deducted:  w → w  −  m       
   2.    Duplication or sporulation:

   (a)    If at least one adjacent grid cell is empty and internal 
energy storage  w  >  W  (the duplication threshold) generate 
copy and set  w →( w − W )/2 in both microbes.  

   (b)    If internal energy storage  w  <  T , the sporulation threshold, 
microbe is inactive until nutrient level in current grid cell 
is  E  >  e .         

 Naturally, we choose   T W�   . In this simple example, we are 
inhibiting the movement of nutrient particles, similar to micro-
bial growth on an agar plate. By allowing for the movement of 
nutrients, either as a random walk of discrete particles or by dif-
ferential equations (diffusion), this simple IbM can be changed to 
describe biofilm growth in a liquid medium. Typical initial condi-
tions start from either a single or multiple identical microbes in 
the middle of the grid or along a boundary. Multiple species are 
simply included by, e.g., changing the uptake amount from being 
a global constant  e , to become species-dependent  e  s . 

 3.3. Example 



484 Navid et al.

 We can create cooperative behavior by modifying, e.g., behavioral 
rule 1.a as follows: 

 (1.a) If amount of nutrient  E  >  e  is available in current and 
adjacent grid cells and majority of adjacent grid cells are occu-
pied, eat amount  e   ¢  =  e −  d   (  d   > 0). If majority of adjacent grid cells 
are empty, eat  e   ¢  =  e . Add to internal energy storage:  w → w  +  e   ¢  
(and appropriately subtract from  E ). 

 This straightforward rule change forces microbes to behave 
altruistically by taking less of the nutrients when in a dense neigh-
borhood, and thus, improve sharing of resources. 

  Figure    6   shows a snapshot of a biofilm simulation of two 
species competing over the same food source. In addition to rules 
1 and 2, we have included nutrient diffusion using the random 
walk approach and cellular death instead of sporulation. It is not 
surprising that the fast growing species (dark gray) is dominating 
over the slower growing species (light gray) in the major bloom: 
the further away from the bottom layer (the wall) an individual is, 
the more nutrients are available and it can grow faster.   

  Several consortia have made available general-purpose IbM mod-
els. The most popular open-source implementations are Swarm 
(  http://www.swarm.org    ) and Netlogo (  http://ccl.northwestern.
edu/netlogo    ). A listing of available IbM software packages is 
available at   http://www.swarm.org/index.php?title=Tools_for_
Agent-Based_Modelling.     Programs specifically tailored to micro-
bial communities include BacSim  (59) , which is based on the 
Swarm toolkit, and BacLAB  (66) .   

 3.4. Tools 

  Fig. 6.    Simulated biofilm of two competing species 
growing on an impermeable boundary. Substrate 
gradients are generated by random walks of 
discrete nutrient packets. Fast growing ( dark gray ) 
microbes dominate over slower growing ones 
( light gray )       .
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  Population dynamics in community-level modeling comprises a 
coarse-grained approach compared to the two previous sections, 
where the focus has shifted from individual microbe to the spe-
cies as basic unit. Population-level interactions between differ-
ent species (macroscopic) can naturally be considered as effective 
per-capita rates resulting from the interacting individuals (micro-
scopic). Thus, population interactions naturally arise from shared 
ecological niches and diverse metabolic capabilities of the con-
stituent microbes. 

 A conventional way of classifying pair-wise population inter-
actions is based on their effects on growth ( see   Table   2 ). The 
presence of one species may be beneficial [+], detrimental [−], 
or neutral [0] to the other. In fact, all possible combinations 
of effects are observed in nature, both the symmetric (recipro-
cal) interactions of mutualism [++] and competition [−−], and 
the asymmetric cases of ammensalism [0−], commensalism [0+], 
predator–prey or parasitism [+−]. However, this scheme does 
not reflect the microscopic origin of interactions. Simple abstrac-
tions of an interaction may be insufficient to quantitative analyses, 
and it is important to carefully consider the microscopic origin 
of interactions. We also note that these classification schemes 
constitute an idealization: In practice, the behavior of a mixed 
community is likely the combination of multiple interactions, 
often with opposing effects. A situation that is common to micro-
bial communities consists of two (or more) species in a mixed 
population that compete for the same nutrient source while, at 
the same time, being physiologically coupled in a commensal way. 

 4. Population 
Dynamics  

 4.1. Background 

 Table 2 
  Overview of species-level interaction classes in population-
based modeling  

 Interaction mode  Reciprocity 
 Cell–cell 
direct contact  Sign of interactions 

 Mutualism  Y  N  [++] 

 Competition  Y  N  [−−] 

 Commensalism  N  N  [+0] 

 Ammensalism  N  N  [−0] 

 Predator–prey, 
parasitism 

 N  Y  [+−] 
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Thus, we should not expect that the resulting dynamics will be predict-
able by “effective” interaction models where the complex (competing) 
interactions are combined into one average contribution.     

 Population-level descriptions provide insights that are other-
wise overlooked in microscopic studies. Microbial communities 
from compost, the bovine rumen, acid mine drainage, and hot 
springs are just a few among recently studied systems that will 
benefit from quantitative modeling.  

   Since the early modeling of the predator–prey ecosystem, the 
Lotka–Volterra (LV) model  (7,   8)  has been the de facto standard 
template for modeling mixed populations. Though LV had origi-
nally aimed at modeling the specific case of predator–prey system, 
its current usage has been expanded past the predator–prey set-
ting to include positive interactions. In its simplest version, the 
population size of a prey ( n  1 ) and its predator ( n  2 ) satisfy the fol-
lowing set of nonlinear differential equations
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 Here   α   and   δ   are the growth and decay rates for the prey 
and predator populations, unaffected by the negative (predation) 
interspecies interaction. The coefficients   b   and   g   represents the 
strength of the detrimental and the beneficial effects on prey and 
predator population owing to the predation. Due to the par-
ticular functional form of these equations, the Jacobian of this 
system has purely imaginary eigenvalues, regardless of the param-
eter combinations. Consequently, the two-species LV system has 
sustained oscillatory behavior with a characteristic frequency of 

/ 2ad p     . 
 The exponential growth of prey population has been a target 

for modifications. The original LV assumes no resource limits, 
which oftentimes is unrealistic. To include the resource-mediated 
intraspecies competition, we require a negative term that would 
counterbalance exponential growth. Thus introduced is the logis-
tic growth rate,  a  n (1– n/k ) where  K  is the carrying capacity of the 
ecosystem for the species involved. The modified LV with the 
logistic growth with finite carrying capacity for the prey popula-
tion is now
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 which has the two nontrivial (excluding  n  1  =  n  2  = 0) steady states 
( Fig.   7 )
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= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠        

 4.2. Theory and 
Methodology 

 4.2.1. Lotka–Volterra 
Model and its Determinis-
tic Variations 
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 The first solution corresponds to predator extinction and 
prey proliferation, which is stable as long as   K < Kc ≡ d/g   (the 
extinction threshold). Stable population coexistence (second 
solution) is possible only when  K  >  K   c  . Linear stability analysis 
further shows that coexistence is either a stable node or a focus, 
and no oscillatory behavior is expected unless the carrying capac-
ity diverges  (67) . 

 We may generalize the LV population model (which we 
will refer to as GLV) to include competitive interactions among 
species by adding an extra, negative term following the spirit of 
mass-action:

 1

d
( ) ; 1,2,..., ,

d

d

i i i ij j
j

n t n A n i d
t

a
=

⎛ ⎞
= − =⎜ ⎟⎝ ⎠

∑
      

 where  d  is the total number of interacting species. The diagonal 
elements  A   ii   > 0 can be identified (to a multiplicative constant) 
with the inverse of the carrying capacity of species  i . The off-diagonal 
elements  A   ij   > 0 represent the strength of  j ’s negative effect on  i , 
which is related to the distance between the two species in niche 
space. 

 Finally, a unified scheme for the community interactions is 
obtained by removing the positivity constraint on the off-diag-
onal elements  A   ij   in GLV. The majority of studies on mutualis-
tic interactions have been using this representation as a template 

  Fig. 7.    Competitive Lotka–Volterra (LV) dynamics. ( A ) Time evolution of the population size from LV with logistic growth 
modification. All the systems start with  n  1 (0) =  n  2 (0) = 0.1 (arbitrary units) and the time scale is set in units of 1/  d   
( ~ predator’s lifespan). Rate parameters   a   = 2.3,   b   = 3.1,   g   = 1.2, and the carrying capacity  K  is varied from 0.8 to 20 ( K  c  
= 0.833). The mixed population state is stable for  K  >  K  c . ( B ) Trajectories in  n  1 − n  2  space shows the attractor for different 
carrying capacities       .
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framework. However, all eigenvalues of the interaction matrix 
must have positive real parts for the system to be stable. High-
diversity communities tend to become unstable as the interac-
tion network becomes more complex, reminiscent of the work by 
Robert May in the 1970s  (68,   69) . Recent studies have revisited 
this problem and found potential positive effects of complexity: 
High-diversity, stable LV systems arise if the interaction network 
evolves flexibility through adaptive behavior  (70,   71) .  

  In general, microbial populations are spatially heterogeneous 
and not well-stirred “bioreactors” as assumed in the original LV 
work. Even marine microbes aggregate in the search for food 
using chemotaxis. We may introduce spatial structure into the 
deterministic framework by using an embedding space, where the 
individuals move around in the search for food and shelter. Now, 
interaction effects are no longer instantaneous but must propa-
gate across the space, leading to time delays that stabilizes the 
community  (72,   73) . A natural extension of LV to allow for the 
random movement of cells is by way of diffusion terms, turning 
the LV into the coupled partial differential equations
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 where  D   i   is the diffusion coefficient of species  i . For the case 
of two-species competition, this coupled reaction-diffusion sys-
tem is known to contain propagating wave-front solutions in one 
dimension, of the form  n   i  ( t ) =  f ( x−v   i   t ) that interpolate between 
the two steady states identified above. Convergence to the steady 
state monotonically or with oscillations depends on the choice of 
rate parameters  (72) .  

  Randomness is a defining character of population processes, often 
diverting the dynamics from deterministic predictions. Depend-
ing on the origin of the “noise,” population stochasticity may be 
classified by the following categories:
  •  Within-individual variability  
 •  Cell-to-cell variability and age structure  
 •  Spatial heterogeneity  
 •  Temporal fluctuation of environment    

 The first two categories stem from the random timing of 
birth–death events and the discrete nature of individuals. These 
factors play a lesser role as the population grows in size, but may 
still have significant local effects. In fact, local extinctions com-
monly occur in nature, which is consistent with observations in 

 4.2.2. Effects of Spatial 
Heterogeneity 

 4.2.3. Stochastic Modeling 
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stochastic simulations. The latter two categories are extrinsic in 
origin and can be described in terms of quenched or annealed 
noise. Note that, contrary to intrinsic noise, there is no constraint 
on the noise amplitude or temporal correlations. Overall, the dif-
ferent sources of noise work together in real ecosystems, and 
interesting behaviors emerges from their combinatorial effects 
 (74,   75) . Given a noninteracting single population with a discrete 
phenotypic distribution, the time evolution of species  n   i   can be 
described by the following matrix equation
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 where  E ( t ) is the random discrete variable representing the envi-
ronment at time  t ,  r   i  ( E ( t )) is the environment-dependent fitness 
of phenotype  i , and the matrix elements  T   ij  ( E ( t )) are transition 
probabilities for an individual to switch from the  j th to the  i th 
phenotype. Note that   Tij   is a Laplacian matrix ( ii ijj i

T T
≠

= −∑     ), 
and, on average, the loss term   Tiini   balances transitions to all other 
states. Interestingly, maximal growth occurs when the pheno-
typic switching rate is similar to that of environmental fluctua-
tions. If environmental changes are slow or mostly predictable, 
random switching between states outperforms responsive switch-
ing, where the organism uses sensors to identify the optimal state 
of operation and transition probabilities to nonoptimal states are 
consequently set to zero.   

   Recent work on marine phage communities demonstrates how 
the general framework of LV can be improved, and the impor-
tance of investigating microscopic origins of population growth. 
Hoffmann and colleagues  (76)  studied the interaction of marine 
phages (predator) and their host microbes (prey) by modeling 
the multispecies community as a simple predator–prey model. 
This can be justified since the phage–host interaction is highly 
specific and the dominant microbial species effectively is repre-
sentative of the overall community  (77) . 

 The key observation from this approach is that the observed 
cooperativity is caused by spatiotemporally nonuniform nutrient 
condition ascribed to a colloid-type organic detritus called “marine 
snow.” The marine snow enhances aggregation of microbes and 
their predators, generating a positive feedback loop. The cluster-
ing around discrete food sources leads to locally high concentra-
tions of lysed host cells that further attract more predators. The 
consequence is a superlinear dependence of predation rate in the 
phage population, represented as a quadratic dependence on 
the phage density:
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 4.3. Examples 

 4.3.1. Marine Phage 
Community 
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 where  n  1  represents the microbial population and  n  2  the phages. 
In order to preserve the oscillatory behavior of the predator–prey 
model, it is necessary to keep the phage-degradation term quad-
ratic in the phage density. The population dynamics predicted by 
this model follow experimental data closely.  

  Intra- and interspecies interactions among microbes are mainly 
responsible for the ripening process in spreadable cheeses. A 
recent study used the population dynamics approach to identify 
interactions in a spreadable cheese bacteria–eukaryote commu-
nity composed of six bacteria and three yeast species  (78) . The 
bacterial population behavior could be grouped into two quasis-
pecies, resulting in a five-species model system. Using the GLV 
formulation as a starting point, entries in the interaction matrix  A  
were selected to give simulated population dynamics that agreed 
with measurements. The identified possible realizations of  A  
were further narrowed down through a species-removal study: 
A single quasispecies was removed at a time, and population 
dynamics for the remaining species were measured. As a result, 
the web of interaction between the five groups could be identified 
( see   Fig.   8 ). Considering the experimental difficulties in resolving 
interspecies interactions in strongly interacting communities, the 
GLV modeling approach provides a useful first step.    

   The SBML ODE solver library (SOSlib) is a programming library 
for formula representation to construct ODE systems, their Jaco-
bian matrix, a parameter dependency matrix and other derivatives 
in the Systems Biology Markup Language (SBML). SOSlib pro-
vides efficient interfaces to well-established methods in theoreti-
cal chemistry, biology, and systems theory. 

   http://www.tbi.univie.ac.at/~raim/odeSolver      

  Dizzy is a software for stochastic chemical relations simulation. It 
provides a model definition, implementation of several stochastic 
and deterministic algorithms, and a graphical display of a model. 

 4.3.2. Identification of 
Unknown Species 
Interactions 

 4.4. Tools 

 4.4.1. General-Purpose 
ODE Solver 

 4.4.2. Stochastic Simulator 

  Fig. 8.    Interaction among cheese microbial community is 
reconstructed by using LV-type modeling  (78) .  Arrows  
and  blunt ends  stand for positive and negative interac-
tions, respectively. D  Debaryomyces hansenii ; Y  Yarrowia 
lipolytica ; G  Geotrichumcandidum ; L  Leucobacter  sp.; C 
Group including  Arthrobacter arilaitensis ,  Hafnia alvei , 
 Corynebacterium casei ,  Brevibacterium aurantiacum , and 
 Staphylococcus xylosus        .
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It is a standard free software written in Java and is supported on 
Windows XP, Fedora Core 1 Linux, and Macintosh. 

   http://magnet.systemsbiology.net/software/Dizzy            
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experimental setting ..................................208, 211–213
in flux balance analysis ............................................... 75
across membrane ..................................................... 473
modeling ...................................................191, 255, 484
in optimization .......................................................... 39

growth ............................................................212, 373, 483
cone.......... ............................................................... 211
diauxic. ....................................................................... 63
population ........................................................ 486, 489
rate.......... ........................................ 62, 69, 72, 482, 486

see also cell; tumor
gut epithelial barrier, model of ....................................... 450

H

Haralick texture feature ......................................... 318, 323
Hill function .................................................................. 174
HIV ............................................................................... 431
hybrid modeling method ..................................50, 465, 482

I

immune
memory ................................................................... 431
system... ........................................................... 430–431

individual-based modeling – see agent-based modeling
inhibitor ........................................................19, 52, 54, 186
isoenzyme .................................................................... 8, 70
isoform .............................................................................. 8

J

junction, tight (TJ) .........................................450, 451, 453

K

k-means clustering......................................................... 325

L

lattice
multiplicity .............................................................. 370
polymer, binding to .................................................. 347

learning, supervised ....................................................... 314

Levenberg-Marquardt method ...........................39, 46, 102
ligand

cartography .............................................................. 315
receptor binding

measurement ...................................................... 224
model ......................................................... 224, 341

link matrix ....................................................................... 32
lipid content .................................................................... 72
lithography .................................................................... 207
Lotka-Volterra model ............................................ 470, 486
LSODA method ............................................................. 52
lysosome ................................................................ 221, 319

M

macrophage-bacterium interaction, 
model of ............................................... 381, 437

MAP kinase cascade, model of .................................. 24, 43
mass action ...............................18, 48, 50, 62, 89, 109, 135, 

174, 226, 228, 261, 341, 354, 438, 463, 487
translated to

logical variables .................................................. 440
probability ............................................................ 50

see also rate law
mathematics .............................................................. 4, 171
matrix

confusion ......................................................... 321–324
extracellular (ECM) .................................211, 362, 364

anisotropic ......................................................... 365
link........ ..................................................................... 32
stoichiometric .................................................62, 67, 91

MCA – see metabolic control analysis
MCell (software) ........................................................... 238
metaaffector ................................................................... 174
metabolic control analysis (MCA) ..................33–38, 42, 55
metabolism .......................................................12, 144, 460

erythrocyte, model of ................................................. 29
genome-scale models of ....................................... 61, 74
microbial .......................................................... 470–471
of tight junctions ............................................. 450, 453
transcriptional regulation of ............................63, 65, 70

metagenomic sequencing ............................................... 469
methionine biosynthesis, model of .................................. 25
Metropolis dynamics ............................................. 365, 367
Michaelis-Menten kinetics – see rate law
microarray .......................................................206, 216, 430
microbe .......................................................................... 469
microfluidics .................................................................. 203
microscope ............................................. 209, 298, 313, 316, 

317, 321, 323, 325
microscopy .............................. 209, 214, 290, 314, 326, 330

electron .....................................................238, 290, 308
fluorescence ..................................................... 315–316

minimization
of metabolic adjustment (MOMA) ........................... 65

see also optimization
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mitochondrium ......................................295–298, 300–303, 
306–308, 319–320

mitosis ................................................................... 214, 365
entry model .............................................................. 103
model of ........................................................... 410–424
promoting factor (MPF) activity model .................... 81

model
bottom-up ................................................................... 9
nonautonomous ......................................................... 53
role of.. ............................................................. 335–336

modification, posttranslational .................................. 8, 115
modifier (in a reaction) .........................................18, 52, 54
Monte Carlo method ....................... 20, 117, 140, 150, 365

see also stochasticity
morphology, quantitative ............................................... 310
multiplicity

of a lattice ................................................................ 370
see also reaction

muscle, model of ............................................................ 296
mutualism ...................................................................... 485
myofibril ................................................................ 296–297

N

Netlogo (software) ..........................................454, 467, 484
network

biochemical .......................................17–18, 61–63, 362
gene-protein regulatory ............................... 81–83, 205
genetic...................................................................... 169
logical....................................................................... 438
metabolic ............................................................. 61–62

gap analysis .......................................................... 76
protein-protein interaction ...................................... 115
signal-transduction .......................................... 113–115
transcriptional regulatory ......................................... 215
truncated .......................................................... 149, 164
unbounded ....................................................... 137, 160

neurotransmitter release, model of ................................. 269
nondimensionalization .......................................... 175–177
nonlinearity ...................................................17, 18, 38, 55, 

350, 358, 446, 462, 464, 472, 474, 486
Newton (Newton-Raphson) method ....... 19, 25, 39, 53, 56

truncated .................................................................... 41

O

object (in modeling) .............................................. 433–434
objective

coefficient .................................................................. 68
function .........................38–40, 42, 62, 67, 86, 102, 337

observable ...............................................126, 160, 337, 456
ODE – see equation
optimization ........................... 38–42, 46, 62, 102, 337, 351

dynamic ..................................................................... 63
in flux balance analysis ............................................... 69
static........................................................................... 63

organ ...............................................................430, 446–447
culture... ................................................................... 205

organelle .................................................238, 289, 314, 430
geometric representation.......................................... 296
volume and surface density (VSD) ...........290, 292, 305

oscillation .............................................................. 197, 198
of calcium ............................................................ 48–50
detection .................................................................... 98
of gene expression ............................................ 185, 393
of glycolysis ...................................................... 472–476
population ................................................................ 488
predator-prey ........................................................... 490
search for ..................................................191, 193–196

P

parameter
confidence interval .................... 336, 347–349, 351, 358
constrained, see constraint
estimation ........................... 42–46, 83, 96, 99, 337, 349

automatic ........................................86, 98, 182, 193
global ................................................................. 108

experimental variation ............................................. 211
measurement, systematic ......................................... 215
nondimensional ....................................................... 177
sampling and scanning ...................................... 25, 172

logarithmic..............................................27, 54, 190
random .........................................28, 172, 183, 190

sensitivity to ............................................................... 32
see also robustness

parasitism ...................................................................... 485
PARIMM (software) ..................................................... 431
particle swarm method .............................................. 39, 42
PCR (polymerase chain reaction), 

microfluidic digital ....................................... 215
PDMS (polydimethylsiloxane) ...................................... 209
phage ............................................................................. 488
phagocytosis .................................................................. 438
physics ............................................................................... 4

nonequilibrium statistical ........................................ 365
physiology ...........................................................12, 81, 238
Physiome (project) ......................................................... 362
polymer, binding to........................................................ 347
polymerization, model of ............................................... 146
polypeptide ............................................................ 7–8, 126
population dynamics ...................................................... 485
predator-prey interaction ....................................... 485–486
pressure, osmotic............................................................ 365
probability distribution function ...................................... 18
probability density function (PDF) ................................. 20
programming

linear.... ...................................................................... 63
nonlinear .................................................................... 63

protein
binding to DNA ...................................................... 347
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content ....................................................................... 72
function ............................................................. 7–8, 12

proteome.................................................313, 316, 324, 330
proteomics ...................................... 115, 313–315, 324, 330
Python (programming language) ................................... 389

Q

quasispecies .................................................................... 490
quorum sensing ..............................................475, 481–482

R

random walk ...........................................262, 273, 483–484
rate law ...................................................18–19, 22–23, 474

Michaelis-Menten ..............................89, 128, 156, 482
stochastic representation ...................................... 50, 53

see also reaction
reaction

biomass ................................................................ 67, 69
center 130
conductance ............................................................... 63
exchange .............................................................. 68, 73
molecularity ..............................................128, 131, 155
multiplicity .......................................128, 131, 132, 158
reversibility ............................... 22, 48, 54, 62, 128, 471
transporter ....................................................... 438, 471

reaction-diffusion system ............................................... 488
receptor

rule-based modeling of .................................... 115–164
affinity to ......................................................... 231–233
endocytosis mediated by ...........................223, 227, 228
density.. .................................................................... 213
drug binding ............................................................ 221
in immune system .............................430, 431, 434, 435
localization....................................................... 319–320
in synaptic transmission .................................. 238–241, 

246, 252, 256, 258, 269–274 see also ligand; 
recycling

recycling.... ......................................................223, 227–229
see also endocytosis; receptor

regression.... ...................................................329, 336–340, 
348, 354, 357

response coefficient .................................................... 36, 55
reticulum, sarcoplasmic .................................................. 298
robustness .................................................32, 171, 439, 460
Runge-Kutta method ...................................................... 52

S

sarcolemma .................................................................... 298
sarcomere ....................................................................... 297
SBML (programming language) .........................21, 23–25, 

29, 33, 43, 46, 48, 53, 87, 119, 140, 490
segment polarity, model of ..................................... 173, 178
self-assembly .................................................................... 12
self-organization .............................................6–7, 208, 214

sensitivity
analysis....................................................32–38, 42, 230
second-order .............................................................. 38

sepsis ...................................................................... 446, 449
sequence (of biopolymer) .............. 7, 72, 314, 316, 317, 348
shadow price .................................................................... 74
skeleton feature .............................................................. 319
simulated annealing ......................................................... 39
simulation, stochastic ................................................ 18–20, 

47–52, 57, 95, 110, 118–120, 124, 142, 149, 
152, 160, 162, 366, 489

conversion from ODE formalism .............................. 48
see also hybrid modeling method

SLF (subcellular location feature) .......................... 317, 326
spine head model of ....................................................... 245
SSA (stochastic simulation algorithm) ...............20, 23, 148
stability analysis ............................................................. 487
state diagram ................................................................. 447
steady state ............................19, 24–25, 33, 55, 62, 69, 470

data in parameter estimation ..................................... 43
stability analysis ....................................................... 487
unstable, finding ........................................................ 25

steepest descent method .................................................. 39
stereology ................................................290, 292, 294, 308
stochasticity ....................................................448, 449, 488

see also Monte Carlo method; SSA; 
Gillespie; simulation, stochastic; hybrid 
modeling method

stoichiometry
analysis

flux modes.............................. elementary 29, 54–55
mass conservation relations .................................. 30

coefficient .................................................................. 82
matrix..............................................................62, 67, 91
reduced ...................................................................... 32

substantiation .................................................................. 11
sucrose accumulation in sugar cane, 

model of ................................................... 33, 38
surface, implicit.............................................................. 290
synapse, model of ........................................................... 238
system

analysis................................................................. 4, 5, 7
definition ................................................................. 3–4
theory.... ........................................................3, 170, 490

T

tautology ............................................................................ 8
T cell ............................................................................. 431
teleology .......................................................................... 11
threonine biosynthesis, model of ..................................... 25
titration curve ........................................................ 342, 348
traffic

of inflammatory cells ............................................... 449
intracellular .............................................................. 221
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transcription ..........................................171–176, 188–189, 
197, 477–478

factor measurement of............................................ 215
regulation of ............................................................. 212
in regulation of metabolism ............................63, 65, 70

see also gene expression
transferrin .............................................................. 222, 319
transform (transformation, between models 

and data) ..................... 86, 96–99, 106, 319, 346
tubules, transversal ......................................................... 298
tumor growth, model of ......................................... 363, 423
Turing model (network) ......... 172, 184–186, 191–196, 425
turnover number .............................................................. 19

V

vesicle, synaptic, model of .............................................. 249
Vibrio fischeri .................................................................. 477
Virtual Cell (software) ............................120, 337, 362, 480

volume – see cell
VSD – see organelle

W

wound healing, model of ....................................... 363, 449

X

Xenopus egg division, model of ........................................ 81
XISL (programming language) ..................................... 294
XML (programming language) ..................................... 373

Y

yield, maximum ......................................................... 29, 69

Z

Z band ................................................................... 296–297
Zernike moment ............................................................ 318
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