

Systems Biology

Series Editor
John M. Walker

School of Life Sciences
University of Hertfordshire

Hatfield, Hertfordshire, AL10 9AB, UK

 For other titles published in this series, go to
 www.springer.com/series/7651

M E T H O D S I N M O L E C U L A R B I O L O G Y ™

Systems Biology

Edited by

Ivan V. Maly

Department of Computational Biology, School of Medicine,
University of Pittsburgh, Pittsburgh, PA, USA

Editor
Ivan V. Maly
Department of Computational Biology
School of Medicine
University of Pittsburgh
Pittsburgh, PA
USA

ISBN: 978-1-934115-64-0 e-ISBN: 978-1-59745-525-1
ISSN: 1064-3745 e-ISSN: 1940-6029
DOI: 10.1007/978-1-59745-525-1

Library of Congress Control Number: 2008942271

© Humana Press, a part of Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of going to press,
 neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that
may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

springer.com

Preface

The rapidly developing methods of systems biology can help investigators in various areas
of modern biomedical research to make inference and predictions from their data that
intuition alone would not discern. Many of these methods, however, are commonly
perceived as esoteric and inaccessible to biomedical researchers: Even evaluating their
applicability to the problem at hand seems to require from the biologist a broad knowl-
edge of mathematics or engineering. This book is written by scientists who do possess
such knowledge, who have successfully applied it to biological problems in various con-
texts, and who found that their experience can be crystallized in a form very similar to a
typical biological laboratory protocol.

Learning a new laboratory procedure may at first appear formidable, and the inter-
ested researchers may be unsure whether their problem falls within the area of applicability
of the new technique. The researchers will rely on the experience of others who have
condensed it into a methods paper, with the theory behind the method, its step-by-step
implementation, and the pitfalls explained thoroughly and from the practical angle. It is
the intention of the authors of this book to make the methods of systems biology widely
understood by biomedical researchers by explaining them in the same proven format of a
protocol article.

It is recognized that, in comparison to the systems biology methods, many of the
laboratory methods are much better established and their theory may be understood to a
greater depth by interested researchers with a biomedical background. We intend, how-
ever, this volume to shatter the perceived insurmountable barrier between the laboratory
and systems-biological research techniques. We hope that many laboratory researchers
will find a method in it that they will recognize as applicable to their field, and that the
practical usefulness of the basic techniques described here will stimulate interest in their
further development and adaptation to diverse areas of biomedical research.

Pittsburgh, PA Ivan V. Maly

v

Contents

Preface. v
Contributors. ix

PART I: INTRODUCTION

 1 Introduction: A Practical Guide to the Systems Approach in Biology 3
Ivan V. Maly

PART II: METHODS FOR ANALYZING BIOMOLECULAR SYSTEMS

 2 Computational Modeling of Biochemical Networks Using COPASI 17
Pedro Mendes, Stefan Hoops, Sven Sahle, Ralph Gauges,
Joseph Dada, and Ursula Kummer

 3 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 61
Matthew A. Oberhardt, Arvind K. Chavali, and Jason A. Papin

 4 Modeling Molecular Regulatory Networks with JigCell and PET 81
Clifford A. Shaffer, Jason W. Zwolak, Ranjit Randhawa, and John J. Tyson

 5 Rule-Based Modeling of Biochemical Systems with BioNetGen 113
James R. Faeder, Michael L. Blinov, and William S. Hlavacek

 6 Ingeneue: A Software Tool to Simulate and Explore
Genetic Regulatory Networks . 169
Kerry J. Kim

PART III: SPATIAL ANALYSIS AND CONTROL OF CELLULAR PROCESSES

 7 Microfluidics Technology for Systems Biology Research . 203
C. Joanne Wang and Andre Levchenko

 8 Systems Approach to Therapeutics Design . 221
Bert J. Lao and Daniel T. Kamei

 9 Rapid Creation, Monte Carlo Simulation, and Visualization
of Realistic 3D Cell Models . 237
Jacob Czech, Markus Dittrich, and Joel R. Stiles

10 A Cell Architecture Modeling System Based on Quantitative
Ultrastructural Characteristics . 289
Július Parulek, Miloš Šrámek, Michal Č erveňanský, Marta Novotová,
and Ivan Zahradník

11 Location Proteomics: Systematic Determination of Protein
Subcellular Location . 313
Justin Newberg, Juchang Hua, and Robert F. Murphy

vii

viii Contents

PART IV: METHODS FOR LARGER-SCALE SYSTEMS ANALYSIS

12. Model-Based Global Analysis of Heterogeneous Experimental
Data Using gfit. 335
Mikhail K. Levin, Manju M. Hingorani, Raquell M. Holmes,
Smita S. Patel, and John H. Carson

13 Multicell Simulations of Development and Disease Using the CompuCell3D
Simulation Environment. 361
Maciej H. Swat, Susan D. Hester, Ariel I. Balter, Randy W. Heiland,
Benjamin L. Zaitlen, and James A. Glazier

14 BioLogic: A Mathematical Modeling Framework for Immunologists 429
Shlomo Ta’asan and Rima Gandlin

15 Dynamic Knowledge Representation Using Agent-Based Modeling:
Ontology Instantiation and Verification of Conceptual Models 445
Gary An

16 Systems Biology of Microbial Communities . 469
Ali Navid, Cheol-Min Ghim, Andrew T. Fenley, Sooyeon Yoon, Sungmin Lee,
and Eivind Almaas

Index . 495

Contributors

EIVIND ALMAAS • Biosciences and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, CA, USA

GARY AN • Division of Trauma/Critical Care, Department of Surgery, Northwestern
University Feinberg School of Medicine, Chicago, IL, USA

ARIEL I. BALTER • Biocomplexity Institute and Department of Physics,
Indiana University, Bloomington, IN, USA

MICHAEL L. BLINOV • Richard Berlin Center for Cell Analysis and Modeling, University
of Connecticut Health Center, Farmington, CT, USA

JOHN H. CARSON • Richard Berlin Center for Cell Analysis and Modeling, University
of Connecticut Health Center, Farmington, CT, USA

RICHARD BERLIN • Center for Cell Analysis and Modeling
MICHAL ČERVEŇANSKÝ • Faculty of Mathematics, Physics and Informatics, Comenius

University, Bratislava, Slovak Republic
ARVIND K. CHAVALI • Department of Biomedical Engineering, University of Virginia,

Charlottesville, VA, USA
JACOB CZECH • National Resource for Biomedical Supercomputing, Pittsburgh

Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA
JOSEPH DADA • School of Computer Science and Manchester Centre for Integrative

Systems Biology, University of Manchester, Manchester, UK
MARKUS DITTRICH • National Resource for Biomedical Supercomputing, Pittsburgh

Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA
JAMES R. FAEDER • Department of Computational Biology, University of Pittsburgh

School of Medicine, Pittsburgh, PA, USA
ANDREW T. FENLEY • Biosciences and Biotechnology Division, Lawrence Livermore

National Laboratory, Livermore, CA, USA
RIMA GANDLIN • Department of Mathematical Sciences, Carnegie Mellon University,

Pittsburgh, PA, USA
RALPH GAUGES • Department of Modeling of Biological Processes, Institute for Zoology/

BIOQUANT, University of Heidelberg, Heidelberg, Germany
CHEOL-MIN GHIM • Biosciences and Biotechnology Division, Lawrence Livermore

National Laboratory, Livermore, CA, USA
JAMES A. GLAZIER • Biocomplexity Institute and Department of Physics,

Indiana University, Bloomington, IN, USA
RANDY W. HEILAND • Biocomplexity Institute and Department of Physics, Indiana

University, Bloomington, IN, USA
SUSAN D. HESTER • Biocomplexity Institute and Department of Physics, Indiana

University, Bloomington, IN, USA
MANJU M. HINGORANI • Molecular Biology and Biochemistry Department, Wesleyan

University, Middletown, CT, USA

ix

x Contributors

WILLIAM S. HLAVACEK • Theoretical Division and Center for Nonlinear Studies,
Los Alamos National Laboratory, Los Alamos, NM, USA and
Department of Biology, University of New Mexico, Albuquerque, NM, USA

RAQUELL M. HOLMES • Richard Berlin Center for Cell Analysis and Modeling,
University of Connecticut Health Center, Farmington, CT, USA

STEFAN HOOPS • Virginia Bioinformatics Institute, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA

JUCHANG HUA • Department of Biological Sciences and Center for Bioimage
Informatics, Carnegie Mellon University, Pittsburgh, PA, USA

DANIEL T. KAMEI • Department of Bioengineering, University of California,
Los Angeles, CA, USA

KERRY J. KIM • Center for Cell Dynamics, University of Washington Friday Harbor
Laboratories, Friday Harbor, WA, USA

URSULA KUMMER • Department of Modeling of Biological Processes, Institute
for Zoology/BIOQUANT, University of Heidelberg, Heidelberg, Germany

BERT J. LAO • Department of Bioengineering, University of California, Los Angeles,
CA, USA

SUNGMIN LEE • Biosciences and Biotechnology Division, Lawrence Livermore National
Laboratory, Livermore, CA, USA

ANDRE LEVCHENKO • Whitaker Institute for Biomedical Engineering, Institute
for Cell Engineering, Department of Biomedical Engineering, Johns Hopkins
University, School of Medicine, Baltimore, MD, USA

MIKHAIL K. LEVIN • Richard Berlin Center for Cell Analysis and Modeling,
University of Connecticut Health Center, Farmington, CT, USA

IVAN V. MALY • Department of Computational Biology, University of Pittsburgh
School of Medicine, Pittsburgh, PA, USA

PEDRO MENDES • School of Computer Science and Manchester Centre for Integrative
Systems Biology, University of Manchester, Manchester, UK and Virginia Bioinfor-
matics Institute, Virginia Polytechnic Institute and State University, Blacksburg,
VA, USA

ROBERT F. MURPHY • Center for Bioimage Informatics, Lane Center for
Computational Biology and Departments of Biomedical Engineering,
Biological Sciences and Machine Learning, Carnegie Mellon University,
Pittsburgh, PA, USA

ALI NAVID • Biosciences and Biotechnology Division, Lawrence Livermore National
Laboratory, Livermore, CA, USA

JUSTIN NEWBERG • Department of Biomedical Engineering and Center for Bioimage
Informatics, Carnegie Mellon University, Pittsburgh, PA, USA

MARTA NOVOTOVÁ • Institute of Molecular Physiology and Genetics, Slovak Academy
of Sciences, Bratislava, Slovak Republic

MATTHEW A. OBERHARDT • Department of Biomedical Engineering, University
of Virginia, Charlottesville, VA, USA

JASON A. PAPIN • Department of Biomedical Engineering, University of Virginia,
Charlottesville, VA, USA

 Contributors xi

JÚLIUS PARULEK • Institute of Molecular Physiology and Genetics, Slovak Academy
of Sciences, Bratislava, Slovak Republic and Faculty of Mathematics, Physics and
Informatics, Comenius University, Bratislava, Slovak Republic

SMITA S. PATEL • Department of Biochemistry, Robert Wood Johnson Medical School,
Piscataway, NJ, USA

RANJIT RANDHAWA • Department of Computer Science, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA

SVEN SAHLE • Department of Modeling of Biological Processes, Institute for Zoology/
BIOQUANT, University of Heidelberg, Heidelberg, Germany

CLIFFORD A. SHAFFER • Department of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA

MILOŠ ŠRÁMEK • Faculty of Mathematics, Physics and Informatics, Comenius
University, Bratislava, Slovak Republic and Austrian Academy of Sciences,
Vienna, Austria

JOEL R. STILES • National Resource for Biomedical Supercomputing, Pittsburgh
Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, USA

MACIEJ H. SWAT • Biocomplexity Institute and Department of Physics, Indiana
University, Bloomington, IN, USA

SHLOMO TA’ASAN • Department of Mathematical Sciences, Carnegie Mellon
University, Pittsburgh, PA, USA

JOHN J. TYSON • Department of Biological Sciences, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA

C. JOANNE WANG • Whitaker Institute for Biomedical Engineering, Institute for Cell
Engineering, Department of Biomedical Engineering, Johns Hopkins University,
School of Medicine, Baltimore, MD, USA

SOOYEON YOON • Biosciences and Biotechnology Division, Lawrence Livermore
National Laboratory, Livermore, CA, USA

IVAN ZAHRADNÍK • Institute of Molecular Physiology and Genetics, Slovak Academy
of Sciences, Bratislava, Slovak Republic

BENJAMIN L. ZAITLEN • Biocomplexity Institute and Department of Physics, Indiana
University, Bloomington, IN, USA

JASON W. ZWOLAK • Department of Biological Sciences, Virginia Polytechnic Institute
and State University, Blacksburg, VA, USA

 Chapter 1

 Introduction: A Practical Guide to the Systems
Approach in Biology

 Ivan V. Maly

 Summary

 This essay provides an informal review of the modern systems-centric biological methodology for the
practical researcher. The systems approach is defined, and a generic recipe for employing it in biomedical
research is offered. General caveats are discussed that pertain to biological complexity, to explanation in
molecular terms, and to bottom-up investigation. An outlook on the development of systems biology is
also given.

 Key words: Systems biology , Methodology , Mathematical modeling , Complexity , Physiology .

 What is systems biology? Over the past 40 years, practicing sys-
tems biologists delimited their field in a great number of ways. At
times the definition was restricted to applications of the formal
systems theory in biology; more recently, the tendency has been
to focus on biomolecular interactions or on multivariate analysis
as systems biology’s proper subject and method (1– 5) . This essay
is written from a conservative biologist’s perspective and takes a
less specific view of the topic. First, what should we call a system,
in the context of the scientific way to parse the world into con-
cepts? We recognize a system in a certain number of different and
interacting objects. Noninteracting objects do not form a system.
Also, it is hardly useful to see any substantial number of inter-
acting, but identical objects as a system. Science has powerful
methods to study aggregate behavior of identical objects. Notably,
such methods tend to disregard the corpuscular nature of the

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_1

3

4 Maly

individual objects and take a view of their collections as continua.
In this case, biology can freely borrow methodologically from
established areas of physics. In contrast, studying behavior of
collections of interacting nonidentical objects remains a meth-
odological challenge. We will, therefore, restrict the meaning of
“system” to a system of interacting nonidentical parts. Study of
a living object by discerning so-defined systems in it will then be
called systems biology. Its status as a distinct discipline should
engender no jealousy: The definition limits the subject of systems
biology to what the scientific method is currently handling per-
haps least confidently.

 The difficulty appears to stem from the limitation of the
human mind itself (6, 7) : we are nearly incapable of consider-
ing more than a few things at a time. Psychophysical experiments
suggest the limit of about seven, which corresponds well to the
number of the nonidentical, interacting elements that deserve to
be called a system, as commonly perceived in the systems biology
practice. It is important to observe that the limitation is not just
to our intuition, but to rational reasoning as well. We can consider
larger systems of course, but the effects resulting from interactions
of more than a few elements at a time will likely be missed. To
reason about systems whose complexity is beyond our immediate
grasp, we must extend our mind with formal deduction, under the
general rubric or mathematics. As applied to the natural world,
it is termed mathematical modeling. Involving mathematics in
nonsystems biological research can be necessitated by a desire of
quantitative precision in understanding; in systems biology, it is
indispensable for any progress whatsoever, because even the crud-
est qualitative effects are liable to be overlooked by the unaided
mind that has evolved for rather different purposes.

 That quantitative precision is rarely sought in modern sys-
tems biology is important to recognize, so as not to confuse the
nature of the mathematics employed with the goals of the inves-
tigation. And certainly, those who are just considering employ-
ing systems analysis especially should not decide against it, if it
is qualitative inference about their subject that they are after.
We owe the quantitative, continuous-variable flavor of our most
widely applied mathematics to its original development for the
purposes of celestial mechanics and similarly particular problems
of quantitative precision. As a consequence, the modern systems-
biological modeling has to be done most commonly in terms of
dynamics of continuous quantities first, to an exceeding preci-
sion (“phosphorylation goes up by 73%”), and then the results
are reinterpreted in terms of qualitative statements about discrete
events (“this genotype permits cell division”), to arrive at the
kind of knowledge that is actually being sought. This is no dif-
ferent from how experimental measurements are most commonly
employed.

 Introduction: A Practical Guide to the Systems Approach in Biology 5

 So how should we conduct a mechanistic systems analysis of the
object of our investigation? The following may be suggested:
 1. On the basis of the existing empirical knowledge, make a

choice of the model elements (system parts) that is efficient
for specifying the system (e.g., mitogens and their activa-
tors in the system of cell proliferation control). The efficient
choice is not unique and requires a great deal of creativity on
the part of the biologist. Some of the most general caveats are
discussed in the next section of this chapter.

 2. Identify those properties of the elements that would reflect
the relevant interactions between the elements (e.g., mitogen
phosphorylation levels).

 3. Express the element properties, and interactions that affect
them, in the structure of a mathematical model. (e.g., rate of
phosphorylation equals activator concentration times the rate
constant, and so on.) Practice shows that it is not very impor-
tant what exact kinetic laws, etc., to use to begin – this may be
“ironed out” later to the extent that it matters for the actual
goal of the investigation. It is highly advisable, however, from
the beginning to take pains to be consistent with dimensions
of all quantities introduced (not to add apples to oranges in
your formulae).

 4. Determine the following by means of numerical analysis of the
model, guided closely by biological thinking (this is a great
deal of work if done systematically, but only a thorough analy-
sis is worth the trouble):
 (a) What known features of the system can be objectively

(mathematically) derived from the known features of its
elements and interactions (e.g., the mitogen activity can
indeed be “predicted” to peak at intervals, as with cell divi-
sion.). Determining this gives us confidence in our under-
standing of the system in terms of the selected elements
and interactions. Simultaneously, it codifies our knowledge
completely and unambiguously in the form of the model
that “by itself can do what the system does the way we
think it does.” Only for the simplest “systems” found
seldom in biology is this outcome not worth the effort of
the formal analysis.

 (b) What elements and interactions implicated in the system
at the outset prove to be dispensable for the explanation
achieved. (e.g., the peaks are predicted whether activator
C is available or not.) These elements are relieved of duty,
and in a sense the rigorous explanation becomes simpler
than the intuitive one was. This outcome can direct further

2. The Basic
Protocol

6 Maly

experimentation, although it predicts a “negative result.”
(Similarly it may be worth checking why we think we know
that behavior of the system which turns out impossible to
derive formally from what we know about the parts.)

 (c) What previously unknown features of the system can be
deduced from the previously known interactions and ele-
ments. Determining this directs further experimental
study of the system as a whole. It corresponds to the most
conventional notion of “prediction” and of the role of
modeling.

 (d) What previously unknown elements or interactions, or what
features of them (e.g., how much of what protein species,
how fast a reaction) must be assumed to explain the known
features of the system. Determining this directs further
experimental investigation into the system elements. This
is perhaps the most valuable outcome in the framework of
top-down investigation, which is advocated below.

 The author contends that attempting analysis along these
lines can benefit nearly every line of biological investigation,
where appreciable empirical knowledge has been accumulated,
i.e., most any line of investigation in modern biology. Chapters
in this volume describe specific approaches and their caveats at
the level of detail that should give a head start even to a complete
novice. To those accustomed to the use of mathematical modeling
in experimental research (physicists) or to systems-centric think-
ing (engineers), the generic “protocol” outlined above may look
even trivial. There are, however, certain problems about applying
these methodological ideas to modern biology. It is unlikely that
these problems should be resolved in the same systems biology
framework, but recognizing them might be of help in setting up
a systems approach to the subject of the investigation more effec-
tively and in interpreting its results more consciously.

 Successful explanation of the whole in terms of the parts depends
critically on the investigator’s choice of the parts to implicate in
the explanation. Challenging problems in modern biomedicine
concern explanation of behavior of cells, these apparently sim-
plest physicochemical systems which are alive in every sense of
the word. It has proved a challenging objective to explain cells
in terms of the biomolecular species that are found in them. Sys-
tems biology is called upon to facilitate this task with its methods,
not replace the objective. Singular examples of molecular self-

3. Methodological
Caveats

3.1. The Molecular
Approach and
Complexity

 Introduction: A Practical Guide to the Systems Approach in Biology 7

organization into life-like assemblies (8) are certainly fascinating,
enough so to consider the general approach of explaining cells in
terms of molecules, with the help of the systems biology meth-
ods.

 Complexity of explanation of cells in terms of molecules is
widely acknowledged by biologists and their engineer and phys-
icist colleagues. The latter especially are familiar with the prob-
lem of carefully selecting parts in terms of which to explain the
whole. A popular quip among physicists is “modeling bulldozers
with quarks,” i.e. subsubatomic particles – meaning an absurdly
bad methodological choice, which would result in clearly insur-
mountable difficulties of complexity. Instead, it is of course recom-
mended to explain the workings of a bulldozer in terms of its
obvious functional parts: wheels, gears, levers. Modern biological
knowledge suggests that biomolecules, proteins especially, are such
functional units within the cells. The analogy appears powerful
enough to motivate applications of the systems analysis, proven to
be adequate for the bulldozers and gears. The greater complexity
of the cell as a biomolecular system is seen only as a worthy chal-
lenge, not the absurd one from the quip about quarks. Indeed, the
absurdity was meant to reside in the number of parts, and it seems
clear that there are “more quarks” in a bulldozer than there are
biomolecules in a cell. The reader is invited to “do the math” using
the estimates he favors. We alluded in the beginning to the fact
that it is the number of different parts that challenges the scientific
method, whereas the count of identical parts can be of little con-
cern. There are perhaps only a few quark types, elementary particle
types, subatomic particle types, and atomic types in a bulldozer,
which matter is arranged rather uniformly into the relatively few
types of mechanical parts, such as the wheels, gears, and levers.
On the whole, there are very few different parts in a bulldozer,
even counting quarks, compared with the most conservative esti-
mates of the number of chemically distinct polypeptides alone in
a human cell. From the systems standpoint, then, it should appear
more challenging to attempt explaining cells in terms of their con-
stituent biomolecules than bulldozers from quarks.

 The appealingly straightforward approach of explaining
cells in terms of molecules, with the help of the systems biol-
ogy methods, is thus faced with a complexity problem of pro-
portions that are considered plainly insurmountable in another
context. Our analysis was based, however, on the strict chemi-
cal definition of the component unit, such as the polypeptide
chain of unique sequence. In modern biology, this is rarely the
definition of a protein as the functional unit. Rather, proteins
are identified by their function itself. As was noted early by
Albrecht-Buehler (9) , referring to a biomolecular species in
the modern molecular-biological discourse almost never means
referring to any of its actual physical properties. The chemical

8 Maly

structure, to a degree, is still part of the definition – for exam-
ple, chemically distinct entities with the same function may be
recognized as separate isoenzymes. The multisubunit nature
of the typical protein of molecular cell biology, its variability
arising from existence of isoforms of each component, and the
extreme variability of posttranslational modifications may also
at times be acknowledged. However , the actual usage of the
term protein as a unit of cell-biological explanation is hardly
encumbered by these complications. It is even unimportant in
the modern usage of “protein,” which exact polypeptide subu-
nits it is meant to include, and which are its auxiliary adap-
tors, etc. Molecular motor dynein is one well-known example
of this methodologically powerful definition of a “protein,”
which has traded structural clarity for functional one. From
the systems standpoint, this has the potential of reducing com-
plexity enormously and making the task of explaining cells in
terms of the so-defined “molecules” feasible again.

 However, in a certain alarming sense, some of us may find
that our subject has left with the complexity, for functions are
not things. Yes, useful reasoning about cells in terms of the func-
tionally defined “molecules” is possible. Yet this activity is very
different from the straightforward (if impossible) explanation of
cells from the actual, chemically-defined molecules. Taking a less
“objectivist” approach, we may find explanation of the system in
terms of functions of its parts, even without any attempt to oth-
erwise define the parts, acceptable and perhaps even more effi-
cient than explanation in terms of any material parts. Explanation
in terms of functions is appealing logically, because in the logical
framework, we would expect to be able to proceed from assum-
ing the known functions of the parts. In the situation of any natu-
ral-scientific investigation, however, the elementary functions are
always more or less unknown. Is this fact a minor annoyance that
ought not to stand in the way of the straightforward research
strategy, or should it affect our methodological outlook? Shrager
 (10) suggests that it should, because functions that we assign
to the (biomolecular) parts depend, in the actual research prac-
tice, on the explanation that we are constructing for the system.
Should tautology slip in through this way of defining the parts in
terms of which to study the system, no ordinary amount of objec-
tive experimentation may be able to remove it. At the very least,
this dependence of the parts on the whole – introduced entirely
by the investigator! – means that the investigation and explana-
tion are no longer from the parts to the whole – which, it might
appear, was our intended goal and method. Let us abstract now
from the problematic use of functionally-defined biomolecules
as system parts, and discuss other ways in which the bottom-up
character of the explanation can be degraded.

 Introduction: A Practical Guide to the Systems Approach in Biology 9

 In most realistic systems analyses, some of the model elements
are not strictly internal to the system. Mathematically, they are
boundary conditions or other types of constraints. Biologically,
they account for actual physical boundaries to the motion of the
truly internal system components, for the fact that something out-
side the metabolic system under study limits the availability of a
nutrient, and so on. As noted by Bradley (11) , in reality there are
no external constraints because there are no real boundaries of the
system: what constitutes the system is the investigator’s choice.
It does not present any insurmountable logical or mathematical
problem to delimit the system arbitrarily and take into account
the external constraints on it that will correspond to the particular
chosen division between the interior and exterior of the system.
How useful or, alternatively, misleading, the use of external con-
straints will be, will, however, depend on such soft matter as how
well circumscribed the system is in reality – which in the context of
the natural-scientific investigation is unknown. If the system deals
with reaction and diffusion of intracellular molecules, it is rela-
tively reasonable to impose boundary conditions on their fluxes to
account for the bounding nature of the cell membrane (for exam-
ple, no-flux boundary conditions, to describe impenetrability). In
contrast, if we concern ourselves with the molecular dynamics of
components of a lipid raft within the cell membrane, it is com-
paratively difficult to constrain their motion in a way preserving
much of the bottom-up predictive power of our model, because
the lipid raft perhaps “imposes constraints” on the membrane it
is in about equally with the membrane imposing constraints on
it – as observed in his contemporary context by Bradley (11) . Sys-
tem analyses that do not explicitly make reference to any exter-
nal constraints are methodologically suspect too, for they should
appear to have taken the arbitrary delimitation of the system liter-
ally, as the system being isolated, which should usually be quite
unrealistic in the biological context. Thus, the decision to invoke
certain external constraints on the system in the explanation or
modeling should strike a consciously determined balance between
how “realistic” and how “bottom-up” the investigator wants his
model or explanation to be.

 There is no doubt at least that in reality, biomolecular com-
ponents of cells are under constraints of the cell structure. Harold
 (12) convincingly argues in the modern, molecular-centric con-
text that at least some of the basic structural features of cells, such
as the cell boundary itself, are not in any useful sense fully deriva-
tive from the component molecules, even though they of course
consist of them. Such basic structures are templates for their own
propagation between cell generations, which they achieve by
directing collective organization of their molecular components.
This fact should favor the methodological choice of realistic over
“bottom-up” system models in the above dilemma. The mod-
ern cell and systems biology is nonetheless faced with an enor-

3.2. External
Constraints and
Bottom-Up
Explanation

10 Maly

mous number of molecular species, which have been chemically
identified and whose collective organization would need to be
directed in this fashion by the cell structures. In comparison to
this number, there are few cell structures, which have been iden-
tified by the more traditional cell biology, and which may act as
the organizers. We should not compare apples to oranges; yet,
logic notwithstanding, in the actual research practice, the sheer
numerical discrepancy of our knowledge of the cell structures and
of their molecular components appears to play a role in methodo-
logical decisions. This discrepancy seems to suggest that there is
complexity in the cell, which stems from the number of chemi-
cally distinct molecular components, and which should give rise
to cellular behavior that will become known to us when we derive
it from the molecular interactions that must be taking place. It is
far less often that the same discrepancy is seen as an indication that
there may be relative simplicity in the cell and its behavior, which
will become known to us better when we study them directly
further. Whether one ascends from the molecular chaos and expects
it to self-organize on the cellular level, or descends from the
exquisitely structured organism body (multi or unicellular) and
expects the functional structures to continue into the subcellular
domain, depends on one’s scientific background. In leading edu-
cation systems today, future researchers majoring in nonbiological
quantitative disciplines receive no exposure to organismal biology,
while biology curricula lack both the quantitative component and
a rigorous organism-level component. It should then come as
no surprise, and be seen as a circumstance largely external to the
 scientific development proper that in the realm of modern quantita-
tive biology research there is a severe imbalance of representation
of the above two views on what we should be looking for on the
subcellular level. Correcting this by broadening the curricula or by
recognizing boundaries of individual expertise in interdisciplinary
areas will be about equally difficult.

 Bottom-up explanation may retain its desirability even in the
face of the trade-off with the model realism, when the incorpora-
tion of the system environment and of the external constraints
has been carefully considered. However, it has long been known
that in the systems-biological context in particular, properties of
the parts differ within the system from their properties in isola-
tion (13) . Thus, even if we studiously avoid defining parts by
their function in the system, any fully successful investigation still
would not be able to proceed from the bottom up – by first stud-
ying the properties of the parts and then deducing from them the
system behavior. The statement that the properties of parts in the
system are different from their properties in isolation may sound
like lazy logic, something coming from a lack of effort to prop-
erly define the parts, the properties, and the system. The author
concedes that it may be possible to define these things so that this

 Introduction: A Practical Guide to the Systems Approach in Biology 11

dictum does not hold logically, and the properties of the parts
are the same in the system as in isolation. This kind of logical
dissection should be possible given a complete knowledge of the
system. In a real study, the (complete) knowledge of the system
is not available, and is exactly what we are after. Therefore, from
the standpoint of the research practice in natural science, parts
will indeed have different properties in the system than in isola-
tion and, as observed by Yates et al., this circumstance should be
of special concern to the systems biologist (13) .

 Explanation from the bottom up is, nonetheless, central to
our very notion of understanding a system. We must conclude
that the way to explain (formulate and convey understanding)
must, in systems biology in particular, be different from the way
to study (obtain new understanding). All problems with the bot-
tom-up approach then seem to arise merely from substantiation
of the explanatory deduction – a fallacy that is the mirror image
of teleology. Designing the model and the entire study to explain
cellular functions in the organism, selecting the system parts based
explicitly on their function in the system and irrespective of their
molecular or nonmolecular nature, and eventually presenting the
obtained understanding of the system functions in the deductive
manner may not have the straightforward appeal, yet applying
the systems method consciously in this fashion should not suffer
from the discussed difficulties.

 We have discussed some general methodological choices per-
taining to the systems method. The most fundamental question,
however, is whether to apply the systems method at all. The pur-
pose of this book is to help a biomedical investigator to give an
affirmative answer to this question. Can, however, any lesson be
derived from the fact that the answer has been, for great many,
in the negative for a long time? One comparatively comfortable
explanation of this fact posits that the reason why experimental-
ists rejected modeling in the past was the repulsive “spherical cells
(cows)” that theorists of the time liked to play with. (The quip
recurred at a seminal, historically recent meeting, 14). Although
the author has no first-hand knowledge of why most experi-
mentalists shunned biological theory, he can find no evidence
in the literature of the prevalence of the “spherical” theories. In
fact, theories characteristic of the 1960s and 1970s appear rather
exquisite by our modern standards.

 Theories of that era often were not theories of biological systems
modeled as consisting of interacting molecules. Instead they might

4. Outlook

12 Maly

deal with physiological processes such as material fluxes through
the kidney (13) , or the respiratory cycle and its modulation (15) .
Their conceptual depth and quantitative connection to the physi-
ological experiments did not suffer at all from the nonmolecular
nature of both the theory and experiment. At the same time, theories
that dealt with metabolite-mediated interactions of enzymes in
the elaborate framework of classical biochemistry (16) were laying
the foundation for much of today’s work, and the kinetic theory
of the cytoskeletal structures (17) was taking essentially the form
these models have now.

 The new science of molecular cell biology took off on its
own, leaving the rather exquisitely measured and modeled world
of organismal physiology (and, arguably, of metabolism and self-
assembly) behind. Why did the system modelers not catch up? It
should be only understandable if the detailed physiological and
biochemical knowledge of the time looked far more attractive as
an object to model. Qualitative and fragmentary to the extreme in
the individual examples sought out to support the bold, system-
denying interpretation of the “one gene, one protein, one func-
tion” paradigm, the results of this new type of biological studies
could not be expected to attract systems thinkers. A student of
molecular biology in the 1990s will remember how exceptions
to its intentionally fragmentary nature, such as the far earlier lac
operon study, stood out in the course material as if they were some
alien science. Should we call this intervening period the Dark Ages
for systems biology? After all, it did appear to be merely a lull fol-
lowing a period when the quantitative systems method enjoyed an
appropriate place among the research tools of biology.

 The natural shift of interest to the new, molecular cell biol-
ogy circa 1980 did not have to lead to the systems method being
relegated to “crank science,” if remembered at all, by an entire
scientific generation engaged in the most active subfield of biol-
ogy. It may be argued that this only happened because in this case
the normal, productive shift of the mainstream interest coincided
with what Wiley called destruction of “biodiversity” in biological
research itself (18) : A major, near-monopolist funding source
on which much of biology had come to depend happened to be
shrinking, and an understandable decision was to concentrate sup-
port on what was new and therefore most promising. In a science
that benefits from its status of a popular occupation, such events
and decisions may have a stronger effect than the natural evolu-
tion of scientific interests: They may rescue the science from stag-
nation, or they may nip development of a healthy methodology.

 Is systems biology in its Renaissance? Molecular cell biology
and molecular genetics can be said to have matured in the above
sense, making some of the most active subfields in current biol-
ogy receptive as well as amenable to the systems method again.
The new generation of systems biologists is determined to ask

 Introduction: A Practical Guide to the Systems Approach in Biology 13

truly systems-centric questions about biological objects and to
conquer complexity through the use of computers and interdisci-
plinary collaboration. A wider attribution of these aspirations to
our scientific predecessors (1, 19) will probably come. Which of
their intellectual threads will be picked up, and especially whether
the productive aspects of the “pre-molecular” worldview will be
rediscovered by postgenomic biology, remains to be seen. It will
also be a matter of individual decisions how much impact the fac-
tors external to science will have on the development of biologi-
cal methodology in our time. The subjective retrospection and
methodological outlook that were given above together argue
that it is imperative that the results of our current efforts become
known to the enthusiastic systems biologists of 2050: Freed from
dogmatic constraints, the systems approach does not promise a
quick and sure solution to the currently recognized problems as
much as it opens for exploration a particularly challenging face of
a diversity of biological phenomena.

 References

 1 . Mesarović , M. D. (1968) Systems theory and
biology–view of a theoretician, in Systems Theory
and Biology (Mesarović , M. D. , ed.) Springer ,
 New York , pp. 59 – 87 .

 2 . Kitano , H. (2002) Systems biology: A brief
overview . Science 295 , 1662 – 1664 .

 3 . Hood , L. , Heath , J. R. , Phelps , M. E. , and Lin ,
 B. (2004) Systems biology and new technolo-
gies enable predictive and preventative medi-
cine . Science 306 , 640 – 643 .

 4 . Westerhoff , H. V. and Alberghina , L. (2005)
 Systems biology: did we know it all along? in
Systems Biology: Definitions and Perspectives
(Alberghina , L. and Westerhoff , H. V. , eds.)
 Springer , Berlin , pp. 3 – 9 .

 5 . Ideker , T. , Winslow , L. R. , and Lauffenburger ,
 D. A. (2006) Bioengineering and systems biol-
ogy . Ann. Biomed. Eng . 34 , 257 – 264 .

 6 . Garfinkel , D. (1980) Computer modeling,
complex biological systems, and their simplifi-
cations . Am. J. Physiol. 239 , Rl – R6 .

 7 . Miller , G. A. (1956) The magical number
seven, plus or minus two. Some limits on our
capacity for processing information . Psychol.
Rev . 63 , 81 – 97 .

 8 . Kirschner , M. , Gerhart , J. , and Mitchison , T.
 (2000) Molecular “vitalism” . Cell 100 , 79 – 88 .

 9 . Albrecht-Buehler , G. (1990) In defense of
“nonmolecular” cell biology . Int. Rev. Cytol .
 120 , 191 – 241 .

 10 . Shrager , J. (2003) The fiction of function .
 Bioinformatics 19 , 1934 – 1936 .

 11 . Bradley , D. F. (1968) Multilevel systems and
biology–view of a submolecular biologist, in Sys-
tems Theory and Biology (Mesarović , M. D. ,
ed.) Springer , New York , pp. 38 – 58 .

 12 . Harold , F. M. (2001) The Way of the Cell .
 Oxford , New York .

 13 . Yates , F. E. , Brennan , R. D. , Urquhart , J. ,
 Dallman , M. F. , Li , C. C. , and Halperin , W.
 (1968) A continuous system model of adreno-
cortical function, in Systems Theory and Biology
(Mesarović , M. D. , ed.) Springer , New York ,
pp. 141 – 184 .

 14 . Doyle , J. (2001) Computational biology: Beyond
the spherical cow . Nature 411 , 151 – 152 .

 15 . Yamamoto , W. S. and Walton , E. S. (1975)
 On the evolution of the physiological model .
 Annu. Rev. Biophys. Bioeng . 4 , 81 – 102 .

 16 . Heinrich , R. and Rapoport , T. A. (1974) A
linear steady-state treatment of enzymatic
chains. General properties, control and effec-
tor strength . Eur. J. Biochem . 42 , 89 – 95 .

 17 . Oosawa , F. and Asakura , S. (1975) Thermo-
dynamics of the Polymerization of Protein .
 Academic Press , New York .

 18 . Wiley , H. S. (2008) Think like a cockroach .
 The Scientist 22 , 29 .

 19 . Weaver , W. (1948) Science and complexity .
 Am. Scientist 36 , 536 .

 Chapter 2

 Computational Modeling of Biochemical Networks
Using COPASI

 Pedro Mendes , Stefan Hoops, Sven Sahle, Ralph Gauges,
Joseph Dada, and Ursula Kummer

 Summary

 Computational modeling and simulation of biochemical networks is at the core of systems biology and
this includes many types of analyses that can aid understanding of how these systems work. COPASI is
a generic software package for modeling and simulation of biochemical networks which provides many
of these analyses in convenient ways that do not require the user to program or to have deep knowl-
edge of the numerical algorithms. Here we provide a description of how these modeling techniques
can be applied to biochemical models using COPASI. The focus is both on practical aspects of software
usage as well as on the utility of these analyses in aiding biological understanding. Practical examples
are described for steady-state and time-course simulations, stoichiometric analyses, parameter scanning,
sensitivity analysis (including metabolic control analysis), global optimization, parameter estimation, and
stochastic simulation. The examples used are all published models that are available in the BioModels
database in SBML format.

 Key words: Simulation , Modeling , Systems biology , Optimization , Stochastic simulation , Sensitivity
analysis , Parameter estimation , SBML , Stoichiometric analysis .

 Biochemical networks are intrinsically complex, not only because
they encompass a large number of interacting components, but
also because those interactions are nonlinear. Like many other
nonlinear phenomena in nature, their behavior is often unintuitive
and thus quantitative models are needed to describe and under-
stand their function. While the concept of biochemical networks
arose from the reductionist process of biochemistry, where the
focus was on studying isolated enzymatic reactions, it is now better

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_2

17

18 Mendes et al.

understood in the framework of systems biology , where the focus is
on the behavior of the whole system, or at least several reactions,
and particularly on what results from the interactions of its parts.
Computational modeling is thus a technique of systems biology
as important as its experimental counterparts. This chapter covers
the definition and analysis of computational models of biochemi-
cal networks using the popular software COPASI. It provides
essentially a practical view of the utility of several computational
analyses, using established models as examples. All software and
models discussed here are freely available on the Internet.

 From a modeling perspective, biochemical networks are
a set of chemical species that can be converted into each other
through chemical reactions. The focus of biochemical network
models is usually on the levels of the chemical species and this
usually requires explicit mathematical expressions for the velocity
at which the reactions proceed. The most popular representation
for these models uses ordinary differential equations (ODEs) to
describe the change in the concentrations of the chemical spe-
cies. Another representation that is gaining popularity in systems
biology uses probability distribution functions to estimate when
single reaction events happen and therefore track the number
of particles of the chemical species. As a general rule, the lat-
ter approach, known as stochastic simulation, is preferred where
the numbers of particles of a chemical species is small; the ODE
approach is required when the number of particles is large because
the stochastic approach would be computationally intractable.

 Each chemical species in the network is represented by an ODE
that describes the rate of change of that species along time. The
ODE is composed by an algebraic sum of terms that represent
the rates of the reactions that affect the chemical species. For a
chemical species X :

 all reactions

d

d
= ⋅∑ ,i i

i

X
s v

t
(1)

 where s i is a stoichiometry coefficient that is the number of mol-
ecules of X consumed or produced in one cycle of reaction i , with
a positive sign if it is produced or negative if consumed, and v i
is the velocity of reaction i . Obviously, for reactions that do not
produce or consume X the corresponding s i is zero.

 The velocity of each reaction is described by a rate law that
depends on the concentrations of the reaction substrates, prod-
ucts, and modifiers (see Note 1). Rate laws are the subject of
chemical and enzyme kinetics and are generally nonlinear (except
the case of first-order mass action kinetics). Often these rate laws
are saturable functions, i.e., have finite limits for high concentrations
of substrates, products, and also for many modifiers (see Note 2).

1.1. ODE-Based
Models

 Computational Modeling of Biochemical Networks Using COPASI 19

An example of a rate law is depicted in Eq. 2 , which represents a
rate law of reaction with one substrate (S), one product (P), and
a competitive inhibitor (I)

⎛ ⎞⋅
−⎜ ⎟

⎝ ⎠
cat

eq
.

1

mS

mS mP I

E k P
S

K K
v =

S P I
+ + +

K K K

(2)

 In Eq. 2 , the limiting rate of reaction (“ V max ”) is directly
represented as a product of the concentration of the enzyme and
the turnover number (E · k cat). It is usually good practice to make
this product explicit, since it is then possible to have the enzyme
concentration be a variable of the model too. This is important
if the model includes protein synthesis, degradation, or protein–
protein interactions.

 These ODE models can be used to simulate the dynamics of
the concentrations of the chemical species along time given their
initial values. This is achieved by numerical integration of the
system of ODE which can be carried out with well-established
algorithms (for example (1, 2) but see Note 3). It is also useful
to find steady states of the system, which are conditions when
the concentrations of the chemical species do not change. If the
steady state is such that the fluxes are also zero, then the system
is in chemical equilibrium, otherwise the fluxes are finite mean-
ing that the concentrations do not change because the rates of
synthesis balance with the rates of degradation for every chemical
species. Steady states can be found using the Newton–Raphson
method which finds the roots of the right-hand side of the ODE
(which must be zero by the definition of steady state). Alterna-
tively steady states can also be found by integration of the ODE.
COPASI can use either one of these strategies or a combination
of the two (see Note 4).

 Other model analyses can be carried out but a description of
their theory in any detail is beyond the scope of this article. Some
of them are described at a high level in Subheading 3 , whenever
they are used.

 When analyzing a biochemical system which contains small num-
bers of particles of each reactant, the assumption of continuous
concentrations fails and consequently the underlying basis of the
ODE representation also fails. Moreover, in such conditions, sto-
chastic effects become more pronounced and may lead to dynam-
ics that differ significantly from those that would result from the
ODE approach. In the conditions described above, one should
then use a stochastic discrete approach for the simulation of the
system dynamics.

1.2. Stochastic Models

20 Mendes et al.

 Stochastic models represent the number of particles of each
chemical species and use a reaction probability density function
(PDF) to describe the timing of reaction events. Gillespie devel-
oped a Monte Carlo simulation algorithm, known as the stochastic
simulation algorithm (SSA) first reaction method, that simulates
the stochastic dynamics of the system by sampling this PDF
 (3, 4) . The theoretical derivation of this method is too involved
to be described here, and the reader is directed to the original
publications (3, 4) or a recent review (5) . It is important to stress
that one simulation run according to this approach is only one
realization of a probabilistic representation, and thus provides
limited amount of information on its own. In the stochastic for-
malism, it is very important that simulations are repeated for a
sufficient number of times in order to reveal the entire range of
behavior presented by such a system (i.e., to estimate a distribu-
tion for each chemical species and its dynamic evolution).

 The software COPASI (6) will be used throughout this chapter.
COPASI is freely available for noncommercial use (see Note 5) and
executable versions are provided for the most popular operating
systems: Microsoft Windows, Apple Mac OS X, Linux, and Sun
Solaris. The source code of COPASI is also available under an open
source license and so it can be compiled for other architectures.

 New versions of COPASI are released often and there is a dis-
tinction between stable and development versions. Development
versions are those where new features are introduced; stable ver-
sions have no new features and differ from the previous devel-
opment release only by having bug fixes. While testing is more
intense in stable releases, the reader is encouraged to download
the latest development release. Irrespective of being stable or
development releases, COPASI releases are labeled with a build
number , which is sequential (see also Note 6).

 Instructions for installation of COPASI depend on the operat-
ing system version, but all start with downloading the appropri-
ate binary from the project’s Web page http://www.copasi.org.
Choose the download non-commercial option from the site’s menu
and then select the appropriate version for your platform. Down-
load will proceed after selecting the nearest server and accepting
the license terms. Once the file has finished downloading, the
installation instructions are different for each platform.

 For Microsoft Windows, the downloaded file, Copasi-XX-
WIN32.msi, is an installation program which you should run by

2. Materials

2.1. Copasi

2.1.1. Installing COPASI

 Computational Modeling of Biochemical Networks Using COPASI 21

double clicking it. For Apple OS X, the downloaded file, Copasi-
XX-Darwin.dmg, is a disk image containing a folder named
“copasi.” You can either start COPASI directly from the disk
image or drop the folder into your applications folder and start
it from there.

 Finally, for Linux or Solaris, you need to unpack the archive
where you want to install it (it can be in a system-wide loca-
tion like /usr/local/copasi, or in a user home, such as ~ /copasi).
For optimal performance you should set the environment vari-
able COPASIDIR to /usr/local/copasi (or wherever you have
installed it).

 “BioModels” is a database that archives biochemical models
that have previously been published in peer-reviewed journals
 (7) . Some examples in this chapter use models that are available
there and so to avoid entering those models manually it is best to
download them from BioModels.

 Models in this database are primarily distinguished by their
identifier, which is in the form BIOMDxxxxxxxxxx where the x’s
represent a number. To download a specific model, point your
Web browser to http://www.ebi.ac.uk/biomodels/, select the
 search option, type the model ID in the search box, and then click
on the link for that model’s page (see Note 7). Once in the mod-
el’s page you can examine the model’s characteristics, including
the citation of the original publication, who was the author of the
model, etc. To download the model in a format that COPASI (and
most other systems biology software) can read select the link enti-
tled SBML L2 V1 (see Note 8) at the very top of the page, and
download it to your local computer (see Note 9). This will be a file
entitled BIOMDxxxxxxxxxx.xml which COPASI can import.

 The COPASI user interface is composed of two main areas: a
hierarchical organization of functions on the left (a tree), and a
larger area on the right which contains the controls related with
the function selected on the tree. All features related with model
specification reside on the first main entry of the tree, appropri-
ately named Model. When this entry is selected on the left, the
right displays the basic information about the model, such as its
name, the units used, and a large field for comments (see Note 10
and 11). Expanding the Model subtree reveals two other entries:
 Biochemical and Mathematical , these are different views of the
model. Specification of a new model is done in the Biochemical
part as the other is only for examining equations and matrices.

2.2. BioModels
Database

3. Methods

3.1. Model
Construction and
Basic Simulation

3.1.1. Model Specification

22 Mendes et al.

 The most practical way to enter a model is to start by adding
its component reactions. Select Reactions and then double click
the first empty row of the table on the right. This will change to
display the detailed reaction window. Enter a name for the reac-
tion and type its chemical equation, for example “NAD + ethanol
= acetaldehyde + NADH” (see Note 12). The equals sign has
quite a specific meaning, not only does it separate substrates from
products, but it also means the reaction is considered kinetically
reversible. If you want the reaction to be irreversible then you
should use instead the combination of characters “->” (dash and
 right angle bracket).

 After entering the reaction equation, you should select
the appropriate rate law for this reaction. COPASI only allows
selecting rate laws that match the characteristics of the reaction
entered: same number of substrates and products and reversibil-
ity. You can chose a rate law from the menu; if the appropriate
one is not available, then you can add one yourself by pressing
the New Rate Law button. Type the rate law in the box, for
example: V / K *(A * B − P * Q)/(K + A + B + P + Q). Next select
the appropriate type of each symbol in the equation (see Note
 13). You should also mark the reaction as reversible or irrevers-
ible (see Note 14). Figure 1 shows this window when entering
the above rate law. When you finish press Commit and go back
to Model Reactions where you can now select this rate law for the
reaction (assuming it was reversible with two substrates and two

 Fig. 1. Definition of a kinetic rate law .

 Computational Modeling of Biochemical Networks Using COPASI 23

products). At that point you will be able to enter the values of the
parameters (in this case V and K).

 You can define more compartments and change their sizes (vol-
umes) on the entry named Compartments. By default there is always
a compartment called simply “compartment” of unit volume. You
can define any number of compartments of any positive size.

 After entering all reactions you can examine the chemical
species by selecting Species on the tree which will show a sum-
mary table with all species included in the reactions. You can
change their initial concentrations, set their compartment and
change their type. The species type determines how its concen-
tration (actually its particle number) is calculated in the models:
it can be set by reactions , which means that its concentration will
be determined by the ODE generated from the reactions or by
the SSA; it can be fixed , meaning that it becomes a parameter of
the model; set by assignments , which are algebraic expressions
(see below); or set by arbitrary ODE (i.e., entered directly by the
user). You can add extra species directly at the end of the table. If
you double click any row, you will then see a more detailed page
for that species alone, which additionally lists all reactions where
the species is involved in.

 The entry marked Global Quantities in the tree is to add
explicit mathematical expressions that are to be calculated in the
model (unlike the ODE that are defined implicitly from the reac-
tion stoichiometry and rate laws). There are three types of global
quantity (1) fixed , which are arbitrary constants; (2) assignment ,
which are new variables that have their value calculated by alge-
braic expressions; or (3) ODEs , which are new variables that are
determined by an explicit ODE. These global quantities are use-
ful to expand the model to include features that are not directly
linked with the biochemistry. As an example, suppose you would
want to calculate the ratio of NADH/(NAD + NADH) at all
times in your model, either because you just want to monitor it,
or maybe you want to make it affect something else. Then you
should double click the list of global quantities to enter a detailed
form. There you should enter its name, select the type as assign-
ment , then enter the expression in the larger box. Note, however,
that you are not allowed to type “NADH” or “NAD,” since these
are variables of the model (species) and you will instead have to
select them from a dialog box: press the small button that has
the COPASI logo (see Note 15), then select Species , Transient
Concentrations , and select “[NADH](t)”; the division sign and
the brackets are typed directly. ODEs are set the same way, except
that the expression is now the right-hand side of the differential
equation that will be integrated in the model simulations.

 The popular SBML format is used as a means of sharing models
between systems biology software, so an important feature of

3.1.2. Importing and
Exporting SBML

24 Mendes et al.

COPASI is that it can indeed read and write models in this format.
However, it is important to realize that COPASI can represent a
small number of features that are not possible to be specified in
SBML and those will be lost on export to SBML. On the other
hand there are features of SBML that are not yet implemented
in COPASI – when loading files with such features a warning is
produced such that you are aware of this fact. When importing
SBML there are also often warnings about issues with the files
that are either not like the specifications require, or because they
follow bad practices. In any case, even with warnings, COPASI
almost always succeeds in importing the model if not totally, at
least partially.

 Once a new model has been entered or loaded it is ready to be
used for simulation. There are two basic types of simulation: Time
Course and Steady State which are entries under the Tasks branch.
Let us use model number 10 of BioModels, a MAP kinase model
 (8) , to illustrate these basic tasks.

 To run time course, select the appropriate entry on the tree on
the left and the time-course control window will appear on the right.
You have to decide for how long you want to run the time course
(in model time, not real time) and enter that value in the box
labeled Duration (enter 1,000 for this example); you also need
to decide how many Intervals in the time course you will want to
sample, or alternatively the Interval size (when you set one, the
other one updates automatically). Below are several control vari-
ables of the numerical methods, which are outside the scope of this
article. Simply press the Run button to carry out the simulation,
which will take place very fast. Expand the Time Course entry on
the tree to reveal Results and select it. This displays a table with
the numerical values of the time series, which can be saved to a file
(button Save data to file).

 It is also very useful to visualize the results of a time series
simulation in a plot. To create it press the button Output Assist-
ant (located at the level of Time Course) and select the first line
entitled “Concentrations, Volumes, and Global Quantity Values,”
then press the button Create! . This creates a plot definition that
will plot all variables, however, the plot is constructed while the
simulation runs, and thus you must run it again to make the plot
appear. The legend of the plot is composed of buttons, one for
each curve, and by pressing them you select/deselect that curve
from being displayed.

 Another important task is the calculation of a steady state of the
model. Select the Steady State entry under Tasks. The control
variables of the steady state deserve some attention, mainly the
 Steady-state resolution , which is the smallest value of a change
in species concentration that is the smallest distinguishable from

3.1.3. Time Course

3.1.4. Steady-State
Simulations

 Computational Modeling of Biochemical Networks Using COPASI 25

zero. This value will be used to decide when to stop iterations, but
also to recognize a steady state. Smaller values of this parameter
lead to more accurate solutions. Another important set of control
variables are named Use Newton, Use Integration, Use Back Inte-
gration , which are related to the strategy used to find the steady
state. These variables take the values 1 or 0 meaning to use them
or not, respectively. The Newton method is a solver for nonlin-
ear algebraic equations which is very fast. However, the Newton
method is not guaranteed to converge, therefore the integration
method can be used to help. Integration is the method used to
calculate a time course – this method attempts to find a steady
state as it goes along a time course. The back-integration method
is a fail safe device that is used when the other two cannot con-
verge and may be able to find an unstable steady state. Pressing
the Run button will trigger all calculations. The results are also in
a branch of the tree, below the Steady state and can also be saved
to a file like the time course results.

 One of the most frequent aims of using models to study bio-
chemical networks is to find out how certain parameters affect
several aspects of the system. Thus it is likely that one needs to
carry out several steady-state and/or time-course simulations at
different values of the parameters of interest. COPASI supports
this activity by providing a flexible scheme for changing parame-
ter values with associated simulations, which is termed Parameter
Scan and is under the tree branch Multiple Task (see Note 16).
The Parameter scan window (Fig. 2) is an interface that allows
us to specify a series of hierarchical changes in model parameters
which culminate with the execution of a task (e.g., time-course or
a steady-state simulation).

 We will use here the model of the branch point of threonine/
methionine biosynthesis of Curien et al. (9) , which is number 68
in BioModels. This is a very simple model of the branch point
with only one variable chemical species that has one input and
two output fluxes. Curien et al. study the effect of the Cysteine
(Cys) and S-Adenosylmethionine (AdoMet) on the partition of
the output fluxes. One issue that you may wonder about is that
while AdoMet is a chemical species, the authors of the SBML
file decided to represent it as a constant in the kinetic rate law of
the enzyme threonine synthase (TS). While this is not incorrect,
it would have been clearer to define it as a chemical species with
fixed concentration.

 We will first investigate the effect of AdoMet on the partition
of fluxes. In order to be able to visualize the results, we must first
define a plot where the flux of the TS and CGS are plotted as a
function of AdoMet. Plots are defined under the main hierarchy
 Output and then under Plots . A list of plots is displayed (cur-
rently empty) and there you should double click the last empty

3.1.5. Scanning and
Sampling Parameters

26 Mendes et al.

row which will generate the plot definition window. There you
should define the name of the plot (“AdoMet effect on Fluxes”
is suggested) and then create a new curve (press New curve)
where you select the parameter AdoMet in the X -axis (under
 Reactions-Reaction Parameters-Threonine synthase-AdoMet) and
flux(Cystathionine gamma-synthase) for Y -axis (under Reac-
tions-Concentration fluxes-flux (Cystathionine gamma-synthase)).
Because you want to plot both fluxes in the same plot, you should
then create a new curve again and select the same item for the
 X -axis, but then flux (Threonine Synthase) for the Y -axis. At this
point each curve in the plot is represented under a different tab
which have long titles; it is advisable to make the titles of each
curve smaller strings for esthetic reasons, rename the first one to
J(CGS) and the second to J(TS). The plot definition is ready; you
can go back to Parameter Scan.

 The task to be carried out in this case is Steady state and
we want to scan the parameter AdoMet, so in New scan item at
the top select Parameter scan and then press… Create! A new
entry will appear in the stack above the steady-state task. There
you need to select the parameter to change, press the button

 Fig. 2. Parameter scan window. The structure on the center right is a stack of operations that are carried out in order.
Thus the example shown is for changing the initial concentration of Cysteine between 0.3 and 300 in five intervals
spaced logarithmically, then for each of those change the parameter AdoMet between 0 and 100 in 50 equally spaced
intervals, and finally to run a steady-state calculation for each value of the above .

 Computational Modeling of Biochemical Networks Using COPASI 27

marked “…” and select Reactions, Reaction Parameters, Threo-
nine synthase, AdoMet. The minimum and maximum values that
this parameter will be changed also have to be entered, for exam-
ple 0 and 100 (as in Fig. 2 of ref. 9) , and finally the number
of intervals desired, a value of 50 will produce a smooth curve.
At the bottom of the stack, in the Tasks slot (see Fig. 2), you
should disable the check output from subtask since we only want
the final estimate of the steady-state calculation (see Note 17). At
this point you can press Run and see the result appear as a plot
in a new window (Fig. 3). The results plotted can be saved by
selecting the menu entry Save data . You can also switch on or off
each of the curves, simply by pressing its entry in the legend. This
plot shows that increasing values of AdoMet push the flux toward
the CGS reaction, as shown in the original (9) .

 Let us now ask whether the behavior changes with differ-
ent values of Cys. To do this we simply add this model entity
to the scan and therefore perform a two-dimensional scan. In
the Parameter Scan window, add another scan item by press-
ing … Create! once again. A new slot appears where you need to
select Species, Initial concentrations, [Cysteine](t = 0) . Set it to
vary between 0.3 and 300 with five intervals and tick logarithmic
scan (see Note 18). You can also move this slot to the top by
pressing the up arrow on the left (see Note 19). Press Run again,
and now you will see several curves for each of the fluxes plotted.
Each of them is for different values of Cys. As you can see, Cys
acts by affecting the initial flux partition and also by moving the
value of AdoMet where both fluxes are equal.

 Fig. 3. Results of a two-dimensional parameter scan .

28 Mendes et al.

 Finally, we will see how to do a random sample, rather than a
scan. We shall probe 10,000 random values of the two parameters
in the same range. For this remove the two slots of AdoMet and
Cys by pressing the button marked X. Now select Repeat in the
 New scan item at the top and create a new slot; set the number of
iterations to 10,000. Next select Random distribution in the New
scan item and select the parameter AdoMet as above, and set it to
the same limits as above. Repeat the same for Cys, also with the
same limits. You can have both sampled from a uniform distribu-
tion. Note that the stack of operations should be read from the
top and it means: repeat 10,000 times a random value of AdoMet
and a random value of Cys and calculate the steady state. To visu-
alize these results it is best to just plot symbols and not connect
them with lines, so you have to go back to the plot definition and
change Type to symbols for each of the curves (it was lines). Go
back to Parameter Scan and press Run . The run now takes some
more time (there are 10,000 simulations, after all) and finally you
should obtain a plot as in Fig. 4 . Each point plotted represents the
steady-state flux for a pair of values of AdoMet and Cys. It is very
easy to add more parameters to this sampling, by adding more
slots associated with those parameters and moving it below the
 Repeat slot. It is even possible to combine a sequence of repeats
below scans below other repeats, etc. This feature of COPASI is a
very powerful means to program complex simulations.

 Fig. 4. Results of a two-dimensional parameter random sampling .

 Computational Modeling of Biochemical Networks Using COPASI 29

 While the analysis of the dynamics of biochemical models is seen
as the ultimate goal of these models, some properties of the model
reveal themselves even without considering the kinetics of the reac-
tions involved. These properties are sometimes known as struc-
tural properties because they depend only on the structure of the
network, or as stoichiometric properties because they depend only
on the stoichiometric coefficients of Eq. 1. COPASI provides two
 stoichiometric analyses (1) identification of elementary flux modes
 (10, 11) and (2) identification of mass conservation relations (12) .

 Elementary flux modes are the minimal subsets of reactions that
would still be able to maintain a steady state if isolated from the
rest of the network (10) . They are the basic components of flux
and any observable flux is a linear combination of these. They can
also be seen as “functions” that the network fulfills because they
represent parts of the network that could still operate even when
the rest of the network had been removed. They can be useful
to identify what functions would be lost by removing a specific
reaction from the network (e.g., by a gene knockout) and also
to calculate maximal yields of a certain end product that can be
obtained from some substrate (11) .

 Let us use a model of erythrocyte metabolism by Holzhütter
 (13) , which is model 70 in the BioModels database. Download
the corresponding SBML file and import it into COPASI as
described before. You can examine the model by inspecting the
various categories under the Model section, where you will find
that it is composed of 38 reactions. The Elementary Modes task
is under Tasks-Stoichiometry . To run this task simply press Run
button on the bottom left of the right pane as there are no other
choices to make. The table on the right pane should now be
filled and at the top there is an indication that the model can be
decomposed into 105 elementary modes. The table, depicted in
 Fig. 5 , lists each of the modes in detail. The first column indi-
cates whether the mode is reversible or irreversible (see Note 20);
the second column lists the reactions that compose the mode and
the third column lists the actual reaction equations. Note that
in the second column, the name of the reaction is preceded by a
number which is a multiplier for that flux, and if the number is
negative then the flux of that reaction goes in the reverse direc-
tion in this elementary mode. In the mode depicted in Fig. 5 ,
Glucose transport operates in the reverse direction (glucose is
exported) while Bisphosphoglycerate mutase operates in the
forward direction threefold faster than Glucose transport.

 Elementary flux modes can either link a source to a sink
(external substrates and products of the model) or be cyclic.
The overall chemical reaction of the mode depicted in Fig. 5
is 2*External Lactate + PRPP = 2*External Pyruvate + 3 Exter-
nal Phosphate + Glucose outside (see Note 21). This erythrocyte

3.2. Stoichiometric
Analyses

3.2.1. Elementary Flux
Modes

30 Mendes et al.

model also contains cyclic flux modes. In the list of 105 there is,
for example, a reversible mode composed of Phosphoglycerate
kinase, Bisphosphoglycerate mutase, Bisphosphoglycerate phos-
phatase, and ATPase. Cyclic modes have no net production or
consumption of any metabolite (thus they are sometimes called
 futile cycles).

 To save the results of the elementary mode analysis you first
need to set a report file: press the button labeled Report on the
bottom right, then press Browse and enter a filename for your
report in the desired folder. You will then have to press the Run
button again in order to create the report. The report is a tab-
delimited text file that contains a table with the same information
as displayed in the front-end. You can read this file with a plain
ASCII text editor, such as “wordpad” in Windows; you can also
import this file into a spreadsheet program like “Excel.”

 Mass conservation relations are algebraic sums of amounts of
chemical species that are constant in any state of the model. These
algebraic sums imply that the amounts of some chemical species
are constrained, such that one of them can be directly calculated
from the others using the algebraic expression. A special case of
mass conservation relations is when there is conservation of a
chemical moiety (see Note 22).

 Let us continue with the erythrocyte model, and examine
the mass conservation relations that it contains. The Mass Con-
servation task is also under Tasks-Stoichiometry and is also run by
pressing the Run button on the bottom left of the right pane.

3.2.2. Mass Conservation
Relations

 Fig. 5. Elementary flux modes .

 Computational Modeling of Biochemical Networks Using COPASI 31

The results of this analysis will appear in a new entry marked
 Results that appears below Mass Conservation (in the tree on the
left), which you have to select to inspect the results.

 The erythrocyte model has seven mass conservation relations
as shown in Fig. 6 . The results are listed in a table where the first
column identifies the chemical species that COPASI will calculate
from the mass conservation (the dependent species, see also Note
 23). The second column lists the total number of particles of
this conservation relation. The third column contains a button
labeled “…” which creates a new global quantity that mirrors the
total number of particles. Finally, the fourth column contains the
actual expression which is constant. In the erythrocyte model,
the first of these relations reads: “Protein2 bound NADPH”
+ NADPH + NADP − Protein1 + “Protein2 bound NADP” =
1.6862 × 10 19 . That means that adding the number of particles
of all the species with a positive sign and subtracting those with
a negative sign adds up to 1.6862 × 10 19 particles. This algebraic
expression is constant throughout any condition of this system,
except when the initial amounts of any of the chemical species
involved change (in which case the total would be different). In
particular, this expression is always true during any time course
and thus does not depend on the dynamics of the system. The
reader may recognize the second relation in Fig. 6 to be the con-
servation of the Adenine moiety, the third is conservation of Mg,
the fifth is conservation of Protein 1, the sixth is conservation of
the NAD moiety, and the seventh conservation of the glutath-
ione moiety. Together, relations 1 and 4 represent the conserva-
tion of the Protein 2 moiety (when summing the two, NADP,
NADPH, and Protein 1 cancel out, leaving just the Protein 2
forms). Together, relations 1, 4, and 5 represent the conservation
of the NADP moiety and also that its total is inversely related
with the total of the free protein forms (expressed by the result of
computing relation 1 − relation 4 + relation 5). This last complex

 Fig. 6. Mass conservation relations .

32 Mendes et al.

relation appears due to the fact that whenever the free forms of
the proteins react they always do it with NADPH or NADP – the
three moieties (NAD, Protein 1, and Protein 2) are intertwined.

 Note that there are other results of this task, which can be
inspected by selecting the tabs Stiochiometry , Link Matrix , and
 Reduced Stoichiometry . These are the matrices that are used to
calculate these conservation relations and are described in the
theoretical derivations of Reder (12) . To save all of the results of
this task, just press the Save data button on the top right corner,
which creates a tab-delimited ASCII file.

 As discussed in the context of parameter scans, it is frequently
desirable to investigate the behavior of a model systematically. In
addition, every model contains a number of parameters (kinetic
constants, initial concentrations, and so on) whose values are not
all known exactly. Changing the values of the parameters will of
course change the behavior of the model, so it is interesting to
find how much the model depends on parameters. Sensitivity
analysis describes how much does a specific parameter change the
behavior of the model. This is useful for several reasons:
 • In many cases the value of a parameter is unknown. For exam-

ple, while K m values of enzymes can be measured relatively
easily in vitro, often the enzyme concentrations in vivo are not
well known. In this situation, sensitivity analysis can tell us if it
is important to know a specific parameter value. If a parameter
is found not to affect the system very much, a rough guess for
its value may be sufficient. If, on the other hand, a parameter
influences the behavior of the model significantly, steps must
be taken to find out its value more accurately, either by execut-
ing more experiments or by literature searches.

 • Sometimes the aim of research is to change the behavior of
the system. Perhaps we want to increase the yield of some
biotechnological production process, or to find a drug that
inhibits a metabolic pathway. Sensitivity analysis can give hints
about which parameters should be changed to achieve a spe-
cific effect.

 • Robustness with respect to external influences is an important
property of biological systems. Living organisms need to be
able to function under a wide range of environmental condi-
tions. This means some biological processes need to be rather
insensitive to parameter changes. On the other hand an organ-
ism needs to react to its environment, so other processes need
to be very sensitive to external influences. Therefore robust-
ness (or the lack of robustness) is an interesting property of
biological systems, and sensitivity analysis is a way to deter-
mine this.

3.3. Sensitivity
Analyses

 Computational Modeling of Biochemical Networks Using COPASI 33

 One should note that sensitivities as they will be described
below are only able to provide a local description of robustness.
This means that its results are only valid for a given parameter
set (set of environmental conditions). If several parameters were
to change at the same time then the individual sensitivity coef-
ficients would also be expected to change. COPASI contains two
frameworks for doing sensitivity analysis: metabolic control anal-
ysis (MCA) and generic sensitivities.

 MCA is a concept developed by Kacser and Burns (14) and Hein-
rich and Rapoport (15) . Its most practical formulation deals only
with steady states (see Note 24) and provides means to quan-
tify how much the rates of the various reactions of a network
affect the concentrations and fluxes at the steady state. A deeper
description of the theory does not fit this text and the reader is
directed to specialized reviews and books (16– 19) .

 As an example we use a model of sucrose accumulation in
sugar cane (20) , model 23 in BioModels. After importing the
SBML file into COPASI select Tasks and Metabolic Control Anal-
ysis in the tree on the left (see Note 25). Then simply click the
 Run button on the right. The Results window then presents a
screen with three tabs labeled Elasticities (Fig. 7), Flux Control
Coefficients (Fig. 8), and Concentration Control Coefficients .

 The elasticity coefficients (or simply elasticities) quantify the
amount of change of a reaction rate with the change in concentration

3.3.1. Metabolic Control
Analysis

 Fig. 7. Display of elasticity coefficients. Note that the cells of the matrix are colored according to the magnitude of the
values, green for positive values and red for negative (colors not shown in this figure).

34 Mendes et al.

of a certain chemical species. The elasticities of all the reactions
with respect to all the species in the model are calculated by
COPASI and displayed in a table where the columns correspond
to the species and the rows to the reactions. Consider the line
labeled “(v8)” (Fig. 7): the numbers in this line describe how
the flux of reaction v8 (HexP + Fru = Suc + UDP) changes with
changes of the concentrations of the different species. Notice pos-
itive values for “HexP” and “Fru,” which are the substrates of the
reaction. This means an increase of 1% in Fructose concentration
would increase the speed of the reaction by 0.61% (see Note 26).
Correspondingly the elasticity with respect to the product (Suc)
is negative – an increase in product concentration would lead to a
lower flux. Another case, in line “(v4)” the negative value for Glc
indicates that glucose is an inhibitor for this reaction. An elastic-
ity equal to zero means that the metabolite concentration has no
influence on the reaction rate (see Note 27).

 The elasticities are properties strictly of a single reaction and
are independent of the rest of the system (the elasticity of reac-
tion A toward species B does not depend on reactions C, D, etc.).
The calculation of elasticities is carried out only from the kinetic
rate law of the respective reaction. Likewise, in an experiment the
elasticity could be measured in vitro using the purified enzyme,
so long as the concentrations of its substrates and products are set
to their physiological value (and the enzyme properties remain
the same after purification).

 Note that in COPASI all sensitivities (i.e., MCA and generic
sensitivities) can be displayed with either scaled or unscaled
values. The scaled values describe relative changes, e.g., a scaled
sensitivity of 0.5 means that if the parameter is increased by 10%
the target value will increase by 5% (0.5 times 10%). The unscaled
sensitivities describe absolute changes, e.g., an unscaled elasticity
of 0.5 could mean that increasing the substrate concentration by

 Fig. 8. Display of flux control coefficients .

 Computational Modeling of Biochemical Networks Using COPASI 35

1 m M will result in an increase of the reaction flux by 0.5 m M/s
(if those are the units that are used in the model). The scaled
sensitivities are the ones most discussed in literature, particularly
for MCA (but see ref. 12) .

 The next tab shows the Flux Control Coefficients (Fig. 8).
Unlike the elasticities, control coefficients are global properties
that depend on the whole system. They quantify the extent of
change of the steady-state flux of one reaction when another
reaction is made slower or faster. For the MCA formalism it
does not matter how the reaction is made faster or slower, but in
practice changing the enzyme concentration is the most practi-
cal solution. Imagine a system in a steady state in which at some
point we increase the concentration of one of the enzymes by 1%.
After some time a new steady state will be reached, potentially
all the concentrations and fluxes in the system will have changed
slightly. The relative change of one of the reaction fluxes is the
flux control coefficient of this reaction with respect to the reac-
tion with the changed enzyme concentration. Like in the case of
the elasticities, all combinations of flux control coefficients are
calculated by COPASI and displayed in a table where the column
indicate the rate of reaction that is changed and the row indicates
the flux of the reaction that has been affected. The fact that the
table contains almost no zeros already indicates that these are
global properties of system: a change in one reaction changes the
steady-state fluxes of all reactions.

 In the example of the sucrose accumulation model, one thing
that stands out immediately is that two lines (“(v6)” and “(v7)”)
are identical. This is very common in flux control coefficients
and comes from the fact that the two reactions (HexP®UDP +
Suc6P and Suc6P®Suc + P) form a chain without any branches
in between, so that their steady-state flux is always the same.
The original publication of the model discusses the accumula-
tion of sucrose in sugar cane (reaction v11) vs. the hydrolysis of
sucrose (reaction v9), arguing that the sucrose accumulation is
most effective when the flux of v11 is large and that of v9 is small.
Inspection of the last row of the table calculated in COPASI indi-
cates the control that each reaction has over the flux of v11 and
it is interesting that the largest coefficient (0.464) corresponds
to v3 . This means that with an overexpression of hexokinase (the
enzyme that catalyzes v3) by 10% we expect an increase in the
rate of sucrose accumulation of about 4.6%. However, reaction
 v3 also has a high control over the flux of v9 , in fact much larger:
1.558; thus v3 is not a good candidate for manipulation because
while it would stimulate sucrose accumulation it would lead to a
much larger increase in the hydrolysis of sucrose actually decreas-
ing the overall efficiency. Rohwer et al. argue that the fructose/
glucose transporters (v1 and v2 , the first two columns) are better
candidates for this purpose since increasing their rates causes a

36 Mendes et al.

simultaneous increase in sucrose accumulation and decrease in
hydrolysis (as indicated by a negative control coefficient).

 From this example of a relatively simple model with only five
variables, it becomes evident that there is no intuitive way to rea-
son about the response of the system to perturbations from the
network structure alone. In even moderately complicated models
it is impossible to predict which enzymes control the fluxes with-
out performing actual sensitivity analysis calculations.

 Another issue that may be obvious to some readers from Fig.
8 is that the values of each row in the table sum up to 1. This is
a reflection of the flux control summation theorem (14) , which
allows us to reason about the system. For example, if the value of
a flux control coefficient is known to be 0.3 then one can be sure
that also other reactions will control that specific flux (since the
coefficients have to add up to 1).

 The third tab of the results window contains the concentra-
tion control coefficients . These are similar to their flux counter-
parts, and describe how the steady-state concentrations change
depending on the changes in specific reaction rates. The main
difference between these and the flux control coefficients is that
they add up to 0 rather than 1.

 An important thing to keep in mind about both the elasticities
and the control coefficients is that they provide information only
about small changes to the model. So while you can in many cases
reliably predict from the control coefficients what the effect of a
5% increase in the expression of one enzyme will be, it is not pos-
sible to predict the effect of a tenfold increase or decrease. This
type of information, however, could be obtained from parameter
scans, i.e., by direct numerical simulation, however, that would
be for a single parameter at a time (see Note 28).

 MCA is a powerful concept, and the way it is implemented in
COPASI is numerically robust (12) . Basically whenever COPASI
is able to find a steady state, the MCA calculations will also pro-
vide reliable results.

 Control coefficients are concepts geared toward an interpretation
that is dominated by changes in enzyme concentrations (derived
from gene expression), as they only measure the effects of chang-
ing the overall rate of reactions. It is also interesting to study how
other parameters, such as K m , affect the model behavior. In MCA,
these generic sensitivities are known as response coefficients and
measure the change in a system property effected by any system
parameter (see Note 29), however, these have no known special
summation theorems. COPASI can also calculate these generic
sensitivities and to access this feature we select Multiple Task and
Sensitivities in the tree on the left; the corresponding sensitivities
window is depicted in Fig. 9 . Basically these generic sensitivities
(response coefficients in the vocabulary of MCA) are for arbitrary

3.3.2. Generic Sensitivities

 Computational Modeling of Biochemical Networks Using COPASI 37

values in the model (Functions in Fig. 9) with respect to arbitrary
parameters (Variables in Fig. 9) and are calculated numerically
using finite differences (i.e., not using a matrix method from elas-
ticities, see Note 30).

 Generic sensitivities can also be calculated for time courses,
but we will start with a steady-state example. Make sure that Sub-
task method is set to Steady State. In the Function select Concen-
tration Fluxes of Reactions , meaning that we want to calculate how
the steady-state reactions fluxes (measured in concentration units)
are affected by parameter changes. Next the parameters of inter-
est need to be selected in Variables . For this example, select All
Parameter Values that will calculate the sensitivities with respect to
all kinetic parameters in the model. After pressing the Run button
results will appear in its window, and we shall discuss the Scaled
tab (Fig. 10). Once again, the rows correspond to the reactions
(as in the flux control coefficients table) and the columns cor-
respond to the kinetic parameters of the model. Since there are
usually several parameters for each reaction, this table does not fit
entirely on the screen and the scroll bar needs to be used.

 A comparison of this table with that of Fig. 8 reveals that col-
umns 3 and 6 here are identical to columns 1 and 2 of Fig. 8 . This
is expected because the sensitivities of fluxes toward v max param-
eters can be shown to be the same as flux the control coefficients
(unless there are enzyme–enzyme interactions). However, we can
see from the sensitivities that some of the inhibition constants
(e.g., column 1) also strongly affect the fluxes.

 Fig. 9. Generic sensitivities window .

38 Mendes et al.

 The generic sensitivities feature allows the calculation of many
other kinds of sensitivities as well. For example, the sensitivity of a
simulation result with respect to the initial concentrations could
also be calculated. It is also possible to calculate second-order
sensitivities (sensitivities of sensitivities, see ref. 21) which can help
determining whether sensitivity analysis results are valid over a
larger parameter range.

 Optimization is the search for maximum or minimum values of
some function (the objective function; see Note 31). In biochem-
ical modeling, optimization can be used to find conditions in
which the model behaves in some desired way (13, 22) . Because
biochemical models are composed of nonlinear functions, their
variables may have several minima or maxima, thus the problem
is usually of global optimization where one wants to find the larg-
est of all maxima or the smallest of all minima. Global optimi-
zation problems are hard to solve and it is well known that no
single algorithm is best for all problems (23) . Thus COPASI is
equipped with a diversity of optimization algorithms that follow
very different strategies (see Table 1), and in general one should
search the best solution with more than one algorithm (and at
least one should be a global optimizer).

 To demonstrate an application of optimization we will con-
tinue analyzing the model of sucrose accumulation in sugar cane
 (20) , which is model 23 in BioModels. Remember that accu-
mulation of sucrose is measured by the steady-state flux of reac-
tion v11 but there is also a certain amount of sucrose hydrolysis,
reaction v9 , that decreases the efficiency of accumulation. So one
important question is what conditions lead to a low proportion
of sucrose hydrolysis relative to accumulation. This can be seen as
a typical optimization problem, where we are interested in mini-
mizing the ratio of fluxes J v9 / J v11 – our objective function. In all

3.4. Tuning Models
with Optimization
Methods

 Fig. 10. Results of generic sensitivity analysis .

 Computational Modeling of Biochemical Networks Using COPASI 39

optimization problems, it must also be specified which param-
eters of the model are allowed to change in order to meet the
objective. In this particular example, let us imagine that we could
manipulate the steady-state level of the enzymes of reactions v1 ,
 v2 , v3 , v4 , and v5 (e.g., by overexpression or by interfering with
the upstream regulatory sequences of their genes). The question
then becomes what would be the best combination of the levels
of these enzymes to achieve the lowest possible ratio J v9 / J v11 . The
parameters that are allowed to change are then the Vmax of the
five reactions.

 In COPASI, the optimization task is found under Multiple Tasks
and then Optimization in the tree on the left. The application of

 Table 1
 Optimization algorithms available in COPASI Version 4.4 (Build 26)

 Algorithm Strategy Type References

 Evolutionary
 programming

 Evolutionary algorithm with adaptive mutation rate
without recombination

 Global (24)

 Evolution strategy
(SRES)

 Evolutionary algorithm with numerical
recombination, selection by stochastic ranking

 Global (25)

 Genetic algorithm Evolutionary algorithm with floating-point encoding
and tournament selection

 Global (26)

 Genetic algorithm
SR

 Variant of Genetic algorithm where selection is by
stochastic ranking

 Global (25, 26)

 Hooke and Jeeves Direct search algorithm based on pattern search Local (27)

 Levenberg–
Marquardt

 Gradient-based, adaptive combination of steepest
descent and Newton method

 Local (28– 30)

 Nelder–Mead Direct search method based on geometric heuristics Local (31)

 Particle swarm Inspired on social insect search strategies; works with
population of candidate solutions like evolutionary
algorithms

 Global (32)

 Praxis Direct search method based on the alternate direction
(minimize one dimension at each time)

 Local (33)

 Random search Random search with uniform distribution (a shotgun
approach)

 Global

 Simulated
annealing

 Monte Carlo method that mimics the process of
crystal formation (biased random search with
Boltzmann distribution)

 Global (34)

 Steepest descent Gradient method based on first derivatives (estimated
by finite differences)

 Local

 Truncated Newton Based on Newton method (uses second derivatives) Local (35)

40 Mendes et al.

optimization to biochemical modeling consists typically of three
parts (1) the objective function, (2) the adjustable parameters,
and (3) the search algorithm. This is mirrored in COPASI’s inter-
face as seen on Fig. 11 . First, the objective function must be set
by entering the mathematical expression J v9 / J v11 , this is done by
selecting the required model entities from a menu that is acti-
vated by pressing the small button with the COPASI icon (at the
right) (see Note 15). J v9 appears as <(v9).Flux>, then you have
to enter the division sign from the keyboard, and finally select
 J v9 which appears as <(v11).Flux> (see Note 32). If you wanted
to instead maximize this expression you should precede it by a
minus sign (so that you minimize its symmetric).

 Next you need to select the adjustable parameters, i.e.,
those that are allowed to change. To add one parameter to the
list press the New button (the one with a blank page) and then
the button with the COPASI icon to select the actual parameter.
COPASI provides a shortcut to add all parameters: select the first

 Fig. 11. Optimization window, with an objective function definition at the top, a list of adjustable parameters at the center,
and an optimization algorithm at the bottom .

 Computational Modeling of Biochemical Networks Using COPASI 41

one by expanding Reactions , then Reaction parameters and then
 v1 where you select Vmax1 ; but then rather than just accepting
that, expand the other reactions of interest one by one, and while
pressing the CTRL key (or the APPLE key on Macs) also select
also Vmax2, Vmax3 , Vmax4 , and Vmax5. When you finish, all
five parameters will be listed. You will realize that they are listed
inside the interval between −infinity and +infinity, which is quite
large indeed, but in general we want tighter limits. Let us say
that it is feasible to downregulate the enzyme concentrations to
50% and to overexpress it by 400% in this example. To change all
of the boundaries together select all five rows, then remove the
check on − inf and type − 50% on the box; similarly, remove the
check on +inf and type + 400% on the box below, after changing
the cursor to another field, the limits of each parameter will have
changed to the appropriate values (see Note 33). The start values
are by default those that are specified in the model section but
they could be changed; yet we shall leave them as they are now
(see Note 34). Please note that if the start value of a parameter
is outside the boundaries specified, COPASI will force it to the
nearest boundary during the optimization.

 Finally, one needs to select the method of optimization
desired. For our first attempt let us use the Truncated Newton
method and press Run which will quickly finish. Then move on
to the Results section (on the left tree, below Optimization).
This will show that the objective function value obtained was
0.000593843 (see Note 35), and below you will see listed the
values of Vmax for each of the reactions. You will realize that
 Vmax1 and Vmax2 are close to the upper limit specified (indeed
as argued in ref. 20) , and Vmax3 , Vmax4 , and Vmax5 are near
the minimum specified. This means that we would need to over-
express the first two enzymes and downregulate the remaining
three. The reader may wonder about this solution, particularly if
compared with the network diagram in Fig. 1 of ref. 20 , one clue
is given by the concentrations achieved in this solution, which
you can inspect if you switch to the tab named Species (at the top
of the right pane). Both Fructose and Glucose are very highly
concentrated (almost 1 molar for Fructose) – it seems that the
best way to minimize hydrolysis of sucrose and maximize its stor-
age is to maintain a very high concentration of the products of
the hydrolysis. However, this solution may not be achievable in
practice due to the high concentrations of the intermediates.

 After considering the results of the previous analysis, it
becomes interesting to ask the same question but now not allow-
ing the concentrations of Glucose and Fructose go above 100
mM. This is a new set of requirements of the method named con-
straints as they attempt to force the solution to a more restricted
domain. To enter constraints, return to the Optimization page,
and select the tab named Constraints in the center of the page.

42 Mendes et al.

Then let us add the constraints like we added the adjustable
parameters, pressing New and then the COPASI icon, and then
expand Species and Transient concentrations and select Fru and
 Glc . Set the lower limit to 0 and the upper to 100. Now press
 Run again and inspect the result, which is now a ratio of fluxes of
0.0679853 (about 100× higher than the previous solution), and
the concentration of Fru is 89 and Glc is 99.

 Now select a different method of optimization, for exam-
ple Particle swarm and set the Iteration Limit to 50 (the default
of 2,000 is way too long for this problem) and run again. This
method takes longer, and you will see a window appear with a
progress dialog, which shows the number of function evaluations
and the current value of the objective function. At the end it is
possible that a window appear with several warnings, if so please
 see Note 36 . In the end, it will show an objective function value of
0.0584978 or somewhere close to that. Run this a few times and
note that the result differs each time; this is because the algorithm
is stochastic and it does not always necessarily converge to the
same value (see Note 37). Note that now the concentrations of
Fru and Glc are within 0.1% of the upper limit of 100. This shows
the great utility of optimization methods in biochemical mod-
eling, and the MCA/sensitivity approach would never be able to
answer this constrained problem. With optimization we can solve
practical problems with realistic constraints (not just calculations
based on infinitesimal changes). It is also very reassuring to realize
that the modeler is entirely driving the process by the definition of
objective functions and constrains , which are a means of directing
the computations to solve specific problems. Optimization is an
excellent way to explore the space of behavior of complex multidi-
mensional models, such as those of biological systems.

 Biochemical models depend on many parameters, but quite fre-
quently the values of these parameters are unknown and have to
be estimated from some data. Parameter estimation is a special case
of an optimization problem, in which one attempts to find values
for a set of model parameters that minimize the distance between
the model behavior (simulation results) and the data. COPASI
provides specific parameter estimation functionality that is based
on the optimization methods described in Subheading 3.4 .

 COPASI measures the distance between model and data
using an expression that is derived from a least-squares approach
 (36) . The objective function used is:

 ()−∑ ∑ ∑
2

() Y () ,k,i k,i, j k,i, ji j k
O p = Xw p

(3)

 where X i,j,k is the experimental value of variable i at measurement
 j within experiment k and the corresponding simulated data
point is given by Y k,i,j (p) where p is the vector of parameter values

3.5. Parameter
Estimation

 Computational Modeling of Biochemical Networks Using COPASI 43

used for the simulation. It is important that the data for the dif-
ferent variables be of comparable magnitudes so each group of
values for each variable in each experiment is multiplied by a
weight w k,i (see Note 38).

 To illustrate parameter estimation we shall use the MAP kinase
cascade model of Kholodenko (8) which is model 10 in BioMod-
els. You will also need some experimental data, and a file (MAPK-
data.txt) is provided at http://www.comp-sys-bio.org/tiki-index.
php?page=CopasiModels. You must download this file and store
it in the same folder where you have put the SBML file with the
model that was downloaded from BioModels. The data contained
in this file are for “measurements” of the single-phosphorylated
form of MAPK and of the phosphorylated MAPKK at various
time points (see Note 39). The problem then consists of adjust-
ing the V max parameters of a few reactions in order for the model
to be as close to the data as possible.

 As implied in the objective function above (Eq. 3), COPASI
allows fitting the model to multiple experiments simultaneously.
The software also allows using steady-state and time-course data,
which can even be used together (i.e., some experiments be time
courses while others are steady-state observations). The experi-
mental data must be provided in ASCII data files with columns of
data delimited by tabs or commas; each column will be mapped
to a model entity. Since COPASI knows nothing about your data
files, there is a necessary step of creating a mapping between the
data columns and model entities. To make this mapping easier we
suggest that the data file should include a row of column head-
ings. Additionally, if there are several experiments in a single file,
these experiments should be separated by an empty line (allowing
COPASI to detect the beginning and end of each experiment’s
data automatically). Each column of an experiment data file must
be classified as one of the types listed in Table 2 . Even if some
columns are not needed, they must be classified as ignored . It is
important that all columns of type independent and dependent are
actually mapped to the actual model entities they correspond to .

 At this point it is best to proceed with the MAPK example and
you should examine the structure of the data file with a plain text
editor, for example Notepad on Windows (a spreadsheet will also
work, as long as you do not overwrite the file). Then import the
SBML file in COPASI and select Multiple Tasks and Parameter
Estimation . The complete specification of the data file format is
done in a dialog box (Fig. 12) that is invoked with the Experimen-
tal Data button. To add the data file press the New button (blank
page) that is above the box named File . Select the MAPKdata.txt
file that you have previously downloaded, and then COPASI will
automatically recognize that there is one experiment in this file

3.5.1. Example

3.5.2. Experimental Data

44 Mendes et al.

that it names Experiment (you can change this if you like) and that
it goes from line 1 to line 11, including the header in line 1. You
must indicate that these data are from a time course, so select the
appropriate check box on the Experiment Type . The table at the
bottom of this dialog box indicates the columns found in the data
file for the current experiment, and under the heading Column
Name it reproduces the titles in the header (line 1 of the file).
The first column has been identified as type Time because of its
title, the remaining two are set to the default type ignored. Since
these columns contain the measurements of the concentrations of
MAPKKK-P and MAPK-P you have to set their type to dependent.
When you do that, a new dialog appears for you to point to the
actual model entity that this column represents, select Species and
then Transient Concentrations and chose the appropriate one (see
 Note 40). Repeat the process with the other column; when you
finish the dialog box should look the same as Fig. 12 .

 Note that COPASI has already determined values for the
weights (w k , i in Eq.); the brackets indicate that they were calcu-
lated rather than set by you. However, you are free to change any
weight by editing them and removing the brackets (but note that
they should always be positive numbers smaller or equal to 1).

 Table 2
 Classification of data types for mapping experimental data to the model entities

 Data type Meaning

 Independent Independent model items are those which need to be set before the experiment
takes place. Possible model elements are initial concentrations but could also
be kinetic parameters. Note that in time-course experiments only the first row
of independent data columns is used (since it refers to the initial state of the
system). Columns of this type must be associated with elements of the model

 Time This column type is only available for time-course experiments and is a special case
of an independent model item. Obviously one and only one column of this type
may exist in each time course experiment. COPASI will attempt to automatically
identify this column if there are column headers but it may fail and in such a
case you must set this type for the appropriate column

 Dependent The dependent data are those that were measured in the experiment and are enti-
ties in the model that are variables (i.e., determined from the solution of equa-
tions rather than set by the modeler). These are the target data that COPASI
attempts to match, and are the data specified in the objective function (Eq. 3).
Columns of this type must be associated with the actual model elements that
they correspond to

 Ignored These are columns of data that the user does not want to include in the problem.
Columns marked in this way are not taken into account in the parameter fitting
task. This is useful to ignore potential irrelevant columns of data files. This set-
ting is also useful to “switch-off” using one data column when desired

 Computational Modeling of Biochemical Networks Using COPASI 45

It is important to realize that changing the weights affects the
ability of the software to perform the fit, and particularly bad
choices might entirely prevent success of the fit. COPASI con-
tains three different methods to calculate these weights (mean ,
 mean square , and standard deviation , respectively), as depicted
in Eqs. 4–6 :

w 1 / ,j,k j,k= X

 (4)

w 21 / ,j,k j,k= X

(5)

 ()−21 / ,j,k j,k j,k j,k= X X Xw
 .

(6)

 The mean and mean square methods (Eqs. 4 and 5) assure
that data columns with small values contribute in the same order
of magnitude to the objective function as columns containing
large values. The standard deviation method (Eq. 6) sets larger
weight to columns that have little fluctuations.

 Obviously the exercise of parameter estimation requires one to
select the parameters that are to be estimated. Typically these are
initial values (concentrations, volumes, etc.) or parameters of the
kinetic functions of the reactions (or arbitrary ODE if there are
any in the model). The selection of these parameters and their
boundaries is specified in exactly the same way as for optimization
(see Subheading 3.5.2).

3.5.3. Estimated
Parameters and
Constraints

 Fig. 12. Experimental data definition window .

46 Mendes et al.

 Sometimes it is necessary to estimate a parameter differently
for each experiment, meaning that the software should estimate
one value per experiment rather than a single value that best fits
 all experiments (which is the default). For example this is needed
when one has executed replicate experiments but where one is
not confident that the initial concentration of a chemical species
is the same in all experiments. COPASI is able to deal with this,
allowing the user to restrict the effect of a parameter to a subset
of the experiments listed (obviously this only matters when there
are several experiments, but this not the case in the present exam-
ple). The button labeled Duplicate for each experiment is there for
this purpose and will multiply the parameters selected when it is
pressed to as many new parameters as there are experiments.

 It is also possible to define constraints, just like in the opti-
mization task. But beware that adding any arbitrary constraints
may well render a problem unsolvable if the constraints cannot
be fulfilled. Remember that the main constraints you want for the
model is that it fits the data, so the use of constraints in parameter
estimation should be taken with care or avoided if possible.

 For the present example of the MAPK model, select the reac-
tion limiting rates V1 , V2 , V5 , V6 , V9 , and V10 and set their
limits to be − 90% and +90% of their original values, in the same
way as in the optimization example above.

 At this point the parameter estimation problem has been com-
pletely specified and the actual fitting task can proceed using
any of the optimization methods available (see Table 1). Before
running the task it is advisable to define a plot to monitor the
progress of the fit and another one to examine results. It is also
important to save the file in COPASI format (in case you want
to come back to it later, since the SBML file does not contain
instructions for the parameter estimation). To create the plots
mentioned press the button Output Assistant which lists a series
of plots and reports that are commonly useful. You can select the
plot named Progress of Fit and press Create , which will generate a
plot of the values of Eq. 3 vs. the number of function evaluations
(see Note 41). The second plot of interest is called Parameter
Estimation Results per Experiment and it consists of the experi-
mental values of the variables (i.e., contained in the data file)
plotted against the values of their corresponding simulated value.
The plot also contains the weighted residuals of each data point
(i.e., the terms calculated inside the summation in Eq. 3).

 After defining the plots, save the file, select an optimization
method, and press Run . For this example select the Levenberg–
Marquardt method and run it with the default values. After a short
while the method will have finished and you will have plots like
those of Fig. 13 . You should also examine the results by selecting
the Results page (below Parameter Estimation on the left). There
you will see the statistics for the sum of squares, though be aware

3.5.4. Fitting the Data

 Computational Modeling of Biochemical Networks Using COPASI 47

that these are problem dependent and you should not compare
sums of squares between different problems (not even the same
problem with different data sets). More useful are the statistics
for the estimated parameters on the second tab, where you will
likely see that the coefficients of variation of the estimated param-
eter values are smaller than 35%, which is very good given the
presence of noise in the data. You can also examine the parameter
correlation matrix that provides information about dependencies
between parameter estimates.

 Along with the traditional ODE approach, COPASI is also equipped
to carry out stochastic simulations based on the theoretical frame-
work derived by Gillespie (4) . The Time Course task can easily be
executed with the algorithm of Gibson and Bruck (37) (see Note
 42) and this is as simple as selecting the Gibson–Bruck method
from a pull-down menu (Fig. 14). This is particularly appealing to
those who normally carry out simulations with the ODE approach
but sometimes have a need to switch to the stochastic approach. Of
course, this also means that COPASI is equally useful for modelers
who mostly use the stochastic approach.

3.6. Stochastic
Simulation

 Fig. 13. Results of fitting model parameters to a data set. The plot on the top overlays the experimental data (crosses)
over the model behavior after fitting (lines). The plot at the bottom displays the progress of the sum of squares (Eq. 3) as
the optimization algorithm progressed (note the logarithmic scale of the Y -axis) .

48 Mendes et al.

 Let us consider an example using a model of calcium oscillations
by Goldbeter (38) , which is model 98 in BioModels. After import-
ing the SBML, go to the Time Course task. It is useful to define a
trajectory plot of the number of particles against time, which can
be done via the Output Assistant : chose either the second option
(Particle Numbers, Volumes, and Global Quantity Values) which will
have a scale of numbers of particles, or the first option which will
output the corresponding concentrations to the computed particle
numbers in the course of the simulation. Figure 15 shows the out-
come of a stochastic simulation for the calcium model.

 There are several issues that have to be considered to carry out
successful stochastic simulations. The first consideration is that in
this approach reversible reactions must be handled as two sepa-
rate irreversible reactions (the forward and reverse directions). In
ODE-based simulations, the forward and backward reaction rates
are usually aggregated and thus can cancel each other out (result-
ing in a null rate); in stochastic simulations each single reaction
event has to be considered separately and even if there is no net
rate, the actual cycling rate will be explicitly represented. In order
to facilitate the conversion of ODE-based models to the stochastic
representation, COPASI provides a feature that, at the modeler’s
request, converts all reversible reactions to the corresponding
individual forward and backward reactions (Fig. 16). This useful
tool adjusts the model automatically – the reaction scheme and the
kinetics – and is able to work for a wide range of kinetic rate laws,
such as mass action and standard enzymatic kinetics. Nevertheless,
there are certain cases when it is not able to dissect rate laws into
two separate irreversible kinetic functions. These cases can be very

 Fig. 14. Switching to a stochastic simulation approach in the Time Course window .

 Computational Modeling of Biochemical Networks Using COPASI 49

complex rate laws or rate laws that are actually not appropriate
(e.g., an expression that is never negative, thus that is not really
reversible). When COPASI cannot automatically convert all reac-
tions, the user will have to adjust the model her/himself.

 Fig. 15. Trajectory of calcium oscillations using the stochastic simulation algorithm .

 Fig. 16. Menu option to convert a model to be composed only of irreversible reactions .

50 Mendes et al.

 Often, models are specified without considering the specific
volume of the compartment. But for stochastic simulations the
volume of the systems is crucial: the volume should not be too
big so that the computed particle numbers are not too high and
within numerical possibilities of a computer (see Note 43). This
should pose no problem, since it is the purpose of these stochastic
simulations to deal with systems that have relatively low particle
number. Thus, it is important that the volume of the system be
defined in the compartment description in such a way that the
particle numbers are not too high.

 Another consideration is whether or not the assumptions
implied in the rate law of a specific reaction still holds in the pres-
ence of low particle numbers. Thus, when stochastically simulating
a reaction network which has been described by a set of ODEs
all reaction rates have to be converted to a corresponding reaction
probability. This is rather simple and straightforward in the case of
mass action kinetics (3) . However, enzyme kinetic rate laws repre-
sent the overall rate of a series of elementary mass action reactions
(binding of substrate to enzyme, isomerizations, etc.). An important
question is then whether it is justifiable to use such a rate expression
in stochastic simulations. Several authors (39, 40) have shown that
as long as the initial assumptions for the assumed kinetics hold (e.g.,
excess substrate, fast reversible enzyme–substrate complex forma-
tion, etc.), it is indeed justifiable to assume the enzymatic reaction
to constitute one single step with a corresponding rate law. The
modeler must then ensure that the initial assumptions still hold.

 Stochastic simulations are computationally expensive. If a large
system is considered which contains some species with high particle
numbers and some others with low particle numbers then the use
of a hybrid method should be taken into consideration. In COPASI
there are currently (version 4.4 Build 26) two hybrid methods
implemented. These methods dynamically divide the system into
two subsystems: one of them contains reactions with participants
that occur in large quantities and is simulated by numeric integra-
tions of ODE; the other one contains reactions that have no par-
ticipants in large quantities and is stochastically simulated (see Note
 44). In many cases, this approach will speed up the simulation. The
two hybrid methods differ only in their numerical integration
algorithm – one uses Runge–Kutta, the other uses LSODA.

 Since repeated runs of the stochastic simulation will differ
considerably, as long as the stochastic influence is noticeable, it
is advisable to execute many runs in order to sample a distribu-
tion. This can be easily done by using the Repeat function of
the Parameter scan task in COPASI already discussed in a previ-
ous section (Fig. 17). If a plot of particle numbers over time
has been defined, this repeated run will result in multiple time
courses being overlaid in a single plot. However, this is not very
useful when the dynamics is complex as in the example of calcium
oscillations. In these cases, it is best to define a histogram (Fig. 18)

 Computational Modeling of Biochemical Networks Using COPASI 51

 Fig. 17. Using the Parameter scan window to repeat the same stochastic trajectory several times .

 Fig. 18. Defining a histogram plot of a species concentration .

52 Mendes et al.

to display the cumulative concentration distribution, which is a
better way to summarize stochastic simulations (Fig. 19).

 1. A modifier is a chemical species that affects the rate of reaction
but which, unlike substrates or products, is not transformed
by the reaction itself. A special case of modifier is the enzyme
that catalyzes the reaction, but this class also includes inhibi-
tors and activators.

 2. But often not for enzymes, for which the rates usually depend
linearly on their concentration – the exception is when there
are enzyme–enzyme interactions.

 3. It is well known that these equations are often stiff, meaning
that they contain very fast and very slow components and this
poses a significant numerical problem. Beware of software that
does not include ODE integrators (or solvers) that are able
to cope with stiff ODEs. Methods such as forward Euler or
Runge–Kutta are not appropriate when stiffness is present in
the equations and can lead to completely spurious solutions
because they accumulate truncation error. COPASI uses the
LSODA method which is adaptive and is stable under stiff
conditions.

4. Notes

 Fig. 19. Histogram of calcium concentration for ten runs of the stochastic simulation algorithm .

 Computational Modeling of Biochemical Networks Using COPASI 53

 4. COPASI can use any of the following three strategies: Newton
method, ODE integration forward in time or integration
backward in time. If all three are chosen, it first tries the
Newton method and if this does not converge, it then inte-
grates in time for a while and then tries the Newton method
again – this is repeated ten times, each time integrating even
further ahead (10× what was done earlier). If at the end a
steady state is not found it will then go back to the original
starting point and apply the same strategy but now integrat-
ing backward in time. Backward integration, if successful,
will find an unstable steady state. The user has control over
this strategy by selecting the parameters “Use Newton,”
“Use Integration,” and “Use Back Integration.”

 5. A commercial license is also available for purchase allow-
ing use of COPASI for applications that are for commercial
profit. Go to http://www.copasi.org/commercial for further
details.

 6. Distribution filenames are in the format: Copasi-XX-YYYYYY.
ZZZ where XX is the build number, YYYYYY is a reference
to the operating system (WIN32 for Windows, Darwin for
OS X, Linux , SunOS for Solaris, and src for the source code),
and ZZZ is the appropriate extension for the type of file,
which depends on the operating system.

 7. Alternatively you can browse the database and find the model
that way. However, such a method will become essentially
unworkable as the database grows.

 8. This means the model is in SBML level 2 version 1; in the
future the BioModels database may supply the model in
another level/version of SBML so the title of this link may
become something like SBML Lx Vy for level x and version y.

 9. To download this file you should right click the link and
then select an option that allows saving the link to disk (like
 save link as … in Firefox). If you simply click the link your
browser will likely show a blank page with some sentences
and then a (long) list of parameter names. This is actually
part of the model and appears because the browser is trying
to interpret the XML encoding as if it was HTML.

 10. Additionally there is also an initial value for time, this is only
important in the case when some rate equations reference time
explicitly (nonautonomous models). In that case, the value of
time at the start of the simulation is important and the mod-
eler may need it to be some value different from zero.

 11. There is also a selection for the interpretation of rate equa-
tions, as there are differences between the ODE and the sto-
chastic approaches. Note that this selection only indicates
whether the kinetics used are meant for one or the other

54 Mendes et al.

approach, not that the approach will be used. In fact, this
feature exists so that COPASI can automatically adapt the
rate equations to the required approach.

 12. There must be one space between each chemical species
name, otherwise COPASI will interpret the whole string as
one species name. This is because the character “+” is allowed
in species names, thus the space is needed to delimit species
names from symbols that are not part of the species name.

 13. Substrate and product are obvious; modifier is any chemical
species that is not transformed by the reaction (inhibitors,
activators, and the enzyme if represented explicitly); volume
is the volume of any compartment; time is obvious; and
 parameter is anything else that does not fit any of the other
categories.

 14. You should not mark as reversible a rate law that can only
produce positive values; to be reversible a rate law must be
able to take negative values (i.e., flux in the opposite direc-
tion). Conversely, an irreversible rate law should not be able
to produce negative values.

 15. In COPASI, the buttons that are marked with the program’s
icon are always used to select model entities.

 16. Multiple task groups a set of computational analyses that
require running multiple simulations at each time.

 17. This output from subtask button would need to be checked
if the task was a time course and we wanted the whole time
course to be plotted rather than just the final value (although
there are also circumstances where that could be desirable
thus the choice given to the user).

 18. It is best to scan in logarithmic space when the parameter
varies by more than one order of magnitude, otherwise most
of the samples will lie in the upper order of magnitude.

 19. The order of the scan items in the stack is important for the
way in which the plot is constructed, but otherwise produces
the same results since it generates a regular grid and executes
the task at each grid position. The order of the stacks only
affects the order in which the grid positions are visited.

 20. Obviously a flux mode can only be reversible if all reactions
that compose it are also reversible.

 21. An astute biochemist will realize that there is a carbon and
two oxygens missing on the substrate side of this equation,
and obviously there should be a CO 2 in that side of the equa-
tion. This is missing because the modeler made the decision
of not including CO 2 in the model (it should be in the Phos-
phogluconate dehydrogenase reaction). Since the eryth-
rocyte is not known for fixating CO 2 then the mode must

 Computational Modeling of Biochemical Networks Using COPASI 55

operate in the reverse direction, i.e., production of PRPP
from glucose. In this case, since the mode is reversible it
means that one would not know this fact from the stoichi-
ometry alone.

 22. A chemical moiety is a set of atoms bound in a fixed struc-
ture which are part of molecules, which in a chemical context
are referred to as “chemical groups.”

 23. This means that the dependent species is not calculated from
a differential equation, but rather from this mass conserva-
tion relation. Thus each mass conservation relation reduces
the number of ODE by one.

 24. Formalisms of MCA have also been derived for time-depend-
ent states (41, 42) but they are rather complicated and some
of the coefficients therein are hard to conceptualize, so it is
not usually applied.

 25. Since COPASI only uses the MCA steady-state formalism,
the software first needs to find a steady state before doing
the MCA calculations. It is a good idea to investigate the
steady state(s) of a model before running MCA, especially
regarding the stability of a steady state. While it is technically
possible to calculate the MCA for an unstable steady state it
is of little practical value.

 26. The value of 1% change is here used only for illustration as a
“small” change, the coefficients are actually defined only for
infinitesimal changes and all the theory is based on that.

 27. Since the framework of MCA is based on linearizations and
reaction kinetics are generally nonlinear, the values of the
elasticities depend on the actual concentrations of the chemical
species, so they have to be calculated for specific cases.

 28. While it is possible in theory to carry out a large multidimen-
sional scan, the computational time of that exercise would be
prohibitive and is beyond simple improvements in computer
efficiency (it is an NP- complete problem) and thus is essen-
tially impossible for models larger than four or five variables.

 29. Control coefficients are actually a special case of response
coefficients that have unit elasticity.

 30. This in practice consists of finding the steady state, then
changing one of the parameter values slightly, and then
calculating the new steady state and using ratios to estimate
the differentials (the change applied is very small).

 31. Maximizing a function is the same as minimizing the sym-
metric function.

 32. There are two types of fluxes in COPASI which only differ
by scale: “concentration flux” is expressed in concentration
per unit time, while “particle flux” is expressed in numbers

56 Mendes et al.

of particles per unit time. In this case you should select “con-
centration flux.” However, what is important is that both be
of the same type, since this is a ratio.

 33. It is also possible to chose another parameter for the upper
or lower bounds, in which case we just need to specify which
one with the usual button with the COPASI icon (to the left
of the text field). In fact, it is even possible to choose another
 estimated parameter (i.e., one on the list to adjust) as long as
that parameter appears in the list before it is used as a bound-
ary value.

 34. You may manually override the initial value by highlighting
the parameter and then entering a number in the box labeled
Start Value or use the tool button labeled as “…” to chose
other options, such as random values within the interval.

 35. Your numbers may be slightly different due to different pre-
cision of different computer architectures, but it should be a
number in this range.

 36. Possibly there were several warnings of the type “CTrajecto-
ryMethod (12) : Internal step limit exceeded,” which mean
that for some parameter values COPASI could have failed to
find a steady state through integration of the ODEs (due to
the equations being too stiff). This is not a problem since it
may have solved the steady state with the Newton–Raphson
method. Even if it indeed failed completely to find a steady
state for some parameter combinations, the method will
have still converged, as you can judge by the final result.
This is one advantage of population-based algorithms: they
still work even when the objective function is not continuous
(which is what it would look like if the numerical solution
could not be obtained).

 37. The likelihood that it gets to the same result increases with
the length that the algorithm is left running; if you run it
with the default 2,000 iterations, it will likely always con-
verge to the same value, but it will run for a much longer
time of course.

 38. These weights are scaling factors; they are not dependent on
the quality of the experimental measurement like a standard
deviation.

 39. These data were actually created with a slightly modified ver-
sion of the model where some parameters were changed, a
time course was simulated and then noise was added to the
values of MAPK-P and MAPKKK-P.

 40. This is why it is useful to have column headers because
COPASI displays them and you can remember what this col-
umn is. This is particularly important if you have a data file
with many columns.

 Computational Modeling of Biochemical Networks Using COPASI 57

 41. A function evaluation is the complete calculation needed
to simulate the data that needs to match the experimental
data. Therefore it consists of calculating all time courses and
steady states corresponding to each experiment.

 42. Gibson and Bruck’s next reaction method (37) is a more effi-
cient version of the original Gillespie first reaction method.
It achieves better performance by an intelligent use of data
structures. For example it stores dependencies between the
reactions in dependency graphs and this avoids redundant
recalculations of the reaction propensities.

 43. Stochastic simulations determine the time interval between
reactions, and this time is dependent on the number of parti-
cles. If there are too many particles the interval between any
two reactions is extremely small, meaning that it would just
take too long to simulate any time interval of interest (i.e., at
least milliseconds).

 44. The division between the subsystems is done with respect
to the participating particle numbers and there is a control
variable that corresponds to this threshold value which can
be adjusted by the user.

 We thank the users of COPASI whose feedback on the software is
crucial for its continued improvement. We also thank all develop-
ers who have actively contributed to COPASI. COPASI develop-
ment is supported financially by generous funding from the US
National Institute for General Medical Sciences (GM080219),
the Virginia Bioinformatics Institute, the Klaus Tschira Founda-
tion, the German Ministry of Education and Research (BMBF),
and the UK BBSRC/EPSRC through The Manchester Centre
for Integrative Systems Biology.

Acknowledgments

 References

 1 . Garfinkel , D. , Marbach , C. B. , and Shapiro ,
 N. Z. (1977) Stiff differential equations . Ann.
Rev. Biophys. Bioeng . 6 , 525 – 542 .

 2 . Petzold , L. (1983) Automatic selection of
methods for solving stiff and nonstiff systems
of ordinary differential equations . SIAM J. Sci.
Stat. Comput . 4 , 136 – 148 .

 3 . Gillespie , D. T. (1976) A general method for
numerically simulating the stochastic time evo-
lution of coupled chemical reactions . J. Com-
put. Phys . 22 , 403 – 434 .

 4 . Gillespie , D. T. (1977) Exact stochastic simu-
lation of coupled chemical reactions . J. Phys.
Chem . 81 , 2340 – 2361 .

58 Mendes et al.

 5 . Gillespie , D. T. (2007) Stochastic simulation
of chemical kinetics . Ann. Rev. Phys. Chem .
 58 , 35 – 55 .

 6 . Hoops , S. , Sahle , S. , Gauges , R. , Lee , C. ,
 Pahle , J. , Simus , N. , Singhal , M. , Xu , L. ,
 Mendes , P. , and Kummer , U. (2006) COPASI
– a COmplex PAthway SImulator . Bioinfor-
matics 22 , 3067 – 3074 .

 7 . Le Novere , N. , Bornstein , B. , Broicher , A. ,
 Courtot , M. , Donizelli , M. , Dharuri , H. ,
 Li , L. , Sauro , H. , Schilstra , M. , Shapiro , B. ,
 Snoep , J. L. , and Hucka , M. (2006) BioMod-
els Database: a free, centralized database of
curated, published, quantitative kinetic mod-
els of biochemical and cellular systems . Nucleic
Acids Res . 34 , D689 – D691 .

 8 . Kholodenko , B. N. (2000) Negative feedback
and ultrasensitivity can bring about oscilla-
tions in the mitogen-activated protein kinase
cascades . Eur. J. Biochem . 267 , 1583 – 1588 .

 9 . Curien , G. , Ravanel , S. , and Dumas , R. (2003)
 A kinetic model of the branch-point between
the methionine and threonine biosynthesis
pathways in Arabidopsis thaliana . Eur. J. Bio-
chem . 270 , 4615 – 4627 .

 10 . Schuster , S. and Hilgetag , C. (1994) On
elementary flux modes in biochemical reac-
tion systems at steady state . J. Biol. Syst . 2 ,
 165 – 182 .

 11 . Schuster , S. , Fell , D. A. , and Dandekar , T.
 (2000) A general definition of metabolic
pathways useful for systematic organization
and analysis of complex metabolic networks .
 Nat. Biotechnol . 18 , 326 – 332 .

 12 . Reder , C. (1988) Metabolic control theory.
A structural approach . J. Theor. Biol . 135 ,
 175 – 201 .

 13 . Holzhütter , H. G. (2004) The principle of
flux minimization and its application to esti-
mate stationary fluxes in metabolic networks .
 Eur. J. Biochem . 271 , 2905 – 2922 .

 14 . Kacser , H. and Burns , J. A. (1973) The con-
trol of flux . Symp. Soc. Exp. Biol . 27 , 65 – 104 .

 15 . Heinrich , R. and Rapoport , T. A. (1974) A
linear steady-state treatment of enzymatic
chains. General properties, control and effec-
tor strength . Eur. J. Biochem . 42 , 89 – 95 .

 16 . Fell , D. A. (1992) Metabolic control analysis
– a survey of its theoretical and experimental
development . Biochem. J . 286 , 313 – 330 .

 17 . Heinrich , R. and Schuster , S. (1996) The Reg-
ulation of Cellular Systems . Chapman & Hall ,
 New York, NY .

 18 . Fell , D. A. (1996) Understanding the Control
of Metabolism . Portland Press , London .

 19 . Cascante , M. , Boros , L. G. , Comin-Anduix ,
 B. , de Atauri , P. , Centelles , J. J. , and Lee , P. W.

 (2002) Metabolic control analysis in drug
discovery and disease . Nat. Biotechnol . 20 ,
 243 – 249 .

 20 . Rohwer , J. M. and Botha , F. C. (2001) Analy-
sis of sucrose accumulation in the sugar cane
culm on the basis of in vitro kinetic data . Bio-
chem. J . 358 , 437 – 445 .

 21 . Höfer , T. and Heinrich , R. (1993) A second-
order approach to metabolic control analysis .
 J. Theor. Biol . 164 , 85 – 102 .

 22 . Mendes , P. and Kell , D. B. (1998) Non-linear
optimization of biochemical pathways: appli-
cations to metabolic engineering and param-
eter estimation . Bioinformatics 14 , 869 – 883 .

 23 . Wolpert , D. H. and Macready , W. G. (1997)
 No free lunch theorems for optimization .
 IEEE Trans. Evolut. Comput . 1 , 67 – 82 .

 24 . Fogel , D. B. , Fogel , L. J. , and Atmar , J. W.
 (1992) Meta-evolutionary programming, in
25th Asilomar Conference on Signals, Systems
& Computers (Chen , R. R. , ed.). IEEE Com-
puter Society , Asilomar, CA , pp. 540 – 545 .

 25 . Runarsson , T. and Yao , X. (2000) Stochastic
ranking for constrained evolutionary optimiza-
tion . IEEE Trans. Evolut. Comput . 4 , 284 – 294 .

 26 . Michalewicz , Z. (1994) Genetic Algorithms
+ Data Structures = Evolution Programs .
 Springer , Berlin .

 27 . Hooke , R. and Jeeves , T. A. (1961) “Direct
search” solution of numerical and statistical
problems . J. ACM 8 , 212 – 229 .

 28 . Levenberg , K. (1944) A method for the solu-
tion of certain nonlinear problems in least
squares . Quart. Appl. Math . 2 , 164 – 168 .

 29 . Goldfeld , S. M. , Quant , R. E. , and Trotter ,
 H. F. (1966) Maximisation by quadratic hill-
climbing . Econometrica 34 , 541 – 555 .

 30 . Marquardt , D. W. (1963) An algorithm for
least squares estimation of nonlinear param-
eters . SIAM J . 11 , 431 – 441 .

 31 . Nelder , J. A. and Mead , R. (1965) A simplex
method for function minimization . Comput.
J . 7 , 308 – 313 .

 32 . Kennedy , J. and Eberhart , R. (1995) Particle
swarm optimization . Proc. IEEE Int. Conf.
Neural Netw . 4 , 1942 – 1948 .

 33 . Brent , P. R. (1973) A new algorithm for mini-
mizing a function of several variables without
calculating derivatives, in Algorithms for Mini-
mization Without Derivatives (Brent , P. R. ,
ed.). Prentice-Hall , Englewood Cliffs, NJ , pp.
 117 – 167 .

 34 . Corana , A. , Marchesi , M. , Martini , C. , and
 Ridella , S. (1987) Minimizing multimo-
dal functions of continuous variables with
the “simulated annealing” algorithm . ACM
Trans. Math. Softw . 13 , 262 – 280 .

 Computational Modeling of Biochemical Networks Using COPASI 59

 35 . Nash , S. G. (1984) Newton-type minimiza-
tion via the Lanczos method . SIAM J. Numer.
Anal . 21 , 770 – 788 .

 36 . Johnson , M. L. and Faunt , L. M. (1992)
 Parameter estimation by least-squares meth-
ods . Methods Enzymol . 210 , 1 – 37 .

 37 . Gibson , M. A. and Bruck , J. (2000) Efficient
exact stochastic simulation of chemical sys-
tems with many species and many channels .
 J. Phys. Chem. A 104 , 1876 – 1889 .

 38 . Goldbeter , A. , Dupont , G. , and Berridge , M. J.
 (1990) Minimal model for signal-induced
Ca2+ oscillations and for their frequency
encoding through protein phosphor-
ylation . Proc. Natl Acad. Sci. USA 87 ,
 1461 – 1465 .

 39 . Rao , C. V. and Arkin , A. P. (2003) Stochastic
chemical kinetics and the quasi-steady-state
assumption: application to the Gillespie algo-
rithm . J. Chem. Phys . 118 , 4999 – 5010 .

 40 . Cao , Y. , Gillespie , D. , and Petzold , L. (2005)
 Multiscale stochastic simulation algorithm
with stochastic partial equilibrium assumption
for chemically reacting systems . J. Comput.
Phys . 206 , 395 – 411 .

 41 . Acerenza , L. , Sauro , H. M. , and Kacser , H.
 (1989) Control analysis of time dependent met-
abolic systems . J. Theor. Biol . 137 , 423 – 444 .

 42 . Ingalls , B. P. and Sauro , H. M. (2003) Sensitivity
analysis of stoichiometric networks: an extension
of metabolic control analysis to non-steady state
trajectories . J. Theor. Biol . 222 , 23 – 36 .

 Chapter 3

 Flux Balance Analysis: Interrogating Genome-Scale
Metabolic Networks

 Matthew A. Oberhardt, Arvind K. Chavali, and Jason A. Papin

 Summary

 Flux balance analysis (FBA) is a computational method to analyze reconstructions of biochemical net-
works. FBA requires the formulation of a biochemical network in a precise mathematical framework
called a stoichiometric matrix. An objective function is defined (e.g., growth rate) toward which the
system is assumed to be optimized. In this chapter, we present the methodology, theory, and common
pitfalls of the application of FBA.

 Key words: Systems biology , Metabolic reconstruction , Flux balance analysis , Metabolomics ,
Constraint-based modeling , Genome-scale network.

 The availability of sequenced and annotated genomes, coupled
with a tremendous knowledge base in scientific literature, has
facilitated the construction of genome-scale models of metabo-
lism for a wide variety of organisms (1– 5) . Metabolic network
reconstructions include stoichiometric detail for the set of known
reactions enzymatically catalyzed in a particular organism. These
metabolic reconstructions can be built from the bottom-up, i.e.
from the level of the gene to whole pathways acting in concert,
and can include thousands of reactions and genes. Because of
their enormous size, computational methods are required to
quantitatively analyze large-scale biochemical networks. Although
traditional ordinary differential equation (ODE)-based models of
metabolism allow for characterization of dynamic cell states, full-
scale dynamic modeling is often difficult for networks consisting

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_3

61

62 Oberhardt, Chavali, and Papin

of thousands of reactions because of a paucity of necessary param-
eter values (6) . Therefore, methods are needed in which kinetic
parameters are less critical for prediction of cell phenotype. Flux
balance analysis (FBA) is one such technique for analysis of large-
scale biochemical systems under conditions where kinetic param-
eters do not need to be defined: namely, at steady state (see ref. 7
for historical perspective on FBA).

 In this chapter, we discuss how to perform FBA and provide
details for troubleshooting mistakes. FBA is a constraint-based
method; first a space of possible phenotypes is defined by impos-
ing constraints on a biochemical system, and finally an objective
function is optimized within that space to determine the system’s
most likely phenotypic state. The state space of an FBA problem
consists of steady-state (i.e., constant growth rate/exponential
phase) fluxes through all reactions in the biochemical network.
Predictions of values for these fluxes are obtained by optimizing
for an objective (e.g., maximizing growth rate, minimizing energy
use, maximizing end-product production), while simultaneously
satisfying constraint specifications (8) . The set of constraints can
be grouped into any one of four categories: (a) physicochemical
(e.g., conservation of mass), (b) topological (e.g., compartmenta-
tion and spatial restrictions associated with metabolites/enzymes),
(c) environmental (e.g., media composition, pH, temperature),
and (d) thermodynamic (e.g., reaction reversibility) (8, 9) .

FBA employs a mathematical formalism derived from the
mass action expression:

d
d
C

Sv
t

=

 in which C , and v are vectors of metabolite concentrations and
reaction fluxes, respectively, and t is time. S is a stoichiometric
matrix composed of rows corresponding to metabolites and
columns corresponding to reactions for a given metabolic net-
work (see Subheading 3 for more details). FBA is performed on
metabolic networks at steady-state since intracellular metabolic
kinetics are much faster than changes in cellular phenotype (e.g.
growth rate of a cell), and therefore the phenotype of a metabolic
network quickly stabilizes to a steady solution (8) .

By definition, the change in concentration of metabolites
over time is equal to zero when a system is at steady-state:

d
0

d
C
t

=

Therefore, the set of possible steady-state flux distributions
through the metabolic network can be represented as the vector
 v in the equation:

Sv = 0

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 63

 This equation constitutes the main constraint set representing
a biochemical network in FBA, as elaborated in Subheading 3.2
and Fig. 1A –C .

Numerous extensions to FBA have been recently developed.
Following is a brief overview of some of these extensions:
 • DFBA : An abbreviation for dynamic flux balance analysis.

Two independent approaches were proposed to address
diauxic growth (changes in growth rate as one carbon source
is depleted and the cell switches to utilizing another carbon
source) in Escherichia coli , namely dynamic optimization
(DOA) and static optimization (SOA) (10) . DOA considers
the full time course of bacterial growth via the formulation
of a nonlinear programming (NLP) problem (see ref. 8 for
differences in mathematical programming strategies), while
SOA entails solving multiple linear programming (LP)
problems over several discretized time steps (10) . The SOA
was similar to a previous method (11) except for the inclu-
sion of constraints regarding the rate-of-change of metabo-
lite fluxes in DFBA. For large-scale biochemical networks,
SOA would be more applicable due to the computational
limitations of the NLP aspect of DOA (10) .

 • EBA : A more rigorous addition of thermodynamic constraints
to FBA via energy balance analysis was proposed (12) . Using
this method, the flux space calculated by FBA is further con-
strained and flux distributions that are thermodynamically
infeasible are removed. The E. coli metabolic network was
simulated under glucose-minimal medium, and in addition
to the flux distribution, chemical potentials and conduct-
ances were also predicted for every reaction in the network.
Information on reaction conductance was used to characterize
enzyme regulation in the switch between aerobic and anaero-
bic conditions. Furthermore, some gene knockouts predicted
incorrectly by FBA were correctly predicted using EBA (12) .

 • rFBA : Regulated FBA considers the effects of transcriptional
regulation on metabolism. The FBA flux space is further con-
strained by accounting for regulatory elements (e.g., if a par-
ticular transcription factor is present, then a given reaction
does not occur). By incorporating Boolean rules, defining
enzymatic regulation at discretized time steps and iteratively
simulating the fluxes and concentrations in the network, rFBA
was applied to a prototypic network (13) . The use of rFBA
on a large-scale integrated metabolic and regulatory network
of Saccharomyces cerevisiae consisting of 805 genes and 775
regulatory interactions has also been demonstrated (14) . Gene
expression profiles were simulated under genetic and environ-
mental perturbations, and growth phenotypes were character-
ized for various transcription factor knockout strains (subject

64 Oberhardt, Chavali, and Papin

 Fig. 1. The formulation of an FBA problem is demonstrated. (A) A simple prototypic metabolic network is converted into an
 S matrix. Different shades of elements in the S matrix represent the location of the corresponding reaction/metabolite in
the system. R B represents the objective reaction. (B) The mathematical formalism of FBA where “ S ” is the stoichiometric
matrix composed of rows corresponding to metabolites and columns corresponding to reactions, “ v ” is the vector of
fluxes through the associated reactions, “ lb ” and “ ub ” are the lower and upper bounds on the fluxes, “ v Biomass ” (or v B) is
the objective flux and “ v carbonsource ” is the uptake flux. The abbreviation s.t. stands for “subject to.” (C) The mathematical
formalism is illustrated in matrix format. (D) Genes encoding proteins that catalyze reactions in the prototypic system
are shown on the left. This gene–protein-reaction (GPR) network is then modeled with Boolean logic, as shown on the
right. (E) The solution to the FBA problem introduced in panel (B) is presented in flux vector v * . (F) The solution to an FBA
performed after knocking out gene5 is similarly presented in v * .

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 65

to different carbon source requirements) of S. cerevisiae (14) .
The recent development of the R-matrix formalism for tran-
scriptional regulatory systems also facilitates the integration of
metabolism and regulation and serves to increase the applica-
bility of rFBA (15) .
 Further extensions to FBA are continually being developed.

For example, efforts are currently underway to implement an
integrated, dynamic FBA (idFBA) on a whole-cell model of
metabolism, signaling and regulation (17) . An approach called
minimization of metabolic adjustment (MOMA) was developed
to analyze the effect of gene knockouts on metabolic network
phenotype. In MOMA, the suboptimal solution of a mutant
strain (following a gene knockout) is generated, which represents
the smallest Euclidean distance to the optimal FBA solution of a
wild-type strain (18) .

 In this chapter, we highlight available resources to recon-
struct the metabolic network of a particular organism and present
computational tools that are available to perform FBA. In addi-
tion, with the help of a prototypic metabolic network, the process
of setting up an FBA problem is described in detail. The steps
involved in formulating GPR relationships, defining an objective
function and troubleshooting problems that commonly occur
during FBA simulations are also presented. FBA is a powerful
tool to quantitatively analyze metabolic networks and has been
extensively applied to genome-scale models of E. coli (5) , Saccha-
romyces cerevisiae (3) , and many other organisms (2, 4, 19– 22) .

 Metabolic network reconstructions, representing species-specific
large-scale models of metabolism, are commonly built using infor-
mation from biological databases and literature sources. A variety
of online public resources are available to aid in generating a
metabolic network reconstruction, including:

 Genomic resources:
 GeneDB (http://www.genedb.org/) and TIGR (http://www.

tigr.org/) provide genomic information and functional annota-
tions for a wide variety of organisms.

 Enzyme resources:
 ENZYME (http://ca.expasy.org/enzyme/) is an enzyme

nomenclature database. BRENDA (http://www.brenda-enzymes.
info/) provides enzyme, associated reaction, and pathway infor-
mation. BRENDA also includes organism-specific information
on localization and links to experimental literature references.

2. Materials

2.1. Tools for
Metabolic
Reconstruction

66 Oberhardt, Chavali, and Papin

 Species or organism-specific resources:
 There are several resources dedicated to particular organ-

isms or species. Examples include Pseudomonas Genome Data-
base (http://www.pseudomonas.com/), EcoCyc (http://ecocyc.
org/), and Xenbase (http://www.xenbase.org/common/).

 Other resources:
 KEGG (http://www.genome.jp/kegg/), MetaCyc (http://

metacyc.org/), and NCBI (http://www.ncbi.nlm.nih.gov/) include
gene, protein, and reaction information for several organisms.
 KEGG also contains a pathway module with detailed maps that
are useful when reconstructing a metabolic network. In addition
to gene and molecular databases, NCBI also includes literature
databases providing expansive collection of prior research relating
to the organism of interest.

 The resources highlighted above are only a sampling of all
the databases that are available for metabolic network reconstruc-
tions. The above list is certainly not comprehensive; therefore,
the reader is directed to reviews that list other publicly and com-
mercially available online databases (23, 24) .

 Performing FBA does not require the use of specialized computing
hardware. It can be executed on a standard desktop platform, using
one of a variety of software tools. Generally, FBA is performed
using an optimization package such as LINDO (Lindo Systems
Inc., Chicago, IL) or GAMS (GAMS Development Corporation,
Washington, DC), using MATLAB (The MathWorks Inc., Natick,
MA), or using any other software package that allows for fast and
efficient LP computation. Specifically in MATLAB, FBA can be
carried out using the Optimization Toolbox. Via the Optimization
Toolbox, the linprog function can be used for LP calculations (see
Subheading 3.6). Several dedicated tools have also been created
that perform FBA and other systems-biology related tasks in MAT-
LAB. A few of these tools are highlighted below:
 • The COBRA Toolbox (25) can execute FBA and many other

systems biology applications. The COBRA Toolbox performs
operations on models presented in systems biology markup
language (SBML). Therefore, the SBML Toolbox must be
installed in MATLAB for the COBRA Toolbox to function.
For LP optimization, the COBRA Toolbox supports at least
five LP solvers that are all available online: lp_solve (free), glpk
(free), LINDO, CPLEX, and Mosek.

 • FluxAnalyser (26) is a tool that provides a graphical user inter-
face in MATLAB through which FBA and other systems biol-
ogy related analyses can be performed.

 • Metabologic (27) is a tool that executes FBA and is designed
to aid in setting up optimal 13C- NMR experiments to deter-
mine the proper flux distribution through a system.

2.2. Software
Packages

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 67

 A toolbox called SNA also exists for performing FBA and
other network-related analyses in the Mathematica platform (28) .
In addition, several other standalone tools capable of performing
FBA are available. MetaFluxNet (29) is one such standalone soft-
ware package that performs FBA and other analysis techniques.
It also uses lp_solve as the default LP solver, but can support oth-
ers, including CPLEX, LINDO, GAMS, AMPL, and MATLAB
LP. Commercial software packages have also been developed
for large-scale FBA and systems analyses of metabolic networks,
including Simpheny (Genomatica Inc., San Diego, CA) and Dis-
covery (INSILICO Inc., Stuttgart, Germany).

 To perform FBA, components of a biochemical network must
be defined and represented in precise, mathematical forms. Since
FBA is geared toward analysis of networks at steady state (i.e.,
nonvarying fluxes over a defined time window), kinetic param-
eters are not required. However, FBA requires a stoichiometric
matrix, known bounds on reaction fluxes and an objective func-
tion. To illustrate the steps in formulating an FBA problem, a
prototypic system is presented in Fig. 1A and the associated rig-
orous mathematical formalism in Fig. 1B . This prototypic meta-
bolic system will be referenced throughout this section.

 Note: For FBA of large-scale metabolic networks, the bio-
mass reaction is often – but not necessarily – chosen as the objective
function. In the following sections, the flux of the objective func-
tion is referred to as v B (when in reference to the prototypic net-
work presented in Fig. 1), v Biomass (when describing typical FBA of
large-scale networks where the objective is the biomass function),
or v obj (when the objective function is left unspecified). Flux val-
ues denoted with an asterisk (e.g., v biomass *) denote the optimal
value as determined by FBA.

 1. S -matrix : The stoichiometric matrix, or S , is a matrix com-
posed of the stoichiometric coefficients for all reactions in a
biochemical network. By convention, columns in S represent
reactions, and rows represent species (e.g., metabolites) par-
ticipating in the reactions. Each substrate and product of a
reaction must be assigned a stoichiometric coefficient, si,j ,
dictating how many moles of that compound are consumed
or produced in the reaction. Metabolites not participating in
a reaction gain a coefficient of zero for that particular reac-
tion. Figure 1A shows the conversion of a sample metabolic
network into an S matrix. Note that substrate coefficients are

3. Methods

3.1. Prerequisites

3.2. Building the
Matrices

68 Oberhardt, Chavali, and Papin

represented by negative numbers, while product coefficients
are represented by positive numbers. Therefore, R 1 [(1) A
→ (2) B] becomes the first column of S in Fig. 1A , with a
“−1” coefficient denoting the “loss” of 1 units of metabolite
 A [c] and a “+2” coefficient denoting the “gain” of 2 units of
metabolite B [c] (where [c] represents an intracellular cytosolic
metabolite).

 2. Exchange reactions : Exchange reactions involve metabolites in
the surrounding environment that are allowed to enter and/
or leave the system. The constraints on the exchange reactions
will dictate what resources are available in the in silico cell
culture. Exchange reactions are represented in the S matrix as
column vectors with a +1 coefficient for the metabolite being
exchanged, but zeros for all other metabolites (see columns
Ex A and Ex C in the S matrix in Fig. 1A).

 3. Lower and upper bounds : The standard constraint set for FBA
includes a lower bound (lb) and an upper bound (ub) for every
reaction in the system. These bounds are represented by col-
umn vectors, with coefficients representing minimum and max-
imum fluxes for the corresponding reaction (see Figs. 1B, C).
In effect, reaction reversibility rules are formulated. As an
example, for an irreversible reaction, the lower bound would
be set to 0 . Lower and upper bounds for the prototypic system
are shown in Fig. 1C as column vectors lb and ub . Bounds
for exchange reactions represent flow of nutrients into and
out of the biochemical system, while bounds for transport
reactions (occurring across cell and subcellular compartment
membranes) and intracellular reactions (occurring within
the confines of the cell membrane) represent physicochemical
constraints on reaction rates, due to thermodynamics or maxi-
mal uptake rates.

 4. Additional components : The mathematical formulation of a
FBA problem is shown in Fig. 1C . The objective of the FBA
problem in the top of Fig. 1C is the dot product c ◊ v, where
 c is a vector containing objective coefficients for each reac-
tion in the system, and v is the vector of reaction fluxes in
the system. Since a typical FBA problem involves the optimi-
zation of only one reaction, c will typically contain all zeros
except for a “1” corresponding to the reaction flux being
optimized. In the prototypic network presented in Fig. 1A ,
reaction R B is the objective reaction, and the corresponding
flux is denoted as v B , an abbreviation for v Biomass (see Figs. 1B,
C). The cv expression is a more formal way of representing
the objective rather than as flux v B . A zero vector represent-
ing the right side of the steady-state expression S ◊ v = 0 is
also required.

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 69

 1. Typically, the number of metabolites in a biochemical system
is less than the number of fluxes, and thus an S matrix rep-
resents an under-determined system for which there exists a
range of possible solutions at steady state (8) . To choose the
solution v* that is most optimal for a given objective, FBA
employs a standard optimization technique called Linear
Programming (LP), denoting an optimization wherein the
constraints and the objective function are all linear with respect
to the instrument variables (the fluxes, v). The LP formalism
for the prototypic system is shown in Fig. 1C . A typical math-
ematical expression for the standard FBA optimization is also
provided. The fluxes in vector v are constrained between their
lower and upper bounds, and the expression c ◊ v is maximized
as explained in Subheading 3.2.4.

 2. An uptake constraint (v carbonsource = uptake) simulating a controlled
and steady flux of carbon source into the growth medium can
also be included within the optimization problem, as indicated
in the mathematical setup in Fig. 1B . This constraint aids in nor-
malizing the fluxes in the system to a particular chosen value. As
an example, in determining growth yield of a bacterium grow-
ing on glucose as a sole carbon source, vEx GLUCOSE

 and vBiomass serve
as the uptake and objective fluxes, respectively. These are similar
to v ExA and v B in the prototypic network. Maximizing biomass is
a common objective function in large-scale metabolic networks
(see Subheading 3.7). By ensuring that 1 unit of biomass drains
exactly 1.0 g of metabolite mass (e.g., the total amount of pro-
tein, DNA, RNA, carbohydrate, lipid, and other components in
biomass – see Subheading 3.7) from the system, the resulting
biomass flux will equal the growth rate (in units of hour −1), and
the yield can be calculated as:

 3.3. Setting up the
Optimization Problem

Note: The units of flux for all intracellular reactions are mmol
metabolite/gram dry weight/h. The only exception is the biomass
reaction with units of flux equal to 1/h (assuming the biomass
drain is scaled to 1.0 g as described below).

 When exact experimental measurements are not available in
the literature, but relative amounts are known (as is usually the
case), the biomass drain should be set to 1.0 g of metabolite
mass by scaling the biomass reaction coefficients (keeping their
ratios constant with respect to each other) to satisfy the equation:

()
()

[1/h]BiomassYield
mmol glucoseExGLUCOSE

grams dry weight biomass h

grams dry weight biomass

mmol glucose

v

v
= =

×

=

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

70 Oberhardt, Chavali, and Papin

∈

= =∑biomass ,biomassMass · 1 ,D
i i

i D

s M g where M i is the mass of metabo-

lite i and D is the set of biomass components drained from the
system. Note that the uptake constraint is implicitly expressed in
 Fig. 1C as the constraints on v ExA and v ExC .

 1. The results of the FBA problem for the prototypic system are
shown in Fig. 1E . Fluxes are denoted by arrows on the network
map, and the optimal flux vector v* is shown in the inset panel.
The v* vector can be interpreted as a set of fluxes through all
of the reactions in the metabolic network that will lead to an
optimal value of v B (the objective flux), which in this case has
a value of 3 (see Fig. 1E). Note, the v* vector obtained is not
necessarily the only solution that will result in the optimal value
of the objective function; it is merely an optimal solution. Flux
variability analysis can help identify the range of possible v*
solutions for a particular FBA problem (30) .

 2. A flux in v* is interpreted with the reaction column in the
 S matrix to which it corresponds. For instance, suppose that
the R 1 column in Fig. 1C were modified to:

new
1 1

10
20
010·
0
0

R R

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 The resulting flux through R 1
new would be v1

new*= 0.1 as opposed
to v1*= 1.0 , but otherwise the FBA problem would be unchanged.
Importantly, the same amount of mass would be passed through
 R 1 per unit time per gram of cellular dry weight, as determined by
the equation: (v1

new*) (R1
new)= (v1*)(R1) Therefore, the flux v 1 * is

scaled according to the stoichiometric coefficients of metabolites
participating in reaction R 1 .

 The inclusion of the GPR relationships facilitates the charac-
terization of the genotype to phenotype relationship. Reactions
in the S matrix are linked to genes that encode the associated
enzymes. This association allows for the analysis of the effects of
gene knockouts and transcriptional regulation of metabolism. A
sample set of GPR rules are provided for the prototypic metabolic
network (see Fig. 1D). GPR relationships can be expressed with
Boolean logic (e.g., AND/OR associations). Isozymes (enzymes
E 2 1 and E 2 2 in the prototypic network in Fig. 1D) have an OR
relationship as they can independently catalyze R 2 . Subunits of a
protein complex (enzymes E 3a and E 3b) can be associated with an
AND relationship as both subunits are required to catalyze R 3 .

 3.4. Interpreting
Results

 3.5. Formulating GPR
Relationships

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 71

The Boolean logic for GPRs is indicated in the table on the right
of Fig. 1D .

 Performing an in silico gene knockout experiment involves
identifying the target gene in the reconstruction and removing
the associated reaction(s) from the metabolic network, according
to the GPR Boolean logic. Mathematically, this is achieved by
constraining the upper and lower bounds on the corresponding
reaction fluxes to zero. An example gene knockout simulation
is presented in Fig. 1F . Here, gene5 is “knocked out.” Accord-
ing to the GPR Boolean logic in Fig. 1D , gene5 codes for E 3b , a
subunit protein required for R 3 . Therefore, a gene5 knockout will
eliminate the activity of R 3 . Without an active R 3 , the resulting
flux of the objective function is reduced from 3 to 1 (see Fig. 1E,
F , respectively).

 Sample MATLAB code performing FBA on the metabolic network
presented in Fig. 1A is provided in Fig. 2 . This code utilizes
the linprog function in MATLAB, which is available through the
Optimization Toolbox.

 3.6. Sample MATLAB
Code

 Fig. 2 . Sample MATLAB code for performing FBA illustrated in Fig. 1e, f . The stoichiometric matrix of the prototypic
network is presented along with the additional matrices introduced in Fig. 1 . The linprog command (via the Optimization
Toolbox) is implemented to solve the FBA problem .

72 Oberhardt, Chavali, and Papin

 A common objective function that is maximized when analyzing a
metabolic network is the cellular growth rate. To simulate growth,
a biomass demand reaction is formulated wherein all essential
metabolites are drained in the ratio required for the subsequent
production of cellular components. To generate a biomass reac-
tion, the dry weight cellular composition of the organism of
interest needs to be obtained from experimental literature or
estimated using data from highly related organisms. The cellular
composition describes the percentage of proteins, RNA, DNA,
carbohydrate, lipid, polyamines, and other constituents of a given
cell. Below, each of the various cellular components is analyzed
in further detail.
 1. Analyzing protein content : The percent prevalence of each of

the 20 amino acids in protein needs to be calculated. If data
are unavailable in existing literature, this percent prevalence can
be determined by downloading the amino acid sequence cor-
responding to every ORF in the genome of the organism of
interest and implementing a character count. Using molecular
weight information from online databases (e.g., KEGG), the
percentage by weight of the 20 amino acids can be calculated.
As an example, suppose that the percent dry weight composi-
tion of protein in a cell is 50% and the percent by weight of
alanine is 10%. To calculate the coefficient for alanine in the
biomass reaction in units of mmol per gram of dry cell weight:
{Alanine mmol/gDW}=

0.1gm of Alanine 0.5gms of protein 1 mol Alanine

1gm of protein 1gDW 89.05gm of Alanine

1000 mmol
0.5615

1 mol

× ×

× =

 Similar calculations are carried out for all 20 amino acids.
 2. Analyzing RNA and DNA content : The same method applied

to protein content is applicable to analyzing RNA and DNA
content in biomass. For RNA monomers, the percent preva-
lence of A, C, G, and U needs to be determined from the
genome. For DNA content, the G + C statistic can be used.
Subsequently, the percent by weight calculations of nucleotides
(ATP, CTP, GTP, and UTP) and deoxynucleotides (dATP,
dCTP, dGTP, and dTTP) can be carried out by obtaining
relevant molecular weight information. Using the percent dry
weights of RNA and DNA in a cell, the coefficients of nucle-
otides and deoxynucleotides in biomass can be calculated as
illustrated above for the amino acid alanine.

 3. Analyzing carbohydrate and lipid content : Percentage by weight
data for carbohydrate and lipid (neutral and polar) contents
needs to be obtained from the literature. For determining the

 3.7. Defining
the Biomass Reaction

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 73

molecular weight of lipids, information on the fatty acid compo-
sition in the organism of interest is also required. Using the fatty
acid composition, the molecular weight of an average length
fatty acid chain can be computed. This calculation will aid in the
molecular weight calculations of neutral and polar lipids.

 4. Other components : Depending on the organism, other compo-
nents such as polyamines and cofactors can also be included in
the biomass reaction. Also, growth and non-growth associated
ATP demands will need to be determined from experimental
anaerobic chemostat cultivation.

 Published metabolic reconstructions have previously described in
detail the calculations involved in formulating a biomass reaction
 (21, 31) .

 Suppose that a FBA problem is set up as described in Subhead-
ing 3 but the linear optimization yields v Biomass * = 0 or an all-zero
 v* vector. Suppose further that these results were obtained under
environmental conditions where experimental literature indicates
the organism is able to grow. This type of error, which is quite
common during the model-building process, can be trouble-
shooted in several ways as described below:
 1. Check the exchange reactions that allow metabolites to be

exchanged into or out of the metabolic network. A lack of
some essential exchange reactions or the existence of exchange
reactions with incorrect directionality (i.e., exchange reactions
that output an essential metabolite rather than inputting it
from the surrounding medium) can result in the organism
not growing in silico. To evaluate these scenarios, ensure that
every extracellular metabolite (as per the surrounding medium
specifications) has an exchange reaction. All of the extracel-
lular metabolites can also be allowed to exchange freely in a
reversible manner by relaxing the upper and lower bounds for
their corresponding exchange reactions to allow a nonzero
flux in either direction (e.g., by setting ub = 100 and lb = - 100
for each exchange reaction).
 a. If v Biomass * is still equal to 0 , the error might be internal to

the network (see Subheading 4.2).
 b. If a nonzero flux for v Biomass * is obtained, the source of the

error can be narrowed down to inaccuracies with exchange
fluxes. The lower and upper bounds on all the exchange
fluxes should be reset to their original values one-by-one,
and the value of v Biomass * should be reassessed as each bound

 4. Troubleshooting
and Special Cases

 4.1. Troubleshooting
an FBA Problem:
In Silico Organism
Does not “Grow”

74 Oberhardt, Chavali, and Papin

is reset. The constraints for exchange fluxes are determined
by the surrounding medium specifications (e.g., if FBA
is performed on E. coli metabolic network growing in a
glucose minimal medium, the exchange reaction for glu-
cose will be constrained for input; however, the exchange
reactions for all other carbon sources will be fixed to allow
output only). If adjusting the lower or upper bounds on
a particular exchange reaction reduces v Biomass * to 0 ,
an error might be present in the intracellular metabolic
pathway associated with that exchange reaction.

 c. If the model grows with all exchanges unconstrained but
not with the specific exchange reaction bounds that are
relevant to the in silico medium of interest, there may be
gaps present in the associated pathways that are preventing
certain essential metabolites from being produced for bio-
mass (see Subheading 4.2). In FBA of genome-scale mod-
els of metabolism, sources of hydrogen, oxygen, nitrogen,
sulfur, and sometimes other elements (e.g., phosphorus)
must be allowed to exchange into the system in addition
to the carbon source(s) the system grows on. Further, cer-
tain organisms cannot synthesize all 20 amino acids that
are included in the biomass reaction. Exchanges should be
provided for those amino acids that the organism uptakes
from the surrounding medium.

 2. If optimizing for the biomass reaction fails under experimen-
tally observed growth conditions, performing FBA optimi-
zations for each component of biomass individually helps to
identify a particular component that cannot be produced by
the metabolic network. First, a demand reaction should be
created for each biomass component. A demand reaction is
defined purely for modeling purposes to produce a drain on
the essential metabolite of interest. After creating demand
reactions for every biomass component, each biomass-compo-
nent-demand reaction should be optimized in turn. Demand
reactions yielding no flux indicate that the associated biomass
metabolite cannot be produced. Subsequently, the pathways
where the particular component is participating need to be
investigated for the presence of gaps, incorrect reaction ther-
modynamics, etc. For cofactors in the biomass reaction, see
 Subheading 4.3 .

 3. Shadow prices, solutions to the dual problem in the LP opti-
mization, provide additional insight for troubleshooting
the application of FBA. Most LP solvers allow a user to view
the dual variables, of which there exists one per constraint
in the optimization. These shadow prices or dual variables
 represent the quantity by which the optimal value of the

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 75

objective function would improve (i.e., increase in the case of
 maximization) if the corresponding constraint were relaxed
by one unit. Shadow prices (represented by the variable “ u ”)
exist for every metabolite in the network since each metabo-
lite represents a separate constraint in the expression S ◊ v = 0.
The concept of the dual variable is illustrated in Fig. 3 . The
objective function in this figure is represented by the grayscale
gradient from v 1 to v 2 , which indicates how altering v 1 and v 2
will affect the optimal value of the objective flux, v obj . In this
example, increasing the upper bound of v 2 (ub 2) by 1 increases
 v obj * by 1, whereas increasing the upper bound of v 1 (ub 1) by
1 increases v obj * by 2. Therefore, the dual variable associated
with the ub 2 constraint is uub2 = 1, and the dual variable asso-
ciated with the ub 1 constraint uub1 = 2 . Hence, the dual vari-
ables give insight into which reactions are most limiting on
the objective flux, as high values of dual variables indicate that
the associated upper bound, lower bound, or metabolite in
the S matrix is strongly limiting to the objective. For instance,
if the shadow price associated with a certain metabolite in the

 Fig. 3. Dual variables in FBA are demonstrated. Two flux values (v1 and v2) are plotted on
the x and y axes along with their upper bound (ub) constraints. The shaded gradient on
the plot represents values of the objective function, v obj . The optimal solution v obj * occurs
at the intersection of ub 1 and ub 2 , and is denoted with a diamond (�). A circle (�) rep-
resents v obj * after relaxing the ub 2 constraint by 1 flux unit, and a square (�) represents
 v obj * after relaxing the ub 1 constraint by 1 flux unit. Therefore, the dual variables for ub 1
and ub 2 are 2 and 1, respectively, as shown at the bottom of the figure .

76 Oberhardt, Chavali, and Papin

 S matrix has a higher value than any other shadow price in the
system, this could indicate that there is a gap in consumption
or production of that metabolite. In this way, dual variables of
FBA can aid in building and troubleshooting problems in the
metabolic network during reconstruction.

 If certain pathways in the intracellular metabolic network are
incomplete and as a result the model cannot grow, gap analysis
can be used to identify portions of the network that need to be
further reconstructed. A gap occurs when a metabolite in the
model is either consumed only or produced only. Different types
of gaps exist in a metabolic network as illustrated by dotted reac-
tions in Fig. 4 . Here, four different types of gaps are shown,
namely: (1) a direct gap in the pathway, (2, 3) gaps in cofactor

 4.2. Gap Analysis

 Fig. 4 . Different types of network gaps are illustrated. Four network gaps are shown
in a metabolic pathway: (1) a direct gap in the pathway, (2) a cofactor cycling gap, (3) a
cofactor cycling gap where cofactors are both consumed and produced, and (4) a gap in
the processing of a secondary byproduct of the pathway .

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 77

cycles necessary to the pathway, and (4) a gap in a peripheral
pathway crucial for processing a byproduct of the main pathway.
Gaps (2) and (3) differ in that while (2) is a true gap wherein
ATP is consumed only and ADP is produced only, (3) is not a
true gap, since both NADH and NAD + can be produced and
consumed within the network by other reactions, as illustrated in
 Fig. 4 . Gap (3) represents a gap in the cofactor cycle of NADH
but not in the synthesis pathway of NADH. Such gaps can be
difficult to identify but are sometimes responsible for no-growth
results in FBA.

 1. Cofactors differ from other metabolites in that they are not
generally produced from basic building blocks in the formation
of biomass or some other cellular product. A sample cofactor
cycle is shown in Fig. 5 , wherein ATP is hydrolyzed to ADP
by one of the many metabolic reactions that use ATP, and
then ADP is energy-charged back to the ATP form by the
addition of a phosphate (Pi). Note that ATP is neither consumed
nor produced during one full cycle of this process. Therefore,
it is not necessary to synthesize from basic building blocks
cofactors that are cycled in FBA (unless cofactor synthesis
is accounted for in the reconstruction as well, in which case
some portion of cofactors will be synthesized and some will be
cycled, as explained in Subheading 4.3.3).

 2. A common problem in the application of FBA to metabolic
networks is the production of “free” energy through cofac-
tor cycles, which are allowed to run backwards and violate
thermodynamics (see Fig. 5 illustrating the ATP cofactor
cycle). To check for free energy loops, all exchange fluxes
in the system need to be closed. Subsequently, FBA needs

 4.3. Dealing with
Cofactors

 Fig. 5. The process of cofactor cycling is presented. ATP is cycled between hydrolyzing
reactions and ATP charging reactions, with a net ATP production and consumption of
zero. This illustrates how cofactors can be cycled but not be consumed or produced
during FBA .

78 Oberhardt, Chavali, and Papin

to be performed wherein the ATP cycling demand reaction
(ATP + H2O ® ADP + Pi + H+) is maximized. If v ATP cycling * is
nonzero when metabolites are not allowed to enter or leave
the system, some combination of reactions with nonzero flux
must be participating in a free energy loop and erroneously
fueling the production of ATP (see also ref. 32) .

 3. Of special note for the biomass reaction: cofactors can be both
consumed and cycled in the biomass reaction. For instance,
some ATP will be consumed for an ATP synthesis demand,
while a portion of ATP will be cycled in an ATP energy
demand in the same biomass reaction (2, 33) .

 In this chapter, we have provided an overview of the theory and
details for the application of FBA. We presented an overview
of some recent extensions to this method. We also highlighted
resources that are available to reconstruct a metabolic network
and perform analysis using FBA. In addition to detailing the steps
involved in setting up an FBA problem, we described the methods
involved in formulating GPR relationships and defining an objective
function (biomass reaction). Finally, we detailed techniques in
troubleshooting problems that commonly occur in FBA analysis
of metabolic networks. FBA is increasingly applied to the analysis
of biochemical systems, driving experimental design, and providing
insight into fundamental biology.

The authors wish to thank the National Science Foundation
CAREER program (grant# 0643548 to JP) for financial support.
MAO and AKC contributed equally to this work.

 5. Conclusion

Acknowledgements

 References

 1 . Sun , J. , Lu , X. , Rinas , U. , and Zeng , A. P.
 (2007) Metabolic peculiarities of Aspergillus
niger disclosed by comparative metabolic
genomics . Genome Biol . 8 , R182 .

 2 . Heinemann , M. , Kummel , A. , Ruinatscha , R.
and Panke , S. (2005) In silico genome-scale
reconstruction and validation of the Staphylo-

coccus aureus metabolic network . Biotechnol.
Bioeng . 92 , 850 – 864 .

 3 . Duarte , N. C. , Herrgard , M. J. , and Palsson , B. O.
 (2004) Reconstruction and validation of Saccha-
romyces cerevisiae iND750, a fully compart-
mentalized genome-scale metabolic model .
 Genome Res . 14 , 1298 – 1309 .

 Flux Balance Analysis: Interrogating Genome-Scale Metabolic Networks 79

 4 . Duarte , N. C. , Becker , S. A. , Jamshidi , N. ,
 Thiele , I. , Mo , M. L. , Vo , T. D. , Srivas , R. ,
and Palsson , B. O. (2007) Global reconstruction
of the human metabolic network based on
genomic and bibliomic data . Proc. Natl. Acad.
Sci. USA 104 , 1777 – 1782 .

 5 . Feist , A. M. , Henry , C. S. , Reed , J. L. , Krum-
menacker , M. , Joyce , A. R. , Karp , P. D. , Broad-
belt , L. J. , Hatzimanikatis , V. , and Palsson , B. O.
 (2007) A genome-scale metabolic reconstruc-
tion for Escherichia coli K-12 MG1655 that
accounts for 1260 ORFs and thermodynamic
information . Mol. Syst. Biol . 3 , 121 .

 6 . Stelling , J. , Klamt , S. , Bettenbrock , K. , Schuster , S. ,
and Gilles , E. D. (2002) Metabolic network
structure determines key aspects of functional-
ity and regulation . Nature 420 , 190 – 193 .

 7 . Kauffman , K. J. , Prakash , P. , and Edwards , J. S.
 (2003) Advances in flux balance analysis .
 Curr. Opin. Biotechnol . 14 , 491 – 496 .

 8 . Lee , J. M. , Gianchandani , E. P. , and Papin , J. A.
 (2006) Flux balance analysis in the era of
metabolomics . Brief. Bioinform . 7 , 140 – 150 .

 9 . Covert , M. W. , Famili , I. , and Palsson , B. O.
 (2003) Identifying constraints that govern
cell behavior: a key to converting conceptual
to computational models in biology? Biotech-
nol. Bioeng . 84 , 763 – 772 .

 10. Mahadevan , R. , Edwards , J. S. , and Doyle , F. J.
 3rd (2002) Dynamic flux balance analysis of
diauxic growth in Escherichia coli . Biophys. J.
 83 , 1331 – 1340 .

 11 . Varma , A. and Palsson , B. O. (1994) Stoi-
chiometric flux balance models quantitatively
predict growth and metabolic by-product
secretion in wild-type Escherichia coli W3110 .
 Appl. Environ. Microbiol . 60 , 3724 – 3731 .

 12 . Beard , D. A. , Liang , S. D. , and Qian , H.
 (2002) Energy balance for analysis of complex
metabolic networks . Biophys. J . 83 , 79 – 86 .

 13 . Covert , M. W. , Schilling , C. H. , and Palsson , B.
 (2001) Regulation of gene expression in flux
balance models of metabolism . J. Theor. Biol .
 213 , 73 – 88 .

 14 . Herrgard , M. J. , Lee , B. S. , Portnoy , V. , and
 Palsson , B. O. (2006) Integrated analysis of
regulatory and metabolic networks reveals
novel regulatory mechanisms in Saccharomyces
cerevisiae . Genome Res . 16 , 627 – 635 .

 15. Gianchandani , E. P. , Papin , J. A. , Price , N. D. ,
 Joyce , A. R. , and Palsson , B. O. (2006) Matrix
formalism to describe functional states of tran-
scriptional regulatory systems . PLoS Comput.
Biol. 2 , e101 .

 16 . Shlomi , T. , Eisenberg , Y. , Sharan , R. , and
 Ruppin , E. (2007) A genome-scale compu-
tational study of the interplay between tran-

scriptional regulation and metabolism . Mol.
Syst. Biol . 3 , 101 .

 17 . Lee, J. M., Gianchandani, E. P., Eddy, J. A., and
Papin, J.A. (2008) Dynamic analysis of integrated
signaling, metabolic, and regulatory networks.
 PLoS Comput. Biol. 4, e1000086 .

 18 . Segre , D. , Vitkup , D. , and Church , G. M.
 (2002) Analysis of optimality in natural and
perturbed metabolic networks . Proc. Natl.
Acad. Sci. USA 99 , 15112 – 15117 .

 19 . Jamshidi , N. and Palsson , B. O. (2007) Inves-
tigating the metabolic capabilities of Mycobac-
terium tuberculosis H37Rv using the in silico
strain iNJ661 and proposing alternative drug
targets . BMC Syst. Biol . 1 , 26 .

 20 . Thiele , I. , Vo , T. D. , Price , N. D. , and Pals-
son , B. O. (2005) Expanded metabolic recon-
struction of Helicobacter pylori (iIT341 GSM/
GPR): an in silico genome-scale characteriza-
tion of single- and double-deletion mutants .
 J. Bacteriol . 187 , 5818 – 5830 .

 21 . Oh , Y. K. , Palsson , B. O. , Park , S. M. , Schilling ,
 C. H. , and Mahadevan , R. (2007) Genome-
scale reconstruction of metabolic network in
 Bacillus subtilis based on high-throughput
phenotyping and gene essentiality data . J. Biol.
Chem . 282 , 28791 – 28799 .

 22 . Kim , T. Y. , Kim , H. U. , Park , J. M. , Song , H. ,
 Kim , J. S. , and Lee , S. Y. (2007) Genome-scale
analysis of Mannheimia succiniciproducens
metabolism . Biotechnol. Bioeng . 97 , 657 – 671 .

 23 . Francke , C. , Siezen , R. J. , and Teusink , B.
 (2005) Reconstructing the metabolic network
of a bacterium from its genome . Trends Micro-
biol . 13 , 550 – 558 .

 24 . Reed , J. L. , Famili , I. , Thiele , I. , and Palsson , B. O.
 (2006) Towards multidimensional genome
annotation . Nat. Rev. Genet . 7 , 130 – 141 .

 25 . Becker , S. A. , Feist , A. M. , Mo , M. L. , Hannum , G. ,
 Palsson , B. O. , and Herrgard , M. J. (2007)
 Quantitative prediction of cellular metabolism
with constraint-based models: the COBRA
Toolbox . Nat. Protoc . 2 , 727 – 738 .

 26 . Klamt , S. , Stelling , J. , Ginkel , M. , and Gilles , E. D.
 (2003) FluxAnalyzer: exploring structure, path-
ways, and flux distributions in metabolic net-
works on interactive flux maps . Bioinformatics
 19 , 261 – 269 .

 27 . Zhu , T. , Phalakornkule , C. , Ghosh , S. , Gross-
mann , I. E. , Koepsel , R. R. , Ataai , M. M. , and
 Domach , M. M. (2003) A metabolic network
analysis & NMR experiment design tool with
user interface-driven model construction for
depth-first search analysis . Metab. Eng . 5 ,
 74 – 85 .

 28 . Urbanczik , R. (2006) SNA–a toolbox for the
stoichiometric analysis of metabolic networks .
 BMC Bioinformatics 7 , 129 .

80 Oberhardt, Chavali, and Papin

 29 . Lee , D. Y. , Yun , H. , Park , S. , and Lee , S. Y.
 (2003) MetaFluxNet: the management of
metabolic reaction information and quantita-
tive metabolic flux analysis . Bioinformatics 19 ,
 2144 – 2146 .

 30 . Mahadevan , R. and Schilling , C. H. (2003)
 The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models .
 Metab. Eng . 5 , 264 – 276 .

 31 . Forster , J. , Famili , I. , Fu , P. , Palsson , B.
O. , and Nielsen , J. (2003) Genome-scale

reconstruction of the Saccharomyces cer-
evisiae metabolic network . Genome Res . 13 ,
244 – 253 .

 32 . Price , N. D. , Famili , I. , Beard , D. A. , and
 Palsson , B. O. (2002) Extreme pathways
and Kirchhoff ’s second law . Biophys. J . 83 ,
 2879 – 2882 .

 33 . Varma , A. and Palsson , B. O. (1993) Meta-
bolic capabilities of Escherichia coli . 2. Opti-
mal-growth patterns . J. Theor. Biol . 165 ,
 503 – 522 .

 Chapter 4

 Modeling Molecular Regulatory Networks
with JigCell and PET

 Clifford A. Shaffer , Jason W. Zwolak , Ranjit Randhawa , and John J. Tyson

 Summary

 We demonstrate how to model macromolecular regulatory networks with JigCell and the Parameter
Estimation Toolkit (PET). These software tools are designed specifically to support the process typically
used by systems biologists to model complex regulatory circuits. A detailed example illustrates how a
model of the cell cycle in frog eggs is created and then refined through comparison of simulation output
with experimental data. We show how parameter estimation tools automatically generate rate constants
that fit a model to experimental data.

 Key words : Systems biology , Parameter estimation , Model validation .

 Mathematical models of gene-protein regulatory networks play
key roles in archiving and advancing our understanding of the
molecular basis of cell physiology. Models provide rigorous
connections between the physiological properties of a cell and
the molecular wiring diagrams of its control systems. A simple
example is the set of reactions controlling the activity of MPF
(mitosis promoting factor) in Xenopus oocytes (1) , which we
refer to herein as the frog egg model. In the diagram of this
network (Fig. 1), vertices represent substrates and products
(collectively referred to as species), solid directed edges repre-
sent biochemical reactions, and dashed directed edges represent
regulatory signals.

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_4

81

82 Shaffer et al.

 Collectively, these biochemical reactions cause the concentra-
tions of the chemical species (Si) to change in time according to
a set of differential equations (one for each species)

 =

= = …∑
1

, 1, , ,
R

i
ij j

j

dS
b v i N

dt

 where R is the number of reactions, N is the number of species,
 vj is the velocity of the jth reaction in the network, and bij is the
stoichiometric coefficient of species i in reaction j (bij < 0 for
substrates, bij > 0 for products, bij = 0 if species i takes no part in
reaction j). Fig. 1 shows differential equations derived from the
reactions in the network diagram. The set of rate equations and

 Fig. 1 . Network diagram, mapping of species names, and the corresponding set of ordi-
nary differential equations for a model of the mitotic regulatory system in frog eggs. The
regulation of MPF (mitosis promoting factor) by Wee1 (kinase) and Cdc25 (phosphatase)
controls when the cell enters mitosis. Notice the two positive feedback loops whereby
MPF activates Cdc25 (MPF’s activator) and inactivates Wee1 (MPF’s inactivator). The
active forms (M a , Ca , and Wa) have associated differential equations. The total amounts
of MPF (MT), Wee1 (WT), and Cdc25 (CT) are conserved (i.e., remain constant throughout
the process). Mi + Ma = MT , Wi + Wa = WT , and Ci + Ci = CT . Therefore, the inactive forms
(Mi , Ci , and Wi) do not have differential equations because they can be calculated from
these conservation relationships.

Species Description Phosphorylated

Ma Active MPF no
Mi Inactive MPF yes
Ca Active Cdc25 yes
Ci Inactive Cdc25 no
Wa Active Wee1 no
Wi Inactive Wee1 yes

= + − (+.(' ") ' ")a
c i c a i w i w a a

dM
v C v C M v W v W M

dt

= −
+ +

. . . ."'a c a i c c a

mc i mcr a

dC V M C v v C

dt K C K C

= − +
+ +

. . . .'''a w a a w w i

mw a mwr i

dW v M W v v W

dt K W K W

 Modeling Molecular Regulatory Network with JigCell and PET 83

associated parameter values is a mathematical representation of
the temporal behavior of the regulatory network.

 Since the purpose of these models is to codify a systems-level
understanding of the control of some aspect of cell physiology, it
is necessary to validate a proposed model against observed behav-
ior of the reference system. In most cases, it is essential to model
the behavior not only of the wild-type form of the organism, but
also of many mutant forms (where each mutant form typically
represents one or two variations in the genetic specification of the
control system). For example, if we are modeling the cell cycle of
an organism, then we would wish to know features such as the cell
size at division, the time required for various phases of the cell cycle
(G1, S, G2, M), and the viability or point of failure for each muta-
tion. Measurements of the amounts for various control species
within the cell over time would also be valuable information. In
the case of a thoroughly studied organism such as Saccharomyces
cerevisiae (budding yeast), a model can be compared against many
dozens of mutants defective in the regulatory network.

 A realistic model of the budding yeast cell cycle consists of
over 30 differential equations and 100 rate constants and is tested
against the phenotypes of over 150 mutants (2) . A model of this
complexity represents the upper limit of what a dedicated modeler
can produce “by hand” with nothing but a good numerical integra-
tor like LSODE (3) . Beyond this size, we begin to lose our ability
even to meaningfully display the wiring diagram that represents the
model, let alone comprehend the information it contains, or deter-
mine suitable rate constants in the corresponding high-dimensional
space. To adequately describe fundamental physiological processes
(such as the control of cell division) in mammalian cells will require
models of 100-1000 equations. To handle this next generation of
dynamical models will require sophisticated software to automate
the modeling process: network specification, equation generation,
simulation and data management, and parameter estimation.

 There are a number of distinct approaches to simulation.
Deterministic models usually represent the system of chemical
reactions with ordinary differential equations (4- 6) . In some
cases, partial differential equations are used to account for spatial
effects (7) . Stochastic modeling is in its infancy, and most often
is done by some variation of Gillespie’s algorithm (8- 10) . For the
remainder of our discussion, we will consider only deterministic
simulation by ordinary differential equations (ODEs).

 Creating a model that mimics the observed behavior of a living
organism is a difficult task. This process involves a combination of
biological insight, persistence, and support by good model ing tools.
In the following sections, we will describe the model development
process that we employ and the software tools that we have developed
to construct and test models. We then provide a detailed example of
how the tools can be used to create a simple model of the frog egg
cell cycle and to estimate the associated rate constants.

84 Shaffer et al.

 Successful modeling of macromolecular regulatory networks can
be aided by software tools based on a well-defined modeling proc-
ess. Such tools should support the line of thought followed by
modelers as they approach a problem. Mid-sized models of mac-
romolecular regulatory networks track reactions among tens of
species and are tested against hundreds of experimental observa-
tions. Thus, modelers need tools that help to organize the rel-
evant information and automate as many steps of the process as
possible. Figure 2 shows our conception of the modeling process.
The modeler starts with an idea about an organism and a regulatory
system to model. Next, the modeler gathers information (from the
literature and from their own experiments) related to the regulatory
system of the organism. During the literature search, the modeler
builds a hypothesis from information already published, continu-
ously checking the hypothesis against the existing literature. Once
the modeler has a testable hypothesis about the regulatory system,
the hypothesis can be codified into four types of technical information:

 2. The Modeling
 Process

 Fig. 2 . The modeling process. Once the modeler has generated a testable hypothesis
about the organism, he or she must assemble the four necessary collections of infor-
mation (experimental data, simulation runs, reaction network, and rate constants). This
defines both the mathematical model and the behavior that the model must reproduce.
The modeler then will repeatedly simulate and update the model, perhaps with the aid of
automated analysis tools, until an acceptable result is obtained .

 Modeling Molecular Regulatory Network with JigCell and PET 85

 • Experimental data: The information that will be used to vali-
date the model. This information might come as time series
data of the concentrations of certain regulatory chemical spe-
cies, as other observables such as the average size of cells at
division, or as qualitative properties such as the viability or
inviability of a mutant.

 • Simulation runs: Specifications for the simulations that will be
made to model the experimental data. For example, each simu-
lation might relate to a specific mutation of the organism. The
specification will define the distinct conditions necessary to sim-
ulate that mutation, such as differences in rate constants from
the wild-type values.

 • Reaction network: The chemical equations that describe the
regulatory processes.

 • Rate constants: The parameters that govern the reaction
rates.

 Typically, the experimental data and simulation run descrip-
tions are part of the problem definition and are not subject to
frequent modifications. Nor are they considered to be “right”
or “wrong” in the same way as the reaction network and rate
constant values typically will be. The network and rate constants
together define the mathematical model that will be simulated,
compared with experimental observations, and judged “accept-
able” or “unacceptable.”

 One simulation run of an ODE model takes only a fraction
of a second on a typical desktop computer in 2007. As described
above, a complete model actually involves a large collection of
simulations, to be compared against a collection of experimental
results. This entire set of runs might take a second or so for a
smaller model such as our frog egg example on a desktop computer
for one choice of rate constants, and about a minute or two for a
larger model needed to describe the budding yeast cell cycle.

 Once an initial specification of these four types of informa-
tion has been made, the next phase of the process begins. This
is a simulation-compare-update loop, whereby simulation results
are compared with the experimental data. In some way, either a
human or a computer will make a judgment as to the quality of
the relationship between the two. At that point, since the model is
typically judged unsatisfactory, the modeler will make adjustments
and repeat the cycle. We prefer to view this as a double loop, in that
changes to rate constant values are made much more frequently
than changes to the reaction network. That is, the modeler will
typically “twiddle” the rate constants so long as progress is being
made in matching simulation output to experimental data. When
changes to the rate constants appear no longer to improve the
match, then the modeler will attempt to improve the model by
changing the reaction network, which in turn will trigger another

86 Shaffer et al.

round of changes to the rate constants. The process is continued
until the model is judged satisfactory or totally hopeless.

 Modelers often try to assign values to rate constants by a
time-consuming process of “parameter twiddling” and visual
comparison of simulation results to experimental data. A better
approach is automated parameter estimation (once the modeler
is confident that the basic structure of the reaction network is
sound enough). To fit a model to experimental data by auto-
mated optimization algorithms requires thousands to millions of
repetitions of the full calculations.

 The process of comparing real-world observation (experimental
data) with the mathematical model (time-series output from a simu-
lation) is called model validation. Model validation is closely related
to automated (or manual) parameter estimation, because both
require that some measure of the quality of the model can be made.
In the case of automated parameter estimation, we need a way to
take the experimental data and the output from a simulation run,
and create a single number as a measure of the quality of the fit.

 This can be extremely difficult. First, the simulation data
(usually in the form of time series plots) might not be similar to
the form of the experimental data (often qualitative information
such as whether a cell is viable or not). In general, some complex
computation must be done to relate the two. The function that
does this computation is called a transform and is discussed fur-
ther in Subheading 3.3.1 . Second, although it might be a simple
judgment to measure the goodness of fit between one simulation
and one experiment, it is often difficult to judge the goodness of
fit of an entire ensemble of runs, where improvements in match-
ing some experiments might come at the cost of worse fits for
others. The function that balances these fits is called the objective
function and is discussed in Subheading 3.3.2 .

 Before the current generation of modeling tools for systems biology
was developed, many stages in the modeling cycle described in
 Subheading 2 were done by hand. This presents two problems.
First, it takes a great deal of time and effort to convert the original
intuitive concept of a model into a suitable set of reaction equations
and simulations. Second, there are many opportunities for errors,
especially at the (essentially mechanical) step of converting a reac-
tion mechanism into differential equations.

 A wiring diagram, like Fig. 1 , nicely represents the topology
of a reaction network (reactants, products, enzymes). But it is
not a good representation for specifying the kinetics of the net-
work (the reaction rate laws, vj). A large reaction network can

3. Software Tools

 Modeling Molecular Regulatory Network with JigCell and PET 87

become so complex that even its topological features are obscured
by a large number of intersecting lines. Obscurity is increased
by the fact that there is no standard format for drawing such
graphs. Without precise notational conventions, it is impossible to
convert a wiring diagram unambiguously into a model, either by
hand or by machine.

 Another approach for deriving a model is to explicitly write
out the chemical reactions. This loses some of the intuitive appeal
of the diagrammatic approach, but allows for a more compact
definition of a reaction network. Normally, the modeler has
already made a hand or CAD-drawn version of the network in
graphical form, showing the interactions in a qualitative sense but
without the quantitative information of the rate equations or the
rate constant values.

 Models often include concepts not captured by the differen-
tial equations alone. Conservation relations are defined by linear
combinations of species concentrations that remain constant
throughout a simulation:

=
≡ ∑ 1

()
N

i ii
T a S t , where ai is a constant

and T is constant. Such constraints arise from linear dependencies
in the stoichiometry matrix:

1
0

N

i iji
a b

=
=∑ . Events are special

actions that trigger in the model under given conditions. For
example, cellular division could be represented by a halving of
cell mass, and might occur when a given function involving some
number of chemical species reaches a threshold during a simulation.

 The key to successfully creating and managing such complex
models is to use software tools that organize the information in
a coherent way and catch inconsistencies and errors early in the
process. In this section, we will describe the JigCell Model Builder
 (11, 12) , which is used to define the reaction equations and rate
constants of the model. We then present the JigCell Run Manager
 (13) , which is used to define a series of simulation runs that will
generate output to validate the model. Finally, we describe the
parameter estimation tool (PET) (14) , which supports exploration
of the parameter space and automated parameter estimation with
the goal of selecting rate constant values that best fit the simulation
output to the experimental data.

 Underlying any such software tool is a representation scheme
for describing a model, that is, a language for expressing the
model in a complete and formal sense. The systems biology markup
language (SBML) (15, 16) has now become the standard reference
language for reaction network modeling. SBML describes all neces-
sary features pertaining to the reaction network, conservation
relations, events, and rate constants. SBML does not describe all
data necessary for modeling, including information describing the
simulation runs and experimental data from Fig. 2 , which must
be stored in separate files. SBML also is not a suitable language
for human comprehension. Thus, software tools are needed to
provide an interface between the user and SBML.

88 Shaffer et al.

 The JigCell Model Builder (referred to herein as the “Model
Builder”) is used to define the components that make up an SBML
model. The Model Builder uses a spreadsheet interface, allowing a
large amount of data to be displayed in an organized manner.

 The Model Builder provides functionalities for both first-
time users and expert modelers. The Model Builder supports the
definition of events and user-defined units. An event, such as cell
division, can be defined by specifying a condition that must be
met to trigger the event, and the changes that result due to the
event. A major goal of the Model Builder is to minimize the time
and errors associated with translating a regulatory network to a
set of equations. As the user enters reaction equations, rate laws,
and functions into their cells in the main spreadsheet, several
other spreadsheets are updated to track the various entities that
make up a model. After the user has finished defining a model
using the Model Builder, this model can be used with other
SBML-compliant software to simulate the response of the model
to given conditions.

 The Model Builder’s interface is broken into 10 spreadsheets,
all accessible by clicking on the appropriate tab. Figure 3 shows
the “Reactions” spreadsheet. There is a spreadsheet for each of the
eight SBML components in a model (reactions, functions, rules,
compartments, species, parameters, units and events). There is
one spreadsheet for conservation relations and one spreadsheet
for the equations (including both ODEs and rule equations).

 The “Reactions” spreadsheet is the primary tool used to
create the reaction network of a model. The other spreadsheets
are either partially or completely filled by the Model Builder from
the “Reactions” spreadsheet. A reaction represents any chemical
transformation, transport, or binding process that can change the
amount of one or more species. Each row defines a single chemical
reaction. Figure 3 shows the “Reactions” spreadsheet loaded with
the frog egg model. The three main columns in this spreadsheet
are: “Reaction,” “Type,” and “Equation.”

 3.1. The JigCell Model
Builder

 Fig. 3 . The “Reactions” spreadsheet .

 Modeling Molecular Regulatory Network with JigCell and PET 89

 1. The “Reaction” column defines the species (reactants and
 products) and their stoichiometries. A list of substrates separated
by “+” signs is entered first. An arrow (→) is then entered, and
is followed by a list of products, also separated by ‘+’ signs.
Substrate and product names can contain any combination of
letters, numbers, underscores, and apostrophes. There is no
limit to the number of species that can be entered as substrates
or products. The stoichiometry of a reaction is defined by placing
a number and an ‘*’ character in front of the species (e.g., 3 * Ma).

 2. By picking a rate law from a drop down list in the “Type”
column, the user can specify the kinetics of the reaction being
defined. The Model Builder provides three built-in rate laws
(mass action, Michaelis Menten, local) and also allows users
to define their own rate laws in the “Functions” spreadsheet.
For all rate laws other than local, the Model Builder will enter
the associated rate law in the “Equation” field. The local type
allows the user to define the reaction rate of a single reac-
tion without creating a new rate law. If the user selects local,
the equation field will remain empty until the user defines the
equation for the reaction rate. Local rate laws may contain
algebraic expressions with parameters and species.

 3. The “Equation” column specifies the equation for the rate of
the reaction. If the reaction type is not Local, the “Equation”
column displays the unsubstituted equation of the selected rate
law until the user edits the rate law equation by clicking on
the cells in this column. Clicking on one of these cells displays
the “Parameters/Modifiers” Editor (Fig. 4), where the user
assigns “interpretations” to the rate constants and modifiers.
The “interpretations” can be numeric constants, expressions,
species, or species-related expressions. The Model Builder par-
tially fills the “Parameters/Modifiers” Editor when built-in
rate laws are used (e.g., S1 becomes Ci in Fig. 4 automatically
because the user defined the reaction Ci → Ca). The Model

 Fig. 4 . The “Parameters/Modifiers” Editor.

90 Shaffer et al.

Builder will substitute the user’s interpretations (entered via
the “Parameters/Modifiers” Editor) into the equation field of
the “Reactions” spreadsheet so that the user can see the final
rate law used to govern the reaction. Expressions are evaluated
to numerical values when the model is simulated.
 The “Functions” spreadsheet (Fig. 5) is used to create and

edit function definitions. A function definition is a named mathe-
matical function that may be used throughout the rest of a model.
For example, user-defined rate laws are created as function defi-
nitions. Checking the box in the “Rate Law” column causes the
newly created rate law to be included in the drop-down list of
rate laws in the “Type” column of the “Reactions” spreadsheet.
Functions are defined with place holders for arguments of the
form A# , where # is some number. The function My_rate_law in
(Fig. 5) contains five arguments A1–A5 . These arguments can be
assigned in the “Parameters/Modifiers” Editor (Fig. 4) when the
function is selected as the rate law for a reaction. Otherwise, to
use this function it may be called like this: My_rate_law(vwp, Wi,
vwpp, Wa, Ma) . Any of the function arguments can be a parameter,
species, or algebraic expression.

 The “Rules” spreadsheet (Fig. 6) serves two purposes. First,
it displays algebraic rules, which are the conservation relations in

 Fig. 5 . The “Functions” spreadsheet .

 Fig. 6 . The Model Builder “Rules” spreadsheet. The algebraic rules are automatically created by the Model Builder from
the conservation relations. The lines for kw and kc define the rates for the reactions of L2 and L, respectively. CaScaled
and WaScaled scale the concentrations of Ca and Wa to 1 after they have been diluted by Dilution. See Subheading 4.1
for more about dilution .

 Modeling Molecular Regulatory Network with JigCell and PET 91

the model. The program deduces these relations from the stoi-
chiometric matrix of the model and displays each conservation
relation in the form (a1S1 + a2S2 + ...) – T = 0 , where T is the
conserved quantity and a1, a2, ... are constants calculated from
the stoichiometry matrix. The user cannot edit an algebraic rule
on this spreadsheet but may specify how the Model Builder uses
the rule on the “Conservation Relation” spreadsheet. The second
purpose of the “Rules” spreadsheet is to create and edit assign-
ment rules. Assignment rules are used to express equations that
set the value of variables. The “Variable” field in the assignment
rule can be a species, parameter or compartment. In the case of
species the “Equation” field sets the quantity to be determined
(either concentration or substance amount), in the case of com-
partments the “Equation” field sets the compartment’s size, and
in the case of parameters the “Equation” field sets the param-
eter’s value. The value calculated by the assignment rule’s “Equa-
tion” field overrides the value assigned in the “Compartments,”
“Species,” or “Parameters” spreadsheet.

 The next three tabs are used to define compartments, species,
and parameters. A compartment represents a bounded space in
which species can be located. Spatial relationships between dif-
ferent compartments can be specified. Modelers are not required
to enter compartment information when defining a model, as a
single compartment called “cell” is created by default. The “Spe-
cies” spreadsheet (Fig. 7) provides a list of all species that are
part of a chemical reaction or defined in a Rule. The list of species
is generated automatically by the Model Builder, though a user
can add, delete, and modify species. There are several editable
attributes associated with each species. The “Parameter” spread-
sheet (Fig. 8) is used by the Model Builder to manage all param-
eters and their values associated with a model. A parameter is used
to declare a value for use in mathematical formulae. The Model
Builder recognizes as a parameter any name on the “Reactions”
spreadsheet that is not defined as a species.

 Fig. 7 . The Model Builder “Species” spreadsheet .

92 Shaffer et al.

 Fig. 8 . The “Parameter” spreadsheet .

 Fig. 9 . The “Events” spreadsheet. The symbol “@time” represents time in the system of differential equations. This event
sets “RecordTimelag” to the value of time when the “Trigger” becomes true and is used to get the time for active MPF
(Ma) to reach half the total MPF concentration (MT). This is provided as an example of how events are defined, but it is
not used in the later modeling example.

 The “Events” spreadsheet (Fig. 9) allows the user to define
actions associated with a model. For example, when modeling the
cell cycle, some trigger for cell division must be defined and the
consequences of that division must be specified. The “Name” col-
umn provides an (optional) identifier for an event. The “Trigger”
column defines the conditions under which the event takes place.
The format of this entry allows the user to specify an equality
relationship. Whenever the relationship entered in the “Trigger”
column is satisfied, the actions specified in the “Assignments”
column will occur. The “Event Assignment Editor” lets the user
define the changes that will occur when an event is executed.

 The “Units” Spreadsheet lists all unit types used in the model,
along with their definitions. A unit definition provides a name for a
unit that can then be used when expressing quantities in a model.
The Model Builder has a number of basic units and 5 built-
in unit definitions (area, length, time, substance, and volume).
Complex unit definitions such as meter/second2 can be created.

 Modeling Molecular Regulatory Network with JigCell and PET 93

 The “Conservation Relations” spreadsheet (Fig. 10) is used
to view a list of all conservation relationships that exist between
species in the model. The list of conservation equations is gener-
ated automatically, using Reder’s method (17) .

 The “Equations” spreadsheet (Fig. 11) allows the modeler
to see a list of the different types of equations that define the
model. The user does not edit equations here, as they are cre-
ated automatically from data entered on other spreadsheets. The
“Equation” column displays differential equations, assignment
rule equations, conservation relation equations, or the condition
set on the species when no equation exists.

 The JigCell Run Manager (referred to herein as the “Run Man-
ager”) lets users define specifications for an ensemble of simula-
tion runs. Hierarchies of simulations can be built up, whereby a
given simulation inherits parameter changes from a “basal” run
definition. This hierarchical organization of simulations is useful
because models are often validated against a collection of experi-
mental proto cols, each one of which requires only slightly different

 3.2. The JigCell Run
Manager

 Fig. 10 . The “Conservation Relations” spreadsheet .

 Fig. 11 . The “Equations” spreadsheet .

94 Shaffer et al.

simulation conditions. For example, the budding yeast cell cycle
model must capture the differences among many dozens of muta-
tions of the wild type organism. If the “basal” run represents the
wild-type organism, then the hierarchy can define unambiguously
and compactly the deviations from wild-type that are necessary to
specify each mutant type.

 Users input the description of ensembles using five spread-
sheets: Runs, Basal Parameters, Basal Initial Conditions, Simulator
Settings, and Plotter Settings. The “Runs” spreadsheet (Fig. 12)
specifies how to simulate a certain experiment. The name column
can (optionally) be used to identify the experiment being simul-
ated. The parents column lists all runs from which the row inherits
changes. The changes column lists additional changes to param-
eters, initial conditions, simulator settings, and plotter settings
that are needed for this run. These changes are specified using
the “Changes” editor (Fig. 13), which opens when clicking on
the changes cell for a particular run. The changes for a particular
run override the changes inherited from any parents, and these
changes propagate to its children. Color is used to reflect where
the changes are made: Blue is used to indicate changes made in
the current run (locally) and green to indicate changes inherited
from a parent run (or some previous ancestor). This information
is also indicated in the “Parents” column of Fig. 13 , which indi-
cates either the name of the ancestor that caused that parameter’s
setting to change, or states “local” if the change was explicitly
made by the user for this run. Figure 12 shows a “Runs” spread-
sheet for simulating some experiments done on frog egg extracts
to characterize the activation of MPF.

 Fig. 12 . The “Runs” spreadsheet .

 Modeling Molecular Regulatory Network with JigCell and PET 95

 Each row corresponds to a separate experiment. The run
named “Interphase” (on row 1) describes changes to the initial
model to simulate an extract starting in interphase. This run is
then set as a parent to the run named “Kumagai and Dunphy
1995 Fig. 3C Interphase” on row 6. The run on row 6 inherits
all its parent’s changes and represents an experiment to measure
the phosphorylation of MPF by Wee1 during interphase. The
“Changes” column displays changes made by the current run but
not changes inherited from the parents.

 The Run Manager provides a “Plot” button on the “Runs”
spreadsheet that generates an immediate simulation for a speci-
fied row and then plots the results.

 The “Simulator Settings” spreadsheet (Fig. 14) specifies the
simulator to be used and appropriate values for the simulator’s
configuration parameters, such as total time of integration, toler-
ances, output interval, etc. In this case, the simulator chosen is
XPP (18) . Other simulators are also provided, such as StochKit
 (19) (for stochastic simulation) and Oscill8 (20) .

 The “Plotter Settings” spreadsheet (Fig. 15) enables the user
to specify the variables to be plotted from a simulation run’s output.
The “Plotter Settings” spreadsheet also contains options to custom-
ize the plot by selecting colors, mark styles, whether to connect
points, etc.

 Fig. 13 . The “Changes” Editor for a particular run. In the “Setting” column of MT the
cell would be colored blue to represent a local change. In the “Setting” column for CT,
WT, and Dilution, the cell would be colored green to represent changes inherited from
a parent run.

96 Shaffer et al.

 The Parameter Estimation Toolkit (PET) is designed to help
users explore parameter space and fit simulation output (e.g.,
time course simulations) to experimental data. Typical use of
PET follows the modeling process discussed in Subheading 2 :
 1. The user imports an SBML file created by the Model Builder

or some other SBML editor.
 2. A basal parameter set is created directly from the SBML file or

imported from the Run Manager’s basal file.
 3. Simulation runs are defined in PET or imported from a run

file created by the Run Manager.
 4. At this point the user may simulate the model, even though

experimental data have not yet been defined.
 5. Experimental data are defined and transforms set up for the

simulation runs.

 3.3. (PET) Parameter
Estimation Toolkit :

 Fig. 15 . The “Plotter Settings” spreadsheet .

 Fig. 14 . The “Simulator Settings” spreadsheet .

 Modeling Molecular Regulatory Network with JigCell and PET 97

 6. Experimental data and model output are compared by the user
(Human Analysis) or by the parameter estimator (Automated
Analysis). Parameters are adjusted to seek a better fit of the model
to the data.

 PET supports cut and paste of experimental data into and from
applications, such as Microsoft Excel, copying of plots into pres-
entations or other documents, and generation of PDF files con-
taining plots. PET supports undo and redo of most operations
(including all delete operations), semantic checks of user input,
and color coding (e.g., of parameters changed by the user in the
“Edit Basals” spreadsheet).

 The following subsections detail some general features
of PET. Specific examples of these features are provided in
Subheading 4 .

 Users enter experimental data and define what transforms to use
on the model output in the “Edit Data” screen (Fig. 16). Transforms

 3.3.1. Experimental Data
and Transforms

 Fig. 16 . The “Edit Data” screen shows experimental data and the set up for transforms. This figure shows a list of numbers
for the time series concentration of L2. The “Time Series” transform is selected for the type of experimental data .

98 Shaffer et al.

convert the time series data generated by a simulation into a form
comparable to the experimental data. For example, experimen-
tal data might measure the time it takes for a specific event to
happen (timelag) or how much of a species must be added to a
system to change a steady state (threshold), or the viability of a
mutant. In these cases, the computer simulation must produce
a number comparable to the experimental datum (i.e., measuring
the same observable). Automated parameter estimation routines
then take the difference between the experimental observation
and the transformed output of the model, and attempt to minimize
this difference by adjusting parameter values. A transform might
be quite sophisticated. For example, it might need to anal yze the
time series output for some measurement (such as cell size) to
deduce that an oscillation is taking place, and its period. Trans-
forms are implemented as FORTRAN functions.

 The name of every simulation run defined in the “Edit Simula-
tions” screen (Fig. 17) appears in the “Edit Data” screen (Fig. 16).

 Fig. 17 . The “Edit Simulations” screen showing parameter and initial condition values. PET highlights inherited changes
in gray. When a parent is selected in the “Inherits” list, the changes inherited from that parent are highlighted in a pastel
purple (also shown in gray in this figure) .

 Modeling Molecular Regulatory Network with JigCell and PET 99

In the “Edit Data” screen, the user can select the name of a simu-
lation run and define experimental data and a transform. Note
that some run specifications might not define either experimental
data or a transform. These specifications might be inherited by
other runs (e.g., the “M-phase” and “Interphase” runs in the
example in Subheading 4), or the modeler might wish to store
these specifications for another purpose.

 A user can explore parameter space by setting parameter values
(Fig. 18), clicking the “Simulate” button, and view the results
(Fig. 19). This will generate time course plots of selected spe-
cies (Fig. 19). Changes in basal parameters and initial conditions
can be made in the “Edit Basals” screen. The user might wish to
keep track of multiple basal sets, which are all displayed in the
“Edit Basals” screen. When the user clicks the “Simulate” button
a simulation is run for each basal set checked in the “Edit Basals”

 3.3.2. Parameter
Exploration and Estimation

 Fig. 18 . The “Edit Basals” screen lets users define basal sets of initial conditions and parameters. Changes made
to parameters and initial conditions are highlighted in green (parameters vwp and vwpp in this figure). The “Com-
mit Changes” button saves changes and removes the highlight colors. Alternatively, the “Discard Changes” button will
restore all changed values to the last commit or the original basal set, whichever is more recent .

100 Shaffer et al.

screen, paired with each simulation checked in the “Edit Simula-
tions” screen. For the example, in Figs. 17 and 18 , sixteen simula-
tions are performed: the eight simulations checked in Fig. 17 are
run for each of the two basal parameter sets checked in Fig. 18 .
Every simulation performed generates a plot and the appro-
priate experimental data from the “Edit Data” screen is plotted
with the model simulation points. This allows the user to quickly
compare model simulations with experimental data.

 Fig. 19 . The PET report window shows the plots using the basal set named “ Marlovits (1998)” (left column) side-by-side
with plots using the basal set shown in Fig. 18 (right column). Each simulation run takes a row in the grid of plots. The
simulation run “Kumagai and Dunphy 1995 Figure 3C Interphase” is on the first row, “Kumagai and Dunphy 1995 Figure
 3C M-phase” is on the second row, and so forth. As many simulation runs and basal sets will be simulated as the user
checks in the “Edit Simulations” (Fig. 17) and “Edit Basals” (Fig. 18) screens in PET. This feature of PET allows the user
to quickly compare multiple basal sets to experiments and assess which basal set best fits experimental data.

 Modeling Molecular Regulatory Network with JigCell and PET 101

 By manually changing parameters, running simulations, and
viewing plots, a user might discover parameter values that bring
the simulations into acceptable agreement with the experimental
data. But this manual process is time consuming. PET also provides
automated parameter estimation, which searches for parameter val-
ues that best fit a model to experiments. Automated parameter
estimation can be configured through the “Estimator Settings”
screen (Fig. 20) and then run with the “Estimate” button.

 Two algorithms are currently available in PET for auto-
mated parameter estimation: ODRPACK95 (21, 22) and VTDi-
rect (23) . Both minimize an objective function defined as the
weighted sum of squares of the differences between the model
and experimental data:

 2 2

1

() ,
i i

n

i i
i

E w we db e d
=

= +∑ (1)

 + = + = …(;) , for 1 ,i i i i if x y i nd b e (2)

 where b is the parameter vector (referred to as a parameter set
in this chapter), each fi is a function of the model (e.g., a time
course simulation) and could be different for each i , xi is the

 Fig. 20 . The “Estimator Settings” screen shows the parameters to be estimated and ranges on those parameters (left),
experimental data weights (center), and algorithm settings (right) .

102 Shaffer et al.

 i th independent experimental datum (e.g., time), yi is the i th
dependent experimental datum (e.g., species concentration), d
and e are the respective errors attributed to the independent and
dependent experimental data, and wd and we are the weights for d
and e supplied by the user (PET automatically calculates default
values for these). The algorithms search for a d and b to minimize
 Eq. 1 (note that e can be calculated from Eq. 2 once d and b
are chosen). Zwolak et al. (21) and Boggs et al. (24, 22) explain
this objective function in more detail. ODRPACK95 is a local
optimization algorithm based on Levenberg-Marquardt. VTDi-
rect is a global optimization algorithm based on the “DIViding
RECTangles” algorithm of Jones (23) .

 When estimating parameters automatically, the user can select
which experiments are to be fit by checking them in the “Edit
Simulations” screen (Fig. 17). For a particular “estimation,” the
user might allow only certain parameters to be varied by PET.
The fixed parameters might be part of a conserved quantity, have
a known value, or are not well constrained by the current data.
Such parameters are selected as “fixed” by checking the box in the
“Fixed” column of the “Estimator Settings” screen (Fig. 20).

 Ranges on each parameter can also be defined (and must be
defined for global optimization with VTDirect). Figure 20 shows
the “Estimator Settings” screen in PET where the ranges can be
edited. When the parameter range extends over multiple orders of
magnitude, then the user may wish to use a logarithmic scale by
checking the box in the “Log” column. This feature is only avail-
able for global estimation and affects the way VTDirect searches
parameter space. For example, for a linear scale with a range of
0.01–1000 for some parameter p1 , VTDirect might select values
of approximately 200, 400, 600, and 800. If a logarithmic scale
is selected, the equivalent points selected by VTDirect would be
0.1, 1, 10, and 100. In the linear case, small values of p1 are never
explored, which might not be desirable.

 Weights can be assigned to the experimental data to reflect
relative confidence in the data in the “Estimator Settings” screen
(Fig. 20). These are the weights appearing in Eq. 1 . PET assigns
default values for the weights of

 2 2

1 1
, .

1 1i i
i i

w w
x yd e= =

+ +

 These weights can reflect error bounds on the data determined
by repeats of the experiment, if available. Larger values for the
weight can be assigned for data with small error bounds. Simi-
larly, smaller values for the weight can be assigned for data with
large error bounds.

 Modeling Molecular Regulatory Network with JigCell and PET 103

 We now provide a detailed example of how our tools are used
to build a model, based on the modeling process described in
 Subheading 2 . The model used here was derived from Marlovits
et al. (1) and Zwolak et al. (25, 26) and can be seen in Fig. 1 . It
models the regulation of entry into mitosis in frog egg extracts
by MPF, Cdc25, and Wee1. Experimental data from Kumagai
and Dunphy (27, 28) and Tang et al. (29) are fit using local and
global optimization. We discuss an alternative model motivated
by the parameter set returned from the global optimizer. Readers
interested in pursuing the example further might consider imple-
menting this alternative model as an exercise.

 We begin by entering the molecular network from Fig. 1 into
the Model Builder. Each reaction appears as a line in the reaction
spreadsheet (Fig. 3). Michaelis-Menten kinetics are used for the
forward and reverse reactions of Cdc25 and Wee1. A user defined
rate law (My_rate_law) is used to define MPF phosphorylation
and dephosphorylation by the active forms of Cdc25 (Ca) and
Wee1 (Wa) as well as a small residual activity of the inactive forms
of Cdc25 (Ci) and Wee1 (Wi). Two species, L and L2, are added
to the model for comparison to measurements of labeled MPF.
L is used to measure the rate at which Cdc25 removes the phos-
phate group from MPF (Kumagai and Dunphy (28) Figure 3C).
L2 is used to measure the rate at which Wee1 adds the phosphate
group to MPF (Kumagai and Dunphy (28) Figure 4B). The map
of names used in the model to the biological names can be seen
in Fig. 1 .

 The Marlovits (1) parameter set (bMarlovits in Table 1) is entered
into the Model Builder via the “Parameters” spreadsheet, and
exported to a basal file for later use with the Run Manager and PET.
Initial conditions for the species are defined in the “Species” spread-
sheet for interphase (Table 2). Interphase is defined as a state of low
MPF and Cdc25 activity and high Wee1 activity.

 In some experiments, a buffer is added to an extract, thereby
diluting the endogenous concentrations of proteins in the extract.
The dilution factor is set to 1 for the experiments from Kumagai
and Dunphy Figures 3C and 4 B (28) . For the other experiments
we use a dilution factor (“Dilution”) relative to the Kumagai and
Dunphy (28) experiments. The dilution of species in the model
is handled in the Run Manager, as discussed in Subheading 4.2 .
For Wee1 and Cdc25 we would like the total concentration to
be scaled to 1, even after they have been diluted, and this can
be specified in the “Rules” spreadsheet of the Model Builder. In
the “Species” spreadsheet we create two new species and assign

 4. A Modeling
 Example

 4.1. Entering
the Molecular Network

104 Shaffer et al.

 Table 2
 Initial conditions

 Species M-phase Interphase

 Ma MT 0

 Mi 0 MT

 Ca CT 0

 Ci 0 CT

 Wa 0 WT

 Wi WT 0

For example, in Interphase the initial
value of inactive MPF (Mi) is set to the
total amount of MPF (MT) while the ini-
tial value of active MPF (Ma) is set to 0.
Initial conditions of the species to model
extracts starting in M-phase or Interphase.

 Table 1
Parameter sets

 Parameter b Marlovits blocal bglobal

 vw 2 1.7 3.0

 t
wv 0.01 2.4e-4 3.5e-6

 h
wv 1 1.4 2.4

 m
wv 0.05 0.027 0.014

 vc 2 3.0 120

 t
cv 0.017 0.015 0.015

 n
cv 0.17 0.18 0.18

 m
cv 0.05 0.017 0.0027

 Kmw 0.1 0.01 0.099

 Kmwr 1 0.01 0.01

 Kmc 0.1 0.14 20

 Kmcr 1 0.14 3.4

 E 0.018 0.059

 The weighted sum of squares (the value of the objective function
 E) for each estimated set is shown in the last row. Parameter sets
bMarlovits from Marlovits et al. (1), blocal from the local parameter
estimator, and bglobal from the global parameter estimator.

 Modeling Molecular Regulatory Network with JigCell and PET 105

them values in the “Rules” spreadsheet with the rules CaScaled =
Ca/ Dilution and WaScaled = Wa/ Dilution .

 In this section, we define simulation runs in the Run Manager.
Each experiment has a line in the Run Manager and all the values
set for the runs can be seen in Fig. 12 . The Run Manager reads in
the SBML file containing our model and the file containing basal
parameter values and initial conditions. One way to specify these
files is through the “File” menu.

 Experiments from Kumagai and Dunphy Figures 3C and
 4 B (28) , Kumagai and Dunphy Figure 10A (29) , and Tang
et al. Figure 2 (29) specify what state the extract was in when the
experiment began, either interphase or M-phase. Initial condi-
tions for the model are created to mimic these extract states, and
the values of these initial conditions can be seen in Table 2 .

 For the initial conditions for M-phase and interphase, we cre-
ate two runs in the Run Manager called “M-phase” and “Inter-
phase,” respectively (Fig. 12). All runs starting in M-phase will
inherit from the M-phase basal run. Similarly, all runs starting in
interphase will inherit from the Interphase run.

 Experiments in Kumagai and Dunphy Figure 10A (27) and
Tang et al. Figure 2 (29) add a buffer that dilutes the extracts by a
factor of 0.83 and 0.67, respectively. We handle this by creating a
simulation run for each case, called “Dilution = 0.83” and “Dilu-
tion = 0.67”. These runs set the parameter Dilution to the cor-
rect value. Then we create a simulation run “Dilute” that applies
the parameter Dilution to all species that are diluted (e.g., CT =
CT · Dilution , WT = WT · Dilution , etc.). The initial conditions
for the species are diluted by their assignments (Table 2). None
of these runs are intended to be simulated. They exist just to be
inherited by runs that use diluted species.

 4.2. Defining
Simulation Runs

 Table 3
 Experimental data

 Experiment Species Time Concentration

 Kumagai and Dunphy Figure 3C (28) Interphase L2 2 1
 4 1
 16 1

 Kumagai and Dunphy Figure 3C (28) M-phase L2 4 0
 16 0

(continued)

106 Shaffer et al.

 Experiment Species Time Concentration

 Kumagai and Dunphy Figure 4B (28) Interphase L 2 1
 4 1
 8 0.85

 Kumagai and Dunphy Figure 4B (28) M-phase L 2 0.75
 4 0.51
 8 0.21

 Kumagai and Dunphy Figure 10A (27) Interphase Ca 5 0.75
 10 0.5
 20 0.1
 40 0

 Kumagai and Dunphy Figure 10A (27) M-phase Ca 1.25 0.8
 2.5 0.9
 5 1
 10 1

 Tang et al. Figure 2 (29) Interphase Wa 7.5 0.5
 15 1

 Tang et al. Figure 2 (29) M-phase Wa 2 0.5
 5 0
 7 0
 10 0

Table 3
(continued)

 With this model we will attempt to reproduce the experimental
data from Kumagai and Dunphy (27, 28) and Tang et al. (29) .
The data from these papers (images of gels, the points on plots,
etc.) are quantified in Table 3 . These data are entered into PET
via the “Edit Data” screen (Fig. 16). A basal set is defined in
the “Edit Basals” screen from the basal file containing the
Marlovits parameters. For each experiment, the “time series”
transform is selected in the “Edit Data” screen, the measured
species is selected, and the experimental data are entered so that
the optimization code will be able to compare simulation output
to the experimental data. Now a set of simulations can be run and
we can see how well the Marlovits parameters fit the experimental
data (Fig. 21).

 4.3. Entering
the Experimental Data

 Modeling Molecular Regulatory Network with JigCell and PET 107

 Fig. 21 . The parameter set “Marlovits (1998)” (b Marlovits), “Beta Local” (b Local), and “Beta Global” (bGlobal) are plotted along
with the experimental data for comparison .

108 Shaffer et al.

 We choose the Marlovits parameters as an initial guess to be used
by the local optimization algorithm ODRPACK95 and set some
reasonable lower bounds on the parameters (Table 4). Only the
simulation runs that we wish to fit to data are checked in the
“Simulations” screen of PET, and only the parameters we wish
to be estimated are checked in the “Estimator Settings” screen.
We use the default settings for ODRPACK95, which, in practice,
are usually adequate. As the initial guess we select the “Marlovits
(1998)” basal set. The optimizer returns the parameters blocal in
Table 1 , and we can compare the results to the Marlovits set by
running simulations on the basal set and on the fitted parameter
values. (Running the simulation would actually show a window
similar to Fig. 19 , but here we show the plots more compactly in
 Fig. 21). We see from Fig. 21 that the parameter estimator does
return parameters that fit the data better. We can also see that
the parameter values are close to the starting value of Marlovits
(Table 1).

 In some cases, the user may not have a good starting point for the
parameters, or the user might wish to explore parameter space in
search of other good parameter sets. PET supports these cases

 4.4. Performing Local
Parameter Estimation

 4.5. Global Parameter
Estimation

 Table 4
 Lower and upper bounds for the parameters

 Parameter Lower (VTDirect) Lower (ODRPACK95) Upper

 nw 1e-6 0 1e4

 nwp 1e-6 0 1e4

 nwpp 1e-6 0 1e4

 nwppp 1e-3 0 100

 nc 1e-6 0 1e4

 ncp 1e-6 0 1e4

 ncpp 1e-6 0 1e4

 ncppp 1e-3 0 100

 Kmw 0.01 0.01 100

 Kmwr 0.01 0.01 100

 Kmc 0.01 0.01 100

 Kmcr 0.01 0.01 100

 VTDirect will only explore parameter space within these bounds. We use
different lower bounds for VTDirect and ODRPACK95, as explained in
the text

 Modeling Molecular Regulatory Network with JigCell and PET 109

by providing a global parameter estimation algorithm, VTDirect.
VTDirect requires upper and lower bounds on the parameter val-
ues. In our example, we assume that we know little about the
true values of the parameters. We give bounds that span several
orders of magnitude, and we use a logarithmic scale to distribute
the search evenly across these orders of magnitude. Since we use
a logarithmic scale, we must set non-zero lower bounds. We set
most lower bounds to 10–6 , which allows these parameters to get
sufficiently close to zero to have a negligible quantitative effect on
the model. The bounds are recorded in Table 4 . VTDirect is run
with the settings from Table 5 , and the resulting parameter set is
passed to ODRPACK95 for refinement. We reset the parameter
bounds for the ODRPACK95 run to those of Table 4 . ODR-
PACK95 does not use the logarithmic scale setting and there-
fore can have lower bounds of 0 for this run. The global refined
parameter set is called bglobal in Table 1 .

 Visually, the parameters generated by the global and local opti-
mization runs both fit the experimental data (Fig. 21). The
parameter sets (blocal and bglobal in Table 1) are similar, except for
the values of nc , ncppp , and Kmc . For Kmc = 20 and CT = 1 , the
Michaelis-Menten rate law for reaction Ci→Ca in Fig. 1 should
be replaced by a mass action rate law, (nc /Kmc·Ma·Ci) . This change
to the model is addressed in Zwolak et al. (26) , and we will not
go through the analysis here.

 Next, we can create another variation of the model by add-
ing experimental data for timelags and thresholds, as discussed
in Zwolak et al. (25) . Automated parameter estimation can be
run to find parameter values that fit these new experiments, as
well as the experiments discussed in this section. The model can
continue to be refined and expanded in this way to test further
hypotheses and achieve new goals.

 The files for the modeling example and its variations are dis-
tributed with JigCell and PET and can be found at http://mpf.
biol.vt.edu/MMRN_chapter/.

 4.6. Next Steps

 Table 5
 Settings used by VTDirect

 Settings Value

 EPS 1.0

 Sum of Squares Tolerance 1.0e-10

 Maximum Iterations 1.0e4

 Maximum Evaluationsr 1.0e5

110 Shaffer et al.

 We have demonstrated how a modeler would enter all of the
necessary information needed to define, simulate, and validate a
model of a molecular regulatory network. Advanced support tools
like the JigCell Model Builder make it easy to check the syntactic
consistency and completeness of the model. This makes it pos-
sible to construct larger models than can be done “by hand” and
thus opens the possibility of constructing more complex models
than previously possible. The JigCell Run Manager provides a
way to organize and manage the information needed to define
the ensemble of simulation runs for validating the model against
a specific set of experiments. PET provides a tool to help the user
compare simulation output to experimental data. PET also pro-
vides automated tools for finding “best fitting” values of the rate
constants in a model. Our example walks the reader through a
complete cycle of entering the model, testing it for initial validity,
and using parameter estimation to improve the model.

 While tools such as JigCell and PET allow modelers to build
and test larger models than were possible before, there is still a
long way to go before it will be possible to build models that
 capture the complex regulatory systems within mammalian cells.
Current models are defined as a single monolithic block of reac-
tion equations, an approach that is reaching its limits. In the future,
modelers will be able to express their models as a collection of
interacting components, thus allowing them to build large models
from smaller pieces. Improvements are also needed in simulators
(including the ability to perform efficient stochastic simulations),
in parameter estimation, and in computer performance.

 5. Summary

References

 1. G. Marlovits, C.J. Tyson, B. Novak, and J.J.
Tyson (1998) Modeling M-phase control
in xenopus oocyte extracts: the surveillance
mechanism for unreplicated DNA. Biophys.
Chem. 72, 169–184.

 2. K.C. Chen, L. Calzone, A. Csikasz-Nagy, F.R.
Cross, B. Novak, and J.J. Tyson (2004) Inte-
grative analysis of cell cycle control in budding
yeast. Mol. Biol. Cell 15, 3841–3862.

 3. A.C. Hindmarsh (1983) ODEPACK: A sys-
tematized collection of ODE solvers, in Sci-
entific Computing, ed. by R.S. Stepleman,
North Holland Publishing Company, 55–64.

 4. P. Mendes (1997) Biochemistry by numbers:
Simulation of biochemical pathways with Gepasi
3. Trends in Biochem. Sci. 22, 361–363.

 5. N.A. Allen, L. Calzone, K.C. Chen, A. Cili-
berto, N. Ramakrishnan, C.A. Shaffer, J.C.
Sible, J.J. Tyson, M.T. Vass, L.T. Watson, and
J.W. Zwolak (2003) Modeling regulatory net-
works at Virginia Tech. OMICS 7, 285–299.

 6. H. Sauro, M. Hucka, A. Finney, C. Wellock,
H. Bolouri, J. Doyle, and H. Kitano (2003)
Next generation simulation tools: The Sys-
tems Biology Workbench and BioSPICE
 integration. OMICS 7, 355–372.

 7. J. Schaff, B. Slepchenko, Y. Choi, J. Wagner,
D. Resasco, and L. Loew (2001) Analysis of
non-linear dynamics on arbitrary geometries
with the Virtual Cell. Chaos 11, 115–131.

 8. Y. Cao, H. Li, and L. Petzold (2004) Effi-
cient formulation of the stochastic simulation

 Modeling Molecular Regulatory Network with JigCell and PET 111

algorithm for chemically reacting systems.
J. Chem. Phys. 121, 4059–67.

 9. M. Gibson, and J. Bruck (2000) Efficient
exact stochastic simulation of chemical sys-
tems with many species and many channels.
J. Phys. Chem. A 104, 1876–1889.

10. D. Gillespie (2001) Approximate accelerated
stochastic simulation of chemically reacting
systems. J. Chem. Phys. 115, 1716–1733.

11. M. Vass, C. Shaffer, N. Ramakrishnan,
L. Watson, and J. Tyson (2006) The JigCell
Model Builder: a spreadsheet interface for
creating biochemical reaction network mod-
els. IEEE/ACM Trans. Computat. Biol. and
Bioinform. 3, 155–164.

12. N. Allen, R. Randhawa, M. Vass, J.W. Zwolak,
J.J. Tyson, L.T. Watson, and C. Shaffer (2007)
JigCell, http://jigcell.biol.vt.edu/.

13. M. Vass, N. Allen, C. Shaffer, N. Ram-
akrishnan, L. Watson, and J. Tyson (2004)
The JigCell Model Builder and Run Manager.
Bioinformatics 20, 3680–3681.

14. J.W. Zwolak, T. Panning, and R. Singhania
(2007) PET: Parameter Estimation Toolkit,
http://mpf.biol.vt.edu/pet.

15. M. Hucka, A. Finney, H. Sauro, and 40 addi-
tional authors (2003) The systems biology
markup language (SBML): a medium for rep-
resentation and exchange of biochemical net-
work models. Bioinformatics 19, 524–531.

16. M. Hucka, A. Finney, B.J. Bornstein, S.M. Keat-
ing, B.E. Shapiro, J. Matthews, B.L. Kovitz, M.J.
Schilstra, A. Funahashi, J.C. Doyle, and H. Kitano
(2004) Evolving a lingua franca and associated
software infrastructure for computational systems
biology: The systems biology markup language
(SBML) project. Syst. Biol. 1, 41–53.

17. H. Sauro, and B. Ingalls (2004) Conserva-
tion analysis in biochemical networks: com-
putational issues for software writers. Biophys.
Chem. 109, 1–15.

18. B. Ermentrout (2002) Simulating, Analyz-
ing, and Animating Dynamical Systems: A

Guide to XPPAUT for Researchers and Stu-
dents, SIAM.

19. StochKit (2005) Project website, www.
cs.ucsb.edu/cse/StochKit.

20. E. Conrad (2007) Oscill8, http://oscill8.
sourceforge.net/.

21. J. Zwolak, P. Boggs, and L. Watson (to appear)
Odrpack95: A weighted orthogonal distance
regression code with bound constraints. ACM
Trans. Math. Softw. .

22. P.T. Boggs, J.R. Donaldson, R.H. Byrd, and
R.B. Schnabel (1989) Algorithm 676: Odr-
pack: software for weighted orthogonal dis-
tance regression. ACM Trans. Math. Soft. 15,
348–364.

23. D. Jones, C. Perttunen, and B. Stuckman
(1993) Lipschitzian optimization without the
Lipschitz constant. J. Optim. Theory. Appl. 79,
157–181.

24. P.T. Boggs, R.H. Byrd, and R.B. Schnabel
(1987) A stable and efficient algorithm for
nonlinear orthogonal distance regression.
SIAM J. Sci. Stat. Comput. 8, 1052–1078.

25. J.W. Zwolak, J.J. Tyson, and L.T. Watson
(2005) Parameter estimation for a mathemat-
ical model of the cell cycle in frog eggs.
J. Comp. Biol. 12, 48–63.

26. J.W. Zwolak, J.J. Tyson, and L.T. Watson
(2005) Globally optimized parameters for a
model of mitotic control in frog egg extracts.
IEE Syst. Biol. 152, 81–92.

27. A. Kumagai, and W.G. Dunphy (1992) Reg-
ulation of the cdc25 protein during the cell
cycle in xenopus extracts. Cell 70, 139–151.

28. A. Kumagai, and W.G. Dunphy (1995) Con-
trol of the cdc2/cyclin B complex in Xenopus
egg extracts arrested at a G2/M checkpoint
with DNA synthesis inhibitors. Mol. Biol. Cell
6, 199–213.

29. Z. Tang, T.R. Coleman, and W.G. Dunphy
(1993) Two distinct mechanisms for negative
regulation of the wee1 protein kinase. EMBO
J. 12, 3427–3436.

 Chapter 5

 Rule-Based Modeling of Biochemical Systems with BioNetGen

 James R. Faeder , Michael L. Blinov , and William S. Hlavacek

 Summary

 Rule-based modeling involves the representation of molecules as structured objects and molecular interac-
tions as rules for transforming the attributes of these objects. The approach is notable in that it allows one
to systematically incorporate site-specific details about protein–protein interactions into a model for the
dynamics of a signal-transduction system, but the method has other applications as well, such as following
the fates of individual carbon atoms in metabolic reactions. The consequences of protein–protein interac-
tions are difficult to specify and track with a conventional modeling approach because of the large number
of protein phosphoforms and protein complexes that these interactions potentially generate. Here, we focus
on how a rule-based model is specified in the BioNetGen language (BNGL) and how a model specification
is analyzed using the BioNetGen software tool. We also discuss new developments in rule-based modeling
that should enable the construction and analyses of comprehensive models for signal transduction pathways
and similarly large-scale models for other biochemical systems.

 Key words: Computational systems biology , Mathematical modeling , Combinatorial complexity ,
 Software , Formal languages , Stochastic simulation , Ordinary differential equations , Protein–protein
interactions , Signal transduction , Metabolic networks.

 BioNetGen is a set of software tools for rule-based modeling (1) .
Basic concepts of rule-based modeling and the BioNetGen Lan-
guage (BNGL) are illustrated in Fig. 1 – these concepts and the
conventions of BNGL will be thoroughly discussed later in the text.
Here, in explaining how to use BioNetGen to model biochemical
systems, we will be primarily concerned with signal-transduction
systems, which govern cellular responses, such as growth and dif-
ferentiation, to signals, such as hormones and cytokines. In other

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_5

113

114 Faeder, Blinov, and Hlavacek

words, signal-transduction systems are responsible for making
decisions about the fates and activities of cells. Decision making
in these systems is accomplished by dynamical systems of interact-
ing molecules (2) . To develop predictive computational models of
these complex systems, we must be able to abstract their relevant
details in a form that enables reasoning about or simulation of the
logical consequences of a set of interactions, which enables the
testing of model predictions against experimental observations
 (3) . Analysis of predictive models can help to guide experimental

 Fig. 1 . Rule-based modeling concepts and their encoding in BioNetGen Language (BNGL). (A) The basic building blocks
are molecules, which are structured objects, composed of components that represent functional elements of proteins
and may have associated states that represent covalent modifications or conformations. Molecules may be assembled
into complexes through bonds that link components of different molecules. (B) Patterns select particular attributes of
molecules in species (shown in bold). The pattern shown here selects molecules of B with a free b1 binding site regard-
less of the phosphorylation or binding status of the b2 component. (C) Rules specify the biochemical transformations
that can take place in the system and may be used to build up a network of species and reactions (see Section 3.5 for
a complete description of rule syntax). The reaction center (components undergoing direct modification) is underlined .
(This is shown for clarity and is not part of BioNetGen syntax.) Starting with the seed species, rules are applied to gener-
ate new reactions and species by mapping reactant patterns onto species and applying the specified transformation(s).
Species generated by new reactions may be acted on by other rules to generate new reactions and species, and the
process continues until no new reactions are found or some other stopping criteria are satisfied .

 Rule-Based Modeling of Biochemical Systems with BioNetGen 115

investigations and may ultimately enable model-guided engineer-
ing and manipulation of cellular regulation (4– 6) . Before begin-
ning our discussion of BioNetGen, we will briefly recap features of
signal-transduction systems that motivate a rule-based modeling
approach and the general idea of rule-based modeling. For more
thorough reviews of these topics see refs. 7, 8 .

 A prominent feature of any signal-transduction system is an
intricate network of protein–protein interactions (9, 10) . These
interactions can have a number of consequences, including the
posttranslational modification of proteins, the formation of heter-
ogeneous protein complexes in which enzymes and substrates are
colocalized, and the targeted degradation of proteins. For under-
standing and modeling the system dynamics of protein–protein
interactions, the details that are most relevant are typically found
at the level of protein sites, the parts of proteins that are responsi-
ble for protein–protein interactions. These interactions are medi-
ated by evolutionarily conserved modular domains of proteins
that have binding and catalytic activities, such as Src homology 2
(SH2) domains and protein tyrosine kinase domains, and by short
linear motifs (e.g., immunoreceptor tyrosine-based activation
motifs or ITAMs) (11) with binding activities that can often be
switched on and off through posttranslational modifications, such
as tyrosine phosphorylation (12– 14) . A great deal of knowledge
about the site-specific details of protein–protein interactions has
accumulated in the scientific literature and is being actively organ-
ized in electronic databases (15, 16) , and new technologies, such
as mass spectrometry (MS)-based proteomics (17) , can be applied
to quantitatively monitor system responses to a signal at the level
of protein sites on a large scale. For example, time-resolved meas-
urements of the phosphorylation of individual tyrosine residues
are possible (18) .

 Despite the high relevance of the site-specific details of
protein–protein interactions for understanding system behavior,
models incorporating these details are uncommon. For exam-
ple, the seminal model of Kholodenko et al. (19) and many of
its extensions, such as the model of Schoeberl et al. (20) , for
early events in signaling by the epidermal growth factor receptor
(EGFR) do not track the phosphorylation kinetics of individual
tyrosines in EGFR. Models that incorporate such details are gen-
erally difficult or impossible to specify and analyze using conven-
tional methods, largely because of the combinatorial number of
protein modifications and protein complexes that can be gener-
ated through protein–protein interactions (7, 8) . For example, a
protein containing n peptide substrates of kinases can potentially
be found in up to 2 n distinct phosphorylation states. This feature
of protein–protein interactions, which arises because a typical
protein involved in cellular regulation contains multiple sites of
posttranslational modification and multiple binding sites, has

116 Faeder, Blinov, and Hlavacek

been called combinatorial complexity and has been recognized
as a significant challenge to our understanding of cellular regu-
lation (7, 21, 22) . In a conventional model specification, which
often takes the form of a list of the reactions that are possible
in a signal-transduction system or the corresponding system of
coupled ordinary differential equations (ODEs) for the chemical
kinetics, each chemical species that can be populated and each
reaction that can occur must be manually defined, which is infea-
sible for all but the simplest systems because of the vast numbers
of chemical species and reactions that can usually be generated
by protein–protein interactions.

 Another limitation of conventional modeling is a lack of stand-
ards for explicitly representing the composition and connectivity of
molecular complexes. The chemical species accounted for in a typi-
cal model are represented as structureless objects whose identities
and properties are referenced only by name. Modelers attempt to
name model parameters and variables such that their names sug-
gest what is being represented, but conventions vary and are often
inconsistent. A dimer of EGFR molecules may be represented as
R-R or R:R – designations that abbreviate EGFR to R (for recep-
tor) and that indicate the composition of the complex – or simply
as D (for dimer). A dimer of EGFR molecules associated with
the adapter protein Grb2 may then be represented as R-R-Grb2,
D-Grb2, or even as R-Grb2 or simply by the index of a generic vari-
able name (e.g., X 5). The latter examples obscure the fact that two
receptor molecules are present in the complex. Model(er)-specific
nomenclatures thus present a challenge to understanding a model,
especially a large model, which becomes particularly problematic
when one attempts to reuse or extend a model. In addition, infor-
mation about how two molecules are connected is nearly always
absent in a conventional model specification, even though in many
cases there is detailed site-specific information available about the
interaction. For example, interaction of EGFR and Grb2 occurs
when the SH2 domain of Grb2 binds a phosphorylated tyrosine
residue in EGFR, such as Y1068 (23) .

 The limitations of conventional approaches to model speci-
fication noted above have prompted the development of formal
languages specially designed for representing proteins and protein–
protein interactions, the κ -calculus being an early and notable
example (24) . One of these formal languages is the BioNetGen
language (BNGL) (8) , which is based on the use of graphs to
represent proteins and protein complexes and graph-rewriting
rules to represent protein–protein interactions (25, 26) . BNGL
allows site-specific details of protein–protein interactions to be
captured in models for the dynamics of these interactions in a
systematic fashion, alleviating both nomenclature and reusability
issues (8) . BNGL also provides a means for specifying precise
visualizations of protein–protein interactions (25, 26) . Below,

 Rule-Based Modeling of Biochemical Systems with BioNetGen 117

we provide a thorough overview of the text-based syntax and
semantics of BNGL, an understanding of which is essential for
using the BioNetGen software (http://bionetgen.org). BioNet-
Gen facilitates a rule-based approach to modeling biochemical
reaction kinetics, an alternative to conventional modeling that
largely overcomes the problem of combinatorial complexity (8) .
We note that the current syntactical and semantic conventions of
the κ -calculus are nearly identical to those of BNGL (27) .

 In a rule-based approach to modeling, the molecular interac-
tions in a system are abstracted as BNGL-encoded rules, which
are precise formal statements about the conditions under which
interactions occur and the consequences of these interactions.
Rules also provide rate laws for transformations resulting from
molecular interactions. At one extreme, a rule simply corresponds
to an individual chemical reaction. However, a rule is far more
useful when local context governs an interaction, and the rule
can be specified such that it defines not a single reaction but a
potentially large class of reactions, all involving a common trans-
formation parameterized by the same rate law. The use of such
rules to model protein–protein interactions can often be justified,
at least to a first approximation, by the modularity of proteins
 (12) . Rules can be used to obtain predictions about a system’s
behavior in multiple ways. For example, they can serve as genera-
tors of a list of reactions. In other words, a set of rules, which can
be viewed as a high-level compact definition of a chemical reac-
tion network, can be used to obtain a conventional model speci-
fication (1, 28, 29) , which can then be analyzed using standard
methods. Alternatively, rules can serve as generators of discrete
reaction events in a kinetic Monte Carlo simulation of chemi-
cal kinetics (21, 30, 31) . A rule-based model is capable of com-
prehensively accounting for the consequences of protein–protein
interactions, including all possible phosphoforms of a protein
and the full spectrum of possible protein complexes implied by a
given set of interactions. Such a model is specified using BNGL
in a BioNetGen input file, which may also contain directions for
processing the model specification. For example, actions may be
defined for simulating a model and producing desired outputs.
In the following, we will describe the elements of an example
input file in detail.

 Since our initial application of a rule-based modeling approach
in 2001 to study signaling by the high-affinity IgE receptor
 (32– 34) , the software that we have used in our work – initially a
FORTRAN code called EQGEN – has evolved dramatically and
has been applied to study a number of other biochemical systems
 (35– 39) . The initial version of BioNetGen was released in 2004 (1) .
The name “BioNetGen” is a mnemonic for “Biological Network
Generator,” but this name should not be interpreted to delimit
the full range of the software’s capabilities. The software not only

118 Faeder, Blinov, and Hlavacek

generates reaction networks from rules, but also simulates such
networks using a variety of methods. Iterative application of rules to
a set of seed species (see Fig. 1c) may be used to generate a network
in advance of a simulation, which may subsequently be carried out
either by numerically solving ODEs or by implementing a stoc-
hastic simulation algorithm (SSA) (40– 42) . Alternatively, rules
may be applied during a simulation as the set of populated species
grows, a procedure that has been called “on-the-fly” network
generation and simulation (28, 29) . Finally, network generation
may be avoided altogether by instantiating individual instances of
chemical species and carrying out a discrete-event particle-based
simulation, in which rules serve as event generators (21, 30, 31)
(see Subheading 3.7.2). Simulation engines implementing such
methods will soon be available within the BioNetGen framework
and will be called through interfaces similar to those of the existing
engines (see Subheading 3.6).

 Later, we summarize essentially everything a modeler needs
to know to start developing and analyzing rule-based models with
BioNetGen. After an overview of the BioNetGen software distri-
bution, we present a step-by-step guide to writing a BioNetGen
input file, in which we carefully explain the elements of an exam-
ple input file. Numerous tips and tricks can be found in the Notes
section. Building on the basics, we then present several examples
that illustrate more advanced BioNetGen capabilities. Finally, we
briefly discuss new developments in rule-based modeling that
should enable the construction and analyses of large-scale compre-
hensive models for signal-transduction systems.

 BioNetGen is a set of integrated open-source tools for rule-based
modeling. A schematic of the software architecture is shown in
 Fig. 2 . The software and documentation are available at http://
bionetgen.org, a wiki site. Downloading the software or modify-
ing the wiki pages requires user registration with a valid email
address. The software is easy to install and runs with no compila-
tion on Linux, Mac OS X, and Windows operating systems (see
Note 1). BioNetGen can be also used online (without installa-
tion) from within the Virtual Cell modeling environment (http://
vcell.org/bionetgen).

 The components of BioNetGen include the network gene-
ra tion engine BNG2, which is written in Perl, the simulation
program Network, which is written in C, a plotting program
called PhiBPlot, which is written in Java, and a graphical front-
end called RuleBuilder, which is also written in Java. The core

2. Software

 Rule-Based Modeling of Biochemical Systems with BioNetGen 119

component, BNG2, which has a command-line interface, proce-
sses BioNetGen input files to generate two kinds of outputs: a
chemical reaction network derived by processing rules and/or
the results of simulating a model (see Note 2). Input files are
discussed below at length. Reaction networks are exported in a
native .net format, in M-file format for processing by MATLAB
(The MathWorks, Natick, MA), and in Systems Biology Markup
Language (SBML), which is a community-developed standard for
the encoding of biological models (43) . A network encoded in
SBML can be processed by a variety of SBML-compliant software
tools (for a list of these tools, see http://sbml.org). An exam-
ple of an SBML-compliant tool that complements BioNetGen is
COPASI (44) , which provides model analysis capabilities, such as
parameter estimation methods, unavailable in the native BioNet-
Gen environment. Simulation results are exported as tabular data
in plain-text files that have the extension .cdat or .gdat. A .cdat
file contains time series for concentrations of chemical species. A

 Fig. 2 . Software architecture of BioNetGen. The BioNetGen language (BNGL) file specifies
a rule-based model that can be processed by the BioNetGen core version 2 (BNG2) in a
variety of ways. Iterative application of rules to an initial set of species can generate a
reaction network that is passed to one of the simulation modules through the .net format
or exported to formats (SBML, MATLAB) that can be read by other programs. In the
near future, an XML-based encoding will be used to pass model specifications among
additional software components, including a particle-based simulator called NFsim
(“network-free” simulator) (Sneddon, M., Faeder, J. and Emonet, T., private communication).
Simulation modules produce .cdat and .gdat files, which record the time courses of spec-
ies concentrations and observables, respectively. The dashed arrow connecting the SSA
module and BNG2 represents the on-the-fly network generation capability available for
stochastic simulations .

120 Faeder, Blinov, and Hlavacek

.gdat file contains time series for observables defined in a BioNet-
Gen input file or .net file (see Subheading 3.3). Simulations speci-
fied in an input file are preprocessed by BNG2 and then passed to
Network, which is a simulation engine driver. Network interfaces
with the CVODE package (45, 46) , a set of routines for solv-
ing stiff and nonstiff initial value problems for systems of ODEs.
Network also provides an implementation of the direct method
of Gillespie (40) for stochastic simulations. The command-line
interface of Network allows a .net file to be processed directly
without preprocessing by BNG2, but this option is unav ailable for
simulation in on-the-fly mode (28, 29) , which necessarily requires
communication between BNG2 and Network. On-the-fly simu-
lation is discussed further in Subheading 3.7.2 . PhiBPlot is a
utility for producing x – y plots from .cdat and .gdat files. The
.cdat and .gdat files can also be processed by other plotting tools,
such as Grace (http://plasma-gate.weizmann.ac.il/Grace). Rule-
Builder provides a graphical user interface to BioNetGen. It also
provides a drawing tool for creating and editing models that may
be particularly helpful to new users.

 BioNetGen has been integrated into the Virtual Cell (VCell)
modeling environment (http://vcell.org) as a stand-alone appli-
cation called BioNetGen@VCell. A BioNetGen service is callable
from a VCell user interface and runs on a client computer. The
VCell user interface can be used to visualize and export simula-
tion results. Alternatively, a VCell BioModel can be automatically
created from an SBML file generated by BioNetGen@VCell.

 We will illustrate the method of constructing a rule-based model
by stepping through the BioNetGen input file shown in Listing 1 ,
which specifies a simplified version of a model for early events
in EGFR signaling (35) . Additional examples can be found in
the Models2 directory of the BioNetGen distribution available
from http://bionetgen.org, or on the Web at http://vcell.org/
bionetgen/samples.html. A BioNetGen input file contains the
information required to specify a model, including definitions of
molecules, rules for molecular interactions, and model outputs,
which we call “observables.” An input file may also contain
commands called “actions” that act on the model specification,
such as generating the network of species and reactions implied
by rules, performing simulations, and translating the model into
other formats. The syntax of actions is borrowed from the Perl
programming language. Model elements are specified in blocks
delimited by “begin” and “end” tags as indicated in Listing 1 .

3. Methods

 Rule-Based Modeling of Biochemical Systems with BioNetGen 121

begin parameters
 NA 6.02e23 # Avogadro’s number (molecues/mol)
 f 1 # Fraction of the cell to simulate
 Vo f*1.0e-10 # Extracellular volume=1/cell_density (L)
 V f*3.0e-12 # Cytoplasmic volume (L)
 # Inital amount of ligand (20 nM)
 EGF_init 20*1e-9*NA*Vo # convert to copies per cell
 # Initial amounts of cellular components (copies per cell)
 EGFR_init f*1.8e5
 Grb2_init f*1.5e5
 Sos1_init f*6.2e4
 # Rate constants
 # Divide by NA*V to convert bimolecular rate constants
 # from /M/sec to /(molecule/cell)/sec
 kp1 9.0e7/(NA*Vo) # ligand-monomer binding
 km1 0.06 # ligand-monomer dissociation
 kp2 1.0e7/(NA*V) # aggregation of bound monomers
 km2 0.1 # dissociation of bound monomers
 kp3 0.5 # dimer transphosphorylation
 km3 4.505 # dimer dephosphorylation
 kp4 1.5e6/(NA*V) # binding of Grb2 to receptor
 km4 0.05 # dissociation of Grb2 from receptor
 kp5 1.0e7/(NA*V) # binding of Grb2 to Sos1
 km5 0.06 # dissociation of Grb2 from Sos1
 deg 0.01 # degradation of receptor dimers
end parameters

begin molecule types
 EGF(R)
 EGFR(L,CR1,Y1068~U~P)
 Grb2(SH2,SH3)
 Sos1(PxxP)
 Trash()
end molecule types

begin seed species
 EGF(R) 0
 EGFR(L,CR1,Y1068~U) EGFR_init
 Grb2(SH2,SH3) Grb2_init
 Sos1(PxxP) Sos1_init
end seed species

begin observables
 1 Molecules EGFR_tot EGFR()
 2 Molecules Lig_free EGF(R)
 3 Species Dim EGFR(CR1!+)

 Listing 1. Elements of the BioNetGen input file egfr_simple.bngl. Block names are shown in bold , and reaction
centers are underlined for clarity in the reaction rules block .

122 Faeder, Blinov, and Hlavacek

 4 Molecules RP EGFR(Y1068~P!?)
 # Cytosolic Grb2-Sos1
 5 Molecules Grb2Sos1 Grb2(SH2,SH3!1).Sos1(PxxP!1)
 6 Molecules Sos1_act
EGFR(Y1068!1).Grb2(SH2!1,SH3!2).Sos1(PxxP!2)
end observables

begin reaction rules
Ligand-receptor binding
1 EGFR(L,CR1) + EGF(R) <-> EGFR(L!1,CR1).EGF(R!1) kp1, km1
Receptor-aggregation
2 EGFR(L!+,CR1) + EGFR(L!+,CR1) <-> EGFR(L!+,CR1!1).EGFR(L!+,CR1!1) kp2,km2

Transphosphorylation of EGFR by RTK
3 EGFR(CR1!+,Y1068~U) -> EGFR(CR1!+,Y1068~P) kp3
Dephosphorylation
4 EGFR(Y1068~P) -> EGFR(Y1068~U) km3
Grb2 binding to pY1068
5 EGFR(Y1068~P) + Grb2(SH2) <-> EGFR(Y1068~P!1).Grb2(SH2!1) kp4,km4
Grb2 binding to Sos1
6 Grb2(SH3) + Sos1(PxxP) <-> Grb2(SH3!1).Sos1(PxxP!1) kp5,km5
Receptor dimer internalization/degradation
7 EGF(R!1).EGF(R!2).EGFR(L!1,CR1!3).EGFR(L!2,CR1!3) -> Trash() deg\
DeleteMolecules

end reaction rules

#actions
generate_network({overwrite=>1});
Equilibration
simulate_ode({suffi x=>equil,t_end=>100000,n_steps=>10,sparse=>1,\
 steady_state=>1});
setConcentration(“EGF(R)”,”EGF_init”);
saveConcentrations(); # Saves concentrations for future reset
Kinetics
writeSBML({});
simulate_ode({t_end=>120,n_steps=>120});
resetConcentrations(); # reverts to saved Concentrations
simulate_ssa({suffi x=>ssa,t_end=>120,n_steps=>120});

 Rule-Based Modeling of Biochemical Systems with BioNetGen 123

The five block types are “parameters,” “molecule types,”
“seed species,” “reaction rules,” and “observa-
bles.” The blocks may appear in any order. Actions to be per-
formed on the model are controlled using commands that follow
the model specification. All text following a “#” character on a
line is treated as a comment, and comments may appear anywhere
in an input file. Parsing of the input is line-based, and a continu-
ation character, “\”, is required to extend a statement over multi-
ple lines. There is no limit on line length. Any BioNetGen input
line may begin with an integer index followed by space, which is
ignored during input processing but may be useful for reference
purposes. For example, .net files produced by BioNetGen auto-
matically index elements of each input block.

 The following is a list of the general steps involved in con-
structing a BioNetGen model with the relevant section of the
BNGL input file shown in parenthesis:
 1. (parameters) Define the parameters that govern the

dynamics of the system (rate constants, the values for initial
concentrations of species in the biological system) (see Sub-
heading 3.1).

 2. (molecule types) Define molecules, including compo-
nents and allowed component states (see Subheading 3.2).

 3. (seed species) Define the initial state of system (initial
species and their concentrations) (see Subheading 3.3).

 4. (observables) Define model outputs, which are functions
of concentrations of species having particular attributes (see
 Subheading 3.4).

 5. (reaction rules) Define rules that describe how mol-
ecules interact (see Subheading 3.5).

 6. (actions) Pick method(s) for generating and simulating
the network (see Subheading 3.6).

 Steps 1–5 may be done in any order and the entire protocol is
likely to undergo multiple iterations during the process of model
development and refinement. Subheadings 3.1–3.6 describe the
sections of the BNGL input file with specific reference to the
model presented in Listing 1 . Subheading 3.7 then presents
two additional models that illustrate the use of more advanced
language features.

 Model parameters, such as rate constants, values for initial
concen trations of chemical species, compartment volumes, and
physical constants used in unit conversions can be defined in the
parameters block (see Note 3). Both numerical and formula-
based parameter assignments are illustrated in the parameters
block of Listing 1 , which illustrates how formulas may be used
to clarify unit conversions and to define a global parameter that

 3.1. Parameters

124 Faeder, Blinov, and Hlavacek

controls the system size (see Note 4). Parameters have no explic-
itly defined units, but must be specified in consistent units, as
assumed by BioNetGen. We recommend that concentrations be
expressed in units of copy number per cell and bimolecular rate
constants be expressed on a per molecule per cell basis, as in List-
ing 1 . This choice, which assumes that the reaction compartment
is a single cell and its surrounding volume, allows one to direct
BioNetGen to switch from a deterministic simulation to a sto-
chastic simulation without changing parameter units.

 Molecules in a BioNetGen model are structured objects composed
of components that can bind to each other, both within a mole-
cule and between molecules. Components typically represent
physical parts of proteins, such as the SH2 and SH3 domains of
the adapter protein Grb2, or the PxxP motif of the guanine nucle-
otide exchange factor Sos1 that serves as a binding site for SH3
domains. Components may also be associated with a list of state
labels, which are intended to represent states or properties of the
component. Examples of component states that can be modeled
using state labels are conformation (e.g., open or closed), phos-
phorylation status, and location. There is no limit on the number
of components that a molecule may have or on the number of
possible state labels that may be associated with a component
(see Note 5).

 BioNetGen allows users to explicitly enforce typing of mol-
ecules using the molecule types block, which is optional but
recommended. The molecule types block defines the allowed
molecule names, the components of each molecule type (if any),
and the allowed states of each of these components (if any). Each
molecule type declaration begins with the name of a molecule (see
Note 6) followed by an optional list of components in parenthe-
ses (see Note 7). The tilde character (“~”) precedes each allowed
state value. In the input file of Listing 1 , five molecule types are
declared. These molecules have 1, 3, 2, 1, and 0 components,
respectively. The component named Y1068 represents a tyrosine
residue in EGFR that can be in either an unphosphorylated (U)
or phosphorylated (P) state. For a molecule to be able to bind
another molecule, at least one component must be defined. A mol-
ecule without components cannot bind or change states, but can
be created or destroyed. Such a molecule essentially corresponds to
a named chemical species in a conventional model (see Subhead-
ing 3.5.6). A component that appears in a molecule type declara-
tion without a state label may be used only for binding and may
not take on a state label in subsequent occurrences of the same mol-
ecule. In contrast, the potential binding partners of a component
are not delimited in a molecule type declaration.

 The namespaces for components of different molecules are
separated, so it is permissible for components of different molecules

 3.2. Molecule Types

 Rule-Based Modeling of Biochemical Systems with BioNetGen 125

to have the same name. If two components of the same molecule
have the same name, however, they are treated as separate instances
of an identical type of object. For example, the two Fab arms of an
IgG antibody have identical antigen-binding sites, which could be
modeled as IgG(Fab,Fab).

 The seed species block defines the initial chemical species to
which rules are applied. This block may also be used to define the
initial levels of populated species and identify species with fixed con-
centrations. Before discussing the details of the seed species
block, we need to briefly explain how chemical species are repre-
sented in BNGL.

 Chemical species are individual molecules or sets of mol-
ecules connected by bonds between components, in which each
component that has allowed state values has a defined state. For
example, a cytosolic complex of Grb2 and Sos1 in the model
of Listing 1 would be represented as Grb2(SH2,SH3!1).
Sos1(PxxP!1), where the “.” character is used to separate mol-
ecules that are members of the same chemical species and the “!”
character is a prefix for a bond name (any valid name is allowed,
but we recommend using an integer, which makes BNGL expres-
sions more readable). A shared name between two components
indicates that the components are bonded. A complex of Grb2
and Sos1 that is associated with EGFR would be represented
as EGFR(L,CR1,Y1068~P!2). Grb2(SH2!2,SH3!1).Sos1
(PxxP!1), where the bond with the name “2” in this expres-
sion indicates that the SH2 domain of Grb2 is connected to
the phosphorylated residue Y1068 in EGFR (i.e., connected to
component Y1068 of the molecule EGFR, which is in the P
state). Note that in a BNGL expression for a chemical species
all components of each molecule are listed and each component
that is allowed to have a state has one defined state chosen from
among the set of possible states for that component. Wild card
characters, which represent nonunique states and bonds, are not
allowed in BNGL chemical species expressions. These wild card
characters are discussed below in Subheading 3.4 .

 Finally, we note that the presence or absence of the mol-
ecule types block affects the way that molecules appearing in
the seed species block are type checked (see Note 8).

 Specifying the initial population level of a seed species is accom-
plished in the same way that a parameter value is assigned using
either a numerical value or a formula, as can be seen in Listing 1
(see Note 9). A species listed in the seed species block may
also be designated as having fixed concentration (see Note 10).

 Representation of molecular complexes in BNGL has been pre-
sented in this section to introduce the syntax of bonds, but, generally
speaking, it is not necessary to define seed species that are complexes
of molecules because they can be generated through a process of

 3.3. Seed Species

126 Faeder, Blinov, and Hlavacek

equilibration (see Subheading 3.6), provided that there are rules
that generate these complexes. If a complex species is defined and
no reaction rule is specified that causes dissociation of the complex,
the complex will be indivisible. A multimeric protein composed of
several polypeptide chains could be specified in this way.

 The observables block is used to specify model outputs, which
are functions of the population levels of multiple chemical species
that share a set of properties. For example, if one could measure the
tyrosine phosphorylation level of a particular protein, then one might
be interested in determining the total amount of all chemical spe-
cies containing the phosphorylated form of this protein. We call a
function for calculating such a quantity an “observable.” Observables
are computed over a set of chemical species that match a search pat-
tern or set of search patterns specified in BNGL (see Fig. 1b). Each
observable is defined by a line in the observables block consisting
of an (optional) index, one of two keywords that defines the type of
observable (Molecules or Species), a name for the observable, and
a comma-separated set of search patterns (see Listing 1 and Note
 11). Before we discuss the two types of observables and how they are
computed, we will describe the basic syntax and semantics of patterns
in BNGL, which are common to observables and reaction rules.

 Patterns are used to identify a set of species that share a set of
features, and their behavior is illustrated in Fig. 1b . Pattern speci-
fication includes one or more molecules with optional specification
of connectivity among these molecules, optional specification of
states of their components, and optional specification of how these
molecules are connected to the rest of the species they belong to.
Patterns are analogous to the regular expressions used in computer
programming. A match between a chemical species and a pattern
means that there exists a mapping (injection) from the elements
of the pattern to a subset of the elements of the species. Roughly
speaking, a species matched by a pattern includes this pattern as a
part. Note that there may be multiple mappings of a pattern into
a single species and that BioNetGen considers each mapping to be
a separate match. The formal definition of a match in the graph
formalism upon which BNGL is based was given by Blinov et al.
 (26) . Patterns are similar to species in that they are composed of
one or more molecules and may contain components, component
state labels, and edges. Unlike in species, however, the molecules
in patterns do not have to be fully specified and the molecules do
not have to be connected to each other by bonds specified in the
pattern. The absence of components or states in a pattern excludes
consideration of the missing elements from the matching process,
as illustrated in Fig. 1b . In the model of Listing 1 observable 1
is specified using the pattern EGFR(), which matches any species
containing a molecule of EGFR, regardless of the state or binding
status of any of its components.

 3.4. Observables

 Rule-Based Modeling of Biochemical Systems with BioNetGen 127

 When a component is specified in a pattern, both the
absence and presence of a bond name affects matching.
The specification of a component without an associated bond
requires that the component is unbound in the corresponding
match. For example, observable 2 in Listing 1 uses the pattern,
EGF(R), which selects only species in which the R component
of EGF is unbound. The specification of a component with
an associated bond is used to select bound components. If a
complete bond is specified, as in observable 5, which selects
complexes of Grb2 and Sos1, then the component must be
bound in the manner indicated by the pattern (see Note 12).
An incomplete bond may also be specified using “!+”, where
the wild card “+” indicates that the identity of the binding
partner of a component is irrelevant for purposes of match-
ing. For example, observable 3 in Listing 1 uses the pattern,
EGFR(L!+), which selects species in which the L component
of EGFR is bound, regardless of the binding partner. A second
wild card, “?”, may be used to indicate that a match may occur
regardless of whether a bond is present or absent (see Note
 13), and is sometimes required for the correct specification of
observables. For example, the two patterns EGFR(Y1068~P)
and EGFR(Y1068~P!?) are not equivalent. The first pattern
selects only EGFR molecules in which the Y1068 component
is phosphorylated and unbound, whereas the second pattern
selects all EGFR molecules in which the Y1068 component
is phosphorylated. (The second pattern is more relevant for
comparing model predictions against the results of Western
blotting with anti-pY antibodies.) Examples of patterns from
the observables block of Listing 1 and their correspond-
ing matches in the implied model are listed in Note 14 .

 We are now ready to discuss the two types of observables.
An observable of the Molecules type is a weighted sum of the
population levels of the chemical species matching the pattern(s)
in the observable. Each population level is multiplied by the
number of times that the species is matched by the pattern(s).
An observable of the Species type is simply an unweighted sum of
the population levels of the matching chemical species (see Notes
 15 and 16). A Molecules type of observable is useful for counting
the number of copies of a particular set of patterns in a system,
e.g., the number of copies of receptors in receptor dimers. A Spe-
cies type of observable is useful for counting the populations of
chemical species in a system containing a particular pattern (or
set of patterns), e.g., the number of receptor dimers, as specified
by observable 3 in Listing 1 . Changing the type from Species to
Molecules for this observable would specify a function that gives
the number of copies of receptors in receptor dimers. The values
of observables computed by one of the simulation commands
described below are written to a .gdat file (see Note 17).

128 Faeder, Blinov, and Hlavacek

 The reaction rules block of a BioNetGen input file is used
to specify rules, which describe the allowed ways in which species
can be transformed and typically represent molecular interactions
and the consequences of these interactions. Each rule is similar to
standard chemical reaction notation in that it has four basic ele-
ments: reactant patterns, an arrow, product patterns, and a rate
law specification (see Note 18). Patterns in rules have the same
syntax and semantics as introduced above in our discussion of the
observables block. Reactant patterns are used to select sets
of reactant species to which the transformation implied by the
rule will be applied. The arrow indicates whether the rule is appli-
cable in forward direction only (“–>”) or in both the forward
and reverse directions (“<–>”). The product patterns define how
the selected species are transformed by the rule and act as the
reactant patterns when the rule is applied in reverse. Rules may
transform a selected set of reactant species by adding or delet-
ing molecules or bonds and by changing component state labels.
Rules may not add or delete components of molecules (see Note
 19). The default rate law for reactions produced by rules is an
elementary rate law, in which the rate is given by the product of a
multiplicity factor (usually an integer or ½) generated automati-
cally by BioNetGen (see Subheading 3.5.3), the specified rate
constant (which may be a numerical value or a formula), and the
population levels of the reactants. This type of rate law is speci-
fied simply by appending a comma-separated numerical value or
formula at the end of the line defining a rule, as illustrated in
 Listing 1 . Nonelementary rate laws, such as Michaelis–Menten
rate laws, may also be specified (see Note 20). For a rule that
defines reverse reactions, a second numerical value or formula
follows the first after a comma. Rules 1, 2, 5, and 6 in Listing 1
provide examples of how the parameters of two elementary rate
laws are defined on the same input line. It should be noted that
the parameter of a default rate law is taken to be a single-site rate
constant (see Note 21). Additional commands that modify the
behavior of rules may appear after the rate law specification (see
Subheading 3.5.7).

 Consider the egfr_simple.bngl file illustrated in List-
ing 1 . Each reaction rule is defined on one line of the input file.
(Recall that long input lines can be continued using the “\” char-
acter.) The first six rules represent classes of reactions mediated
by particular molecular interactions (e.g., rule 1 specifies a class
of ligand-receptor binding reactions in which the R domain of
the ligand associates with the L domain of the receptor), and the
last rule represents a class of irreversible degradation reactions,
which removes receptor dimers from the system while retaining
cytosolic molecules bound to the receptor complex. Rules 3 and
4 also define classes of irreversible reactions, whereas the remain-
ing rules define classes of reversible reactions. The molecularity of

 3.5. Reaction Rules

 Rule-Based Modeling of Biochemical Systems with BioNetGen 129

a reaction, M , is the number of species participating in the reac-
tion. The molecularity of all reactions generated by a given rule
is fixed and is equal to the number of reactant patterns, which
are separated by “+” characters. The value of M for rules 1–7 in
 Listing 1 is 2, 2, 1, 1, 2, 2, and 1, respectively. The “+” char-
acter is used on the right side of a rule to define the number of
products produced by a reaction and the molecularity of reverse
reactions (if the rule is reversible). In Listing 1 , rules 1–6 each
have one product, and the reverse reactions have 2, 2, 1, 1, 2,
and 2 product(s), respectively. Reactions defined by rule 7 have a
variable number of products because of the DeleteMolecules
keyword, which is discussed later in this section.

 We will now discuss the five basic transformations that can
be carried out by a BioNetGen rule. These transformations are
(1) add a bond, (2) delete a bond, (3) change a component state
label, (4) delete a molecule, or (5) add a molecule. In each case,
there is a direct correspondence between a transformation of a
set of graphs and a biochemical transformation of the molecules
 represented by the graphs (26) . For example, adding a bond
between the interacting components of two binding partners
corresponds to connecting two vertices in the graphs represent-
ing these binding partners. In the following subsections, we will
discuss each of these types of transformations and present exam-
ples. A transformation is specified implicitly by the difference
between the product and reactant patterns in a rule. BioNetGen
automatically determines a mapping from reactant molecules and
their components to product molecules and their components,
and from this mapping determines the set of transformations
implied by a rule. Although we will note exceptions, we recom-
mend in general that each rule apply only a single transformation.
A user may manually override automatic mapping through the use
of molecule and component labels, as discussed in Subheading
 3.7.1 (see Note 22) (28, 38) . Such labels have been used to create
a database of carbon atom fates in metabolic reactions (38) .

 A rule may add bond labels (e.g., “!1”) to specific components
of reactant species selected by the reactant pattern(s) in the rule,
which results in the formation of a new bond. Including a bond
in a product pattern that is absent in the reactant pattern(s) speci-
fies this action. The simplest example of such a transformation is
provided by the rule “A(a)+B(b)–> A(a!1).B(b!1) k_bi,”
which specifies the association of molecules A and B through the
forma tion of a bond between components a in molecule A and b
in molecule B. Note that the “+” character constrains the molecu-
larity to 2, which means that a and b must belong to separate spe-
cies, precluding binding of A to B when these molecules are part
of the same complex. To specify intracomplex binding of a and
b, we could specify the rule as “A(a).B(b)<–>A(a!1).B(b!1)

 3.5.1. Add a Bond

130 Faeder, Blinov, and Hlavacek

k_uni”, where the “.” character in the reactant pattern indicates
that the molecules A and B are part of the same complex. Note
that these two rules have bimolecular and unimolecular rate laws,
respectively, because they have different molecularities, and thus
the units of k_bi and k_uni necessarily differ. As noted earlier,
it is the modeler’s responsibility to specify values of model para-
meters using consistent units.

 Let us consider rule 1 in Listing 1 , which provides an example
of a reaction rule for the reversible binding of a ligand to a
receptor. We first consider application of the rule in the forward
direction (application of the rule in reverse will be considered
in Subheading 3.5.2). The reactant pattern EGF(R) selects
ligand (EGF) molecules that have an unbound R component.
Since EGF molecules in this model have only one component,
the only species that is selected by this pattern is EGF(R) (Here,
we adopt the convention that the image of a pattern in a match-
ing species is shown in bold). The pattern EGFR(L,CR1)
selects EGFR molecules with unbound L and CR1 components,
regardless of the binding or phosphorylation status of the Y1068
component of EGFR. For example, the pattern would select all
of the following possible species: EGFR(L,CR1 ,Y1068~U) ,
 EGFR(L,CR1 ,Y1068~P) , and EGFR(L,CR1 ,Y1068~P!1) .
Grb2(SH2!1,SH3). By specifying the component CR1 in the
pattern and indicating that this component is free (by the absence
of a bond specification), we are requiring that the CR1 compo-
nent be unbound. Because receptors must associate via the CR1
domain to form dimers, as specified by rule 2, this means that
ligand can bind receptor monomers but not dimers through rule
1. Rule 1 can be made independent of the state of CR1 by simply
omitting it from the pattern for EGFR. In other words, by speci-
fying EGFR(L) instead of EGFR(L,CR1), ligand is allowed to
associate with (and dissociate from) both monomeric and dimeric
receptors. The general principle is that a reaction rule should only
include molecules, components, state labels, and bond specifica-
tions that are either modified by a transformation or that affect
the transformation. We call the component(s) directly modified
by a transformation a reaction center and the rest of the informa-
tion included in a rule the reaction context . For clarity, we will
underline the reaction centers in the rules (see Listing 1). The
process of rule application is illustrated in Fig. 1 and further
examples are listed in Note 23 .

 Let us now consider rule 2 of Listing 1 , which specifies the
reversible dimerization of ligand-bound EGFR and illustrates the
use of bond wild cards in the reactant specification. The “!+”
string following the L component of each EGFR means that
the L component must be bound (albeit in an unspecified way)
for the pattern to match and thus for the reaction to take place.

 Rule-Based Modeling of Biochemical Systems with BioNetGen 131

Another important feature of this rule is that it is symmetric with
respect to interchange of the two reactant patterns, which is
detected automatically by BioNetGen, which then ensures that
generated reactions are assigned rate laws with correct multiplic-
ity. Reaction multiplicity, which is a multiplicative factor in a rate
law, is discussed in more detail below in Subheading 3.5.3 . For
many users, it is sufficient to note that BioNetGen automatically
detects symmetries in rules and generates reactions with correct
multiplicities.

 Rules specify bond deletion when a bond that appears in the reac-
tant patterns has no corresponding bond on the product side (see
Note 24). Frequently, bond deletion rules are specified simply
by making a bond addition rule reversible, as in the extension of
the elementary bond addition rule above to “A(a)+B(b) <–>
A(a!1).B(b!1) k_a,k_d”. Bond dissociation step can also
be specified using a unidirectional rule, as in “A(a!1).B(b!1)
–> A(a)+B(b) k_d”. The reversible rule syntax is provided
solely as a matter of convenience; the functional behavior of the
rules is identical whether an association/dissociation pair is speci-
fied as a single reversible rule or as two irreversible rules with the
reactant and product patterns interchanged (see Note 25). Note
that the molecularity of the products in the dissociation rule (2 in
this case) has a restrictive effect analogous to that of the specifica-
tion of molecularity in the association rule. When the rule is applied
to a species selected by the reactant pattern, a reaction is gener-
ated only if removal of the specified bond eliminates all possible
paths along bonds between A and B, i.e., if bond removal produces
two separate fragments. Specifying bond dissociation that does
not result in breakup of the complex requires a rule of the form
“A(a!1).B(b!1) –> A(a).B(b) k_d”. An example illustrat-
ing the different action of these two rules is provided in Note 26 .

 As an example of a bond deletion rule that has additional
reaction context, let us consider the reverse of the dimerization
rule discussed in Subheading 3.5.1 ,

ÆEGFR(L!+,CR1!1).EGFR(L!+,CR1!1) EGFR(L!+,CR1)+\

EGFR(L!+,CR1)km2,

 which breaks the bond between the CR1 components of two
receptors in a complex. The contextual requirement that an L
component of each EGFR also be bound is specified using the
bond wild card “L!+”. The molecularity of the products in the
rule means that the rule will only be applied if breaking the bond
results in dissociation of an aggregate. It is important to note here
that the bond wild card “!+”can only be used to specify context;
it is not permitted to break a bond that is only partially specified
because such a rule would leave the molecularity unspecified.

 3.5.2. Delete a Bond

132 Faeder, Blinov, and Hlavacek

 Rules specify a change in the state label of a component when-
ever the state label of a component changes in going from its
appearance in the reactants to its corresponding occurrence in the
products. State label changes may be used to represent covalent
modification, a change in conformation, translocation between
two compartments, or any other property of a molecule that might
influence its subsequent reactivity. The simplest possible example
of a rule specifying a state label change is rule 4 of Listing 1 ,

 - >EGFR(Y1068 P) EGFR(Y106~ 8~ U)km3

 which encodes the dephosphorylation of a receptor tyrosine,
through a change in the state label for Y1068 from “P”, repre-
senting the phosphorylated state, to “U”, representing the
unphosphorylated state (see Note 27). It should be noted that
just as for bond addition and deletion reactions, the rate constant
should be specified as if only one instance of the reaction implied
in the rule is possible for any given set of reactant species (see
 Note 21). BioNetGen will generate a distinct reaction for each
distinct occurrence of the reactant pattern in a species. For exam-
ple, consider the application of rule 4 to the following species in
the EGFR network:

() ()EGF R!1 .EGF R!2 (CR1!3,L!1,)\

(CR1!3,L!2,)

~.EGFR P

.EGFR Y1068 P~

Y1068

 The two occurrences of the reactant pattern are shown in bold .
During the process of network generation, this species is auto-
matically assigned the index 11, which is used to reference species
in the reactions and groups blocks of the resulting .net file.
Because this species is symmetric, application of the rule gener-
ates two instances of the dephosphorylation reaction 11 → 8, and
species 8 is

() ()

()
EGF R!1 .EGF R!2 (CR1!3,L!1,)\

.EGFR CR1!3,L!2,Y P1068~

.EGFR Y1 U~068

 In this case, application of rule 4 to the first Y1068 appearing in
species 11 generates the same species as application of the rule to
the second instance (see Note 28). Upon generation of a reaction,
BioNetGen checks to determine whether the reaction is identical
to one that has already been generated. If so, the multiplicity of
the reaction is incremented by one (see Note 29). So application of
rule 4 to species 11 produces the reaction 11→ 8 2*km3, where
2*km3 following the reaction refers to the constant portion of the
elementary rate law that is used to compute the rate of the reac-
tion. The multiplicity of the reaction is 2, and the rate is given by
2*km3*X11, where X11 is the population level of species 11.

 3.5.3. Change
a Component State Label

 Rule-Based Modeling of Biochemical Systems with BioNetGen 133

 As in other reaction rules, additional contextual information
can be supplied to restrict application of a rule. An example of
a rule that uses contextual information in this way is rule 3 of
 Listing 1 , which specifies phosphorylation of Y1068 within a
receptor aggregate:

 ÆEGFR(CR1!+,Y1068 U) EGFR(CR1!+,Y~ ~1068 P)kp3

 In this rule, the wild card operator “+” is used to specify that
the phosphorylation reaction occurs only for a receptor that is
part of a receptor dimer. Because in this model the CR1 domain
can only bind to another CR1 domain, requiring CR1 to be
bound, as specified here, is equivalent to requiring that another
EGFR be present in the aggregate (see Note 30). Thus, the rule
above models trans (auto)phosphorylation of Y1068 catalyzed
by the protein tyrosine kinase domain in a neighboring copy
of EGFR.

 In addition to the operations described in the previous sections,
rules may also specify the creation of new molecules as products,
which could be used to model, for example, translational proc-
esses or transport across the cell membrane. As a simple example
of how to introduce a source for a protein A, consider the rule

 ()- >I() I()+A a,Y U ks~ ynth

 where I() is a structureless molecule. The appearance of I on
both the reactant and product sides of the rule means that its
concentration will not change as a result of the reaction occur-
ring. If the species “I()” is set to have a concentration of 1 in
the seed species block and its concentration is not affected
by any other rules, the rate constant ksynth will be have units
of concentration/time and will define the synthesis rate of the
species A(a,Y~U). Note that BioNetGen does not allow the
number of reactants or products in a reaction to be zero, which is
why the molecule I must be included in this rule. Molecule addi-
tion is specified any time that a molecule appearing on the prod-
uct side of a rule has no corresponding molecule on the reactant
side. Appearance of a new molecule in the products generates
an error unless the molecule is fully specified, i.e., all compo-
nents of the molecule are listed and those components requiring
a state label have a valid specified state label, and connected to the
remainder of the pattern in which it appears. New molecules can
also be combined with reactant molecules, as in the rule

()- >B(b) B(b!1).A a!1,Y U~ ksynth

 which creates a new molecule of A bound to a B molecule.

 3.5.4. Add a Molecule

134 Faeder, Blinov, and Hlavacek

 Rules may also specify degradation of specified molecules or of
entire species matching a particular reactant pattern by omitting
reactant molecules in the product patterns. Because degradation
rules may specify deletion of individual molecules or entire species,
the semantics of degradation rules are somewhat more complicated
than those of other rules considered so far. Let us first consider the
simplest form of a degradation rule

 - >A() Trash()kdeg

 which specifies degradation of any species in which the molecule
A appears. Degradation of a species is specified whenever all of
the reactant molecules used to select the species are omitted
from the products. This rule also specifies the synthesis of a Trash
mole cule, which is necessary because BioNetGen require that at
least one product molecule be specified. Note that the species
Trash() acts as a counter for the number of A-containing species
that have been degraded (see Note 31). If multiple molecules of A
can appear within a single species, degradation reactions involv-
ing these species would have multiplicity equal to the number of
occurrences of A in the degraded species. In other words, a species
containing n copies of A will be degraded n times faster than a
species containing only a single copy of A. If this behavior is not
the desired, then the multiplicity can be held to one by specifying
the MatchOnce attribute for the reactant pattern, as in

 { } - >MatchOnce A() Trash()kdeg

 As of this writing MatchOnce is the only recognized pattern
attribute.

 Rules can also specify the degradation of a set of molecules
within a complex, which can be accomplished in one of two ways.
First, one can specify the degradation of a molecule or molecules
within a reactant complex by transferring to the products at least
one of the molecules used to select the complex on the reactant
side. The simplest example is the rule

 - >A().B() B() kdeg

 which specifies the deletion of the matching A molecule in the
complex. When the rule is applied, the A molecule and all of its
bonds will be deleted. If this action leaves behind only a single
connected fragment containing the matched B molecule, a reac-
tion will be generated. If, however, deletion of A leaves behind
multiple fragments, no reaction will be generated. The keyword
DeleteMolecules can be added to the rule following the rate
law to bypass this constraint, as in

 3.5.5. Delete a Molecule

 Rule-Based Modeling of Biochemical Systems with BioNetGen 135

 - >A().B() B()kdeg DeleteMolecules

 which, when applied to the complex C(c!1).A(a1!1,a2!2).
B(b!2), would generate the reaction

 () () () () ()- >C c!1 .A a1!1,a2!2 .B b!2 C c +B b kdeg

 The deletion of the A molecule from the C-A-B chain produces a C
fragment and a B fragment. The DeleteMolecules keyword can
also be used when no molecules from the reactant pattern remain
in the products. Thus, the species-deleting rule from the previous
paragraph can be transformed into a molecule-deleting rule

 - >A() Trash() kdeg DeleteMolecules

 which has the same action on the C-A-B complex as the rule
above.

 Rule 7 of Listing 1 provides an example of how such a rule
might be used to model endosomal degradation of signaling com-
plexes in which some components of the complex are recycled.
The rule specifies that the EGFR dimer and both associated EGF
molecules are degraded, but the DeleteMolecules keyword
means that additional molecules associated with the complex will
be retained as products in any generated reactions. Thus, any Grb2
molecules that associate with such a dimer and any Sos1 molecules
that bind to dimer-associated Grb2 molecules are (effectively)
returned to the cytoplasm when the receptor complex is degraded.

 Addition and deletion actions may be combined within single
rules to construct rules that describe conventional mass action
kinetics involving structureless species. A typical rule of this type
would be

 - >A+B C kAB

 which encodes the deletion of A and B and the addition of C.
This rule will be valid only if the molecule C is defined to have
no components, and it will have the intended meaning only if
A and B are also structureless. Any standard reaction scheme can
thus be trivially encoded in BioNetGen, although the power of
the rule-based approach is lost. Structureless species may be useful
as sources and sinks, and may also be used to represent small mol-
ecules or atoms. Note that A and A() are equivalent representa-
tions for a molecule or species A, in that neither representation
specifies the substructure of A.

 As described in Subheading 3.5.5 , BioNetGen includes several
commands that modify the application of rules. These commands
have been introduced to address the need for specific behaviors

 3.5.6. Encoding
Conventional Reactions

 3.5.7. Commands for
Modifying Rule Application

136 Faeder, Blinov, and Hlavacek

that are difficult or impossible to specify using the semantics of
patterns and transformation rules alone. In this section, we cover
the include/exclude commands that provide a basic logic for
extending the selection capabilities provided by patterns. In the
future, we anticipate the development of a “pattern logic” that
will provide these capabilities in a more general way.

 The basic functionality of the include_reactants and
include_products commands is to add criteria for the selec-
tion of reactant species to be transformed by a rule or the accept-
ance of products species generated by a rule. In other words, these
commands provide an AND operator for pattern matching. The
basic syntax of the include commands is illustrated by the rule

()

- > A(a)+B(b) A(a!1).B(b!1)kabinclude_reactants\

2,R1,R2

 which specifies that a bond will be created between a reactant
species containing a free component a of a molecule A and a sec-
ond reactant species containing a free component b of a molecule
B only if the second reactant species also includes a molecule of
 either R1 or R2. The first argument of an include command
is always a number corresponding to the index of a reactant or
product pattern in the rule (1 for the first reactant/product,
2 for the second, etc.), and the remaining arguments are BNGL
patterns, at least one of which must generate a match for the
species to be selected. In logical terms, the effective pattern for
the second reactant in this rule becomes “B(b) AND (R1 OR
R2)”. Any valid BioNetGen pattern may be used as an argument
to an include_reactants or include_products com-
mand. Multiple include commands applying to the same reactant
or product pattern can be specified to create additional selection
criteria for a species, and thus function as additional AND opera-
tors. To generate similar behavior without the include command,
two rules would have to be specified:

 () () () ()- >A a +B b .R1A a!1 .B b!1 kab

 () () () ()- >A a +B b .R2A a!1 .B b!1 kab

 where the “.” operator is used to test for the presence of an addi-
tional molecule in the second reactant complex. It is worth noting
that the rule using the include_reactants command behaves
slightly differently in this case than the pair of rules, because the
latter may each generate multiple matches to the same reactant
species if multiple molecules of either R1 or R2 are present. For
instance, the pattern “B(b).R1” generates two matches to the spe-
cies “B(b.r!1).R1(r!1,d!2).R1(r,d!2)” because R1 in
the pattern can be mapped onto either of the two R1’s in the com-
plex. It is easy to specify two rules that have the same behavior as the

 Rule-Based Modeling of Biochemical Systems with BioNetGen 137

one rule by extending the pattern “B(b).R1” to “B(b.r!1).
R1(r!1)”. Unfortunately, as illustrated in this example, subtle dif-
ferences in the way that rules are specified can have dramatically
different effects, which are sometimes difficult to anticipate. This
problem will be alleviated in the future by extending BioNetGen to
allow a user to differentiate between the reaction center (the part
of a pattern affected by a transformation) and reaction context (the
part of a pattern necessary for a transformation to occur) in rules.

 The “exclude_reactants(index , pattern1 , pattern
2 ,…)” and “exclude_products” commands have the same syn-
tax as the include commands but apply the logic “pattern_index
AND ((NOT pattern1) OR (NOT pattern2) …)”, where pattern_
index is the pattern used to specify the reactant or product with
the specified index. Equivalent functionality can be obtained by the
use of patterns alone, but in complex cases several patterns may be
required to accomplish the same effect. It should be noted that when
they appear in reversible reactions, include_reactants and exclude_
reactants are automatically transformed into include_products
and exclude_products, respectively, when the rule is applied in
the reverse direction. Appearances of include_products and
exclude_products commands are also similarly transformed.

 BioNetGen is capable of performing two basic types of actions
with a model specification in an input file: generate a chemical
reaction network implied by the model specification and simulate
the network (e.g., solve an initial value problem for the system
of coupled ODEs that provides a deterministic description of
the reaction kinetics in the well-mixed limit). These actions are
controlled using commands that follow the model specification
blocks we have discussed in the previous section (see Listing 1).
Other commands export BioNetGen-generated networks in vari-
ous formats. All of the available commands and the parameters
that control them are summarized in Table 1 , which also sum-
marizes the general syntax.

 The commands shown in Listing 1 illustrate the range of actions
that can be performed on a BioNetGen model. The generate_
network command directs BioNetGen to generate a network
of species and reactions through iterative application of the rules
starting from the set of seed species. At each step in this iterative
process, rules are applied to the existing set of chemical species
to generate new reactions. Following rule application, the species
appearing as products in the new reactions are checked to deter-
mine whether they correspond to existing species in the network
 (26) (see Note 32). If no new species are found, network genera-
tion terminates.

 Restrictions on rule application may be useful when rules sets
would otherwise produce very large or unbounded networks (see

 3.6. Actions

 3.6.1. Generating
a Network

138 Faeder, Blinov, and Hlavacek

 Table 1
 Syntax and parameters for BioNetGen actions

 Action/parameter a Typeb Description Default

 generate_network Generate species and reactions through iterative application
of rules to seed species

 max_agg int Maximum number of molecules in one
species

 1e99

 max_iter int Maximum number of iterations of rule
application

 100

 max_stoich hash Maximum number of molecules of
specified type in one species

 -

 overwrite 0/1 Overwrite existing .net file 0 (off)

 print_iter 0/1 Print .net file after each iteration 0

 prefix c string Set basename e of .net file to string basename of .bngl file

 suffix c string Append _ string to basename of .net file -

 simulate_ode/simulate_ssa Simulate current model/network

 t_end float End time for simulation required

 t_start float Start time for simulation 0

 n_steps int Number of times after t =0 at which to
report concentrations/observables

 1

 sample_times array Times at which to report concentra-
tions/observables (supercedes t_end,
n_steps)

 -

 netfile string Name of .net file used for simulation -

 atol d float Absolute error tolerance for ODE’s 1e-8

 rtol d float Relative error tolerance for ODE’s 1e-8

 steady_state d 0/1 Perform steady-state check on species
concentrations

 0

 sparse d 0/1 Use sparse Jacobian/iterative solver
(GMRES) in CVODE

 0

 readFile Read a .bngl or a .net file

 file string Name of file to read required

 writeNET/writeSBML/
writeMfile

 Write current model/network in specified format

 setConcentration(species,value) Set concentration of species to value

 setParameter (parameter,value) Set parameter to value

(continued)

 Rule-Based Modeling of Biochemical Systems with BioNetGen 139

 Note 33). These restrictions can be imposed using optional argu-
ments to the generate_network command, which are shown
in Table 1 . The three basic restrictions that can be specified are
an upper limit on the number of iterations of rule application
(max_iter), an upper limit on the number molecules in an
aggregate (max_agg), and an upper limit on the number of
molecules of a particular type in an aggregate (max_stoich).
An example of a command specifying all three restrictions in the
order given above is

generate_network ({max_iter =>15,max_agg =>10,

max_stoich=>{L =>5,R >5});

 This command limits the number of iterations to 15, the maximum
size of an aggregate to 10 molecules, and the maximum number of
L or R molecules in an aggregate to be 5. An example illustrating
the use of such restrictions is given in Subheading 3.7.2 .

 When network generation terminates, whether through
convergence or when a stopping criterion is satisfied, the result-
ing network is written to a file with the .net extension (see Note
 34). By default the basename of this file is determined from the
basename of the input .bngl file. For example, the generate_
network command in the file egfr_simple.bngl creates the
file egfr_simple.net by appending the .net extension to the
basename egfr_simple. The options prefix and suffix,
which are taken by all commands that write output to a file, can
be used to modify the basename of all files generated by the com-
mand (see Note 35). By default, generate_network will ter-
minate with an error if the .net file it would produce exists prior
to network generation. This behavior can be overridden by setting
option overwrite = >1, as shown in Listing 1 . This option can
be useful during the debugging phase of model development.

 Action/parameter a Typeb Description Default

 saveConcentrations() Store current species concentrations

 resetConcentratons() Restore species concentrations to value at point of last save-
Concentrations command

 aGeneral syntax is action ({ scal val , array [x1 , x2 ,…], hash ⇒{ key1 ⇒ val1,key2 ⇒ val2 ,…},…}).
 bScalar types are int, 0/1 (a boolean), string, and float. Multivalued parameters may be either arrays

or hashes .
 cThe prefix and suffix parameters can be used with any command that writes output to a file.
 dThese parameters only apply to simulate_ode .
 e See Note 35 .

 Table 1
(Continued)

140 Faeder, Blinov, and Hlavacek

 Once a network has been generated, a simulation can be specified
using the simulate_ode or simulate_ssa commands. The
simulation specified in the example in Listing 1 consists of three
phases, which we now summarize and will be described in detail
below. The first phase is equilibration, in which reactions that can
occur prior to the introduction of the EGF ligand are allowed
to reach steady state. Time courses produced by the first simu-
late_ode command, which terminates when the species con-
centrations pass a numerical check for convergence, are written
to the files egfr_simple_equil.gdat and egfr_simple_
equil.cdat (assuming the input file is named egfr_simple.
bngl). Before the second phase of simulation, ligand is intro-
duced (using setConcentration), the concentrations at the
end of equilibration are saved (using saveConcentrations),
and the network is written to an SBML file (using writeSBML).
The second simulate_ode command then initiates a simula-
tion of the dynamics following introduction of EGF ligand into
the system. The results are written to the files egfr_simple.
gdat and egfr_simple.cdat. The third phase is then pre-
ceded by a resetConcentrations command, which restores
the concentrations to the initial values used in the second phase,
i.e., following equilibration and introduction of EGF. The simu-
late_ssa command then initiates the third and final phase of
simulation, a kinetic Monte Carlo simulation using the Gillespie
algorithm, and results are written to the files egfr_simple_
ssa.gdat and egfr_simple_ssa.cdat.

 In the equilibration phase the population level of the ligand
(EGF(R)) is zero, as specified in the seed species block of
 Listing 1 . Network generation is unaffected by the population
levels of the seed species, but in the absence of ligand the only
reactions with nonzero flux are the binding and unbinding reac-
tions of Grb2 and Sos1 in the cytosol, which are defined by rule
6. The purpose of the equilibration phase is then to allow the
concentrations of free Grb2, free Sos1, and the cytosolic Grb2-
Sos1 complex to reach steady-state levels, which we would expect
to find in the resting state of the cell.

 The first simulate_ode command propagates the simula-
tion forward in time (in large time steps) and checks for conver-
gence to a steady state. By going over each of the options used
in this command, we will provide an overview of the operation
and capabilities of the simulate_ode command. The “suf-
fix ⇒ equil” appends “_equil” to the basename for output
files of the simulation, which becomes here “egfr_simple_
equil”. This prevents output files from the equilibration phase
from being overwritten by subsequent simulation commands.
The end time (t_end) for the simulation is given a sufficiently
large value to ensure that steady state is reached prior to the end
of the simulation (see Note 36). The number of steps at which

 3.6.2. Simulating
a Network

 Rule-Based Modeling of Biochemical Systems with BioNetGen 141

results are written to the output files is specified by the n_steps
parameters, which is set to a relatively small value here because we
are only interested in reaching steady state and not in tracking the
time course. The interval between reporting of results is given by
(t_end/n_steps), which is 10,000 s in this case. (Note that
the n_steps parameter controls only the reporting interval and
not the step size used by the CVODE solver, which uses adaptive
time stepping). Results can also be reported at unevenly spaced
intervals (see Note 37). The sparse option invokes fast itera-
tive methods in the CVODE solver that can greatly accelerate
the simulations (see Note 38). The steady_state flag causes
a check for the convergence of the species population levels to
be performed following each report interval, with the propaga-
tion terminating if the root mean square of the relative change
in the population levels falls below a threshold, which is taken to
be 10×atol, the absolute integration tolerance. Note that the
basic operation of the simulate_ssa command is the same
as that of the simulate_ode command. A summary of options
available for the simulation commands is given in Table 1 . Of the
options discussed above, only steady_state and sparse are
not available for use with simulate_ssa.

 After completion of a simulation, the final population levels
of all species in a network are saved and used by default as the
initial population levels for subsequent simulation commands.
In the example, we have modified or overridden this behavior by
using the setConcentration (see Note 39) or resetCon-
centrations commands (see Note 40). Additional options
are discussed in Subheading 3.6.4 .

 We now consider visualization of the output produced by the
two simulation commands that follow equilibration. Each simu-
lation is run from the same initial conditions, but the second is
run using the simulate_ssa command, which produces a
stochastic (discrete-event) trajectory using the direct method of
Gillespie (40) . Trajectory data are written into two multicolumn
output files for each simulation: a .gdat file that reports the value
of each defined observable at each sample time and a .cdat file
that reports the population level of every species in the network
at each sample time. To avoid overwriting the data produced by
simulate_ode, the simulate_ssa command sets the suffix
parameter to “ssa”, so that the basename of the file becomes
“egfr_simple_ssa”. Both data file types are in ASCII format,
so they can be viewed in a text editor or imported into any number
of different plotting and data analysis programs. The BioNetGen
distribution includes the PhiBPlot plotting utility, which is a Java
program that can be run by double-clicking on the file PhiB-
Plot.jar in the PhiBPlot subdirectory of the distribution or
by typing “java –jar path /PhiBPlot.jar [datafile]”

 3.6.3. Viewing
the Simulation Results

142 Faeder, Blinov, and Hlavacek

on the command line. PhiBPlot can display data from up to two
BioNetGen data files at a time and is useful for quickly visual-
izing the results of a BioNetGen simulation and for comparing
the results of two (see Fig. 3).

 Network generation can be the most time-consuming part of
processing a BioNetGen input file, and during repeated simula-
tions of the same network (e.g., with varying parameters) one
may wish to avoid regenerating the network. There are several
ways to achieve this outcome. The first way, presented in the
example above, is to run multiple simulations within the same
input file using the saveConcentrations, and resetCon-
centrations commands in combination with the setCon-
centration and setParameter commands to vary initial
conditions and parameters (see Note 41).

 In some cases, however, it may be desirable to reload a net-
work that was generated during a previous invocation of BNG2.
pl. The readFile command provides a way to fully restore a
previously generated network so that parameters and species con-
centrations can be modified using the set commands. The basic
syntax is illustrated by the command

 3.6.4. Simulating
a Previously-Generated
Network

 Fig. 3. Plotting BioNetGen simulation data in PhiBPlot. Data from up to two different files may be plotted simultaneously.
Here, data for the Sos1_act observable from the ODE and SSA simulations is overlaid, showing the effects of fluctua-
tions in the stochastic simulation .

 Rule-Based Modeling of Biochemical Systems with BioNetGen 143

=> =>readFile({prefix "testread",file

"egfr_simple.net"}),

 which restores the network generated in the example of Listing
 1 with population levels set to their postequilibration values (see
Note 42). The readFile command, unlike other BioNetGen
commands, resets the global basename to be the basename of
the file argument, which is “egfr_simple” in the example
given above. The prefix parameter is set here to override this
behavior and to set the basename for subsequent simulations
commands to “testread” rather than egfr_simple.

 Reading a previously generated network from a file is always
much faster than regenerating the network, but can still be time-
consuming for very large networks. It may, therefore, be advanta-
geous to pass the previously generated .net file directly to the
simulation program by using the netfile argument to the
simulate_ x command, as in

=>

=> =>
simulate_ode({netfile "egfr_simple.net

t_end 120,n_steps 12});

 The disadvantage of this method is that it does not permit the
model parameters to be changed without directly editing the .net
file (see Note 43).

 In this section, we discuss two example applications of BioNet-
Gen. In the first example, we illustrate how BioNetGen can be
used to extend a conventional model so that it can be used to
interpret fluorescent labeling experiments. In the second exam-
ple, we illustrate how BioNetGen can be used to produce a model
for a system in which polymerization-like reactions are possible
(e.g., a model for multivalent ligand-receptor interactions). The
graphical formalism upon which BioNetGen is based was designed
with these types of systems in mind (25) . The structured objects
(graphs) of BNGL allow the topological connectivity of (protein)
complexes to be explicitly represented and tracked in a model.

 Here we illustrate how BioNetGen can be used to extend an exist-
ing (nonrule-based) reaction network. In some cases, one needs
to add a property that is passed from one species to another in a
reaction network. For example, many experiments involve fluores-
cent labeling, in which the system is injected with fluorescently-
labeled proteins that can be monitored. Fluorescent species carry
all the properties of nonfluorescent species, but can also be photo-
bleached, losing fluorescence. Given a reaction network of non-
fluorescent species, the network that includes both fluorescent
and nonfluorescent species nearly doubles in size. For larger
networks, this expansion will be error-prone if done manually.

 3.7. Additional
Examples

 3.7.1. Fluorescent Labeling

144 Faeder, Blinov, and Hlavacek

Thus, it is desirable to be able to extend a model to enable track-
ing of fluorescent labels, and BioNetGen provides such a capability
by allowing the definition of a mapping of component state labels
from reactants to products. In addition to the application shown
here, these mappings have been used to define carbon fate maps
for many of the currently known reactions in metabolism (38) .

 We consider a simple reaction network consisting of five spe-
cies and described by four basic reactions (considering each direc-
tion as a separate reaction)

AB

AB

CD

CD

k
k

k
k

A B C

C D E

+

−

+

−

+ ←⎯⎯→

+ ←⎯⎯→

 The label chemistry we want to describe works as follows: fluo-
rescence is passed from A to C in reaction 1 and from C to E in
reaction 2. This can be described by adding a component, which
we will call “f”, to the molecules A, C, and E. The f component
in each molecule may be in either the “off” or the “on” state,
as shown in the molecule types definitions of Listing 2 . We
then define rules for mapping the state of the f component between

begin parameters
NA 6.02e23 # Avogadro’s number (molecues/mol)
f 0.1 # Fraction of the cell to simulate
Vo f*1.0e-10 # Extracellular volume=1/cell_density (L)
V f*3.0e-12 # Cytoplasmic volume (L)
Initial concentrations (copies per cell)
A_tot 10000
B_tot 8000
D_tot 50000
Rate constants
Divide by NA*V to convert bimolecular rate constants
from /M/sec to /(molecule/cell)/sec
kpAB 3.0e6/(NA*V)
kmAB 0.06
kpCD 1.0e6/(NA*V)
kmCD 0.06
kpI 1.0e7/(NA*V)
kmI 0.1
end parameters

begin molecule types
A(f~off~on)
B()
C(f~off~on)
D()
E(f~off~on)
I()

 Listing 2 . BioNetGen input file for the fluorescent labeling example (see Subheading 3.7.1) .

 Rule-Based Modeling of Biochemical Systems with BioNetGen 145

end molecule types

begin seed species
A(f~off) A_tot
B() B_tot
C(f~off) 0
D() D_tot
E(f~off) 0
I() 0
end seed species

begin reaction rules
1 A(f%1) + B() <-> C(f%1) kpAB, kmAB
2 C(f%1) + D() <-> E(f%1) kpCD, kmCD
3 A(f~off) + I <-> A(f~on) kpI, kmI
end reaction rules

begin observables
Molecules A_f A(f~on)
Molecules C_f C(f~on)
Molecules E_f E(f~on)
Molecules Tot_f A(f~on) ,C(f~on),E(f~on)
end observables

generate_network({overwrite=>1});
Equilibrate
simulate_ode({suffi x=>equil,t_end=>10000,n_steps=>10,\
 steady_state=>1});
Add indicator
setConcentration(“I”,”A_tot/10”);
simulate_ode({t_end=>200,n_steps=>50});

A and C (see rule 1 in reaction rules block of Listing 2)
and between C and D (see rule 2 in reaction rules block
of Listing 2) using the “%” character followed by a string to
tag components (see Note 22). By not specifying the component
state of f in the rules, we cause the component state to be mapped
from the selected reactant molecule to the created product mol-
ecule. This trick allows us to avoid writing separate rules for the
labeled and unlabeled species. (When mapping components in
this way the user should be careful that the allowed state label
values of the components are the same or an error will be gener-
ated.) The defined observables track the amount of label associ-
ated with each of the molecules that can be labeled (A_f, C_f,
and E_f) and the total amount of label present in the system
(Tot_f). The resulting network has 9 species and 10 reactions.

 There are different ways in which labeled components may
be introduced into the system. The simplest way would be to
define an initial pool of labeled A molecules, i.e., define the species
“A(f~on)” to have nonzero initial concentration. Here, we have
chosen a somewhat more complex scenario in which the system is

146 Faeder, Blinov, and Hlavacek

initially equilibrated without the label, followed by the introduc-
tion of an indicator molecule that adds label to A through a chemi-
cal reaction, the third rule in the input file. Following equilibration
with no indicator present, the indicator concentration is set to be
a fraction of the total number of A molecules using the setCon-
centration command. Results of simulation of the network
following equilibration and introduction of the indicator molecule
are shown in Fig. 4 . The labeling reaction (rule 3) is fast compared
with the other reactions, so that labeled A initially accumulates fol-
lowed by a slower rise in the levels of labeled C and D molecules.

 BNGL can be used to model the kinetics of molecular aggregates
having different topological structures, such as chains, rings, and
trees. Here, we present a simple model for the binding of a sol-
uble multivalent ligand to a bivalent cell-surface receptor, such
as a membrane-bound antibody. In this model, we consider a

 3.7.2. Polymerization

 Fig. 4 . Plot of simulation results obtained from BioNetGen input file for the fluorescent labeling example shown in Listing 2
made using PhiBPlot (black and white rendition of color output). The plot shows time courses of the observables from the
second simulate_ode command in the actions block of Listing 2 .

 Rule-Based Modeling of Biochemical Systems with BioNetGen 147

Listing 3. BioNetGen input file for binding of bivalent ligand to bivalent receptor (see Section 3.7.2).

setOption(SpeciesLabel,HNauty);
begin parameters
NA 6.02e23 # Avogadro’s number (molecues/mol)
f 0.001 # Fraction of the cell to simulate
Vo f*1.0e-9 # Extracellular volume=1/cell_density (L)
V f*3.0e-12 # Cytoplasmic volume (L)
L0 1e-9*NA*Vo # Conc. in Molar -> copies per cell
R0 f*3e5
kp1 3.3e/(NA*Vo)
km1 0.1
kp2 1e6/(NA*V)
km2 0.1
kp3 30
km3 0.1
end parameters

begin molecule types
 R(r,r)
 L(l,l)
end molecule types

begin reaction rules
Ligand addition
1 R(r) + L(l,l) <-> R(r!1).L(l!1,l) kp1,km1
Chain elongation
2 R(r) + L(l,l!+) <-> R(r!1).L(l!1,l!+) kp2,km2
Ring closure
#3 R(r).L(l) <-> R(r!1).L(l!1) kp3,km3
end reaction rules

bivalent ligand with two identical binding sites (L(l,l)) and a
bivalent receptor with two identical binding sites (R(r,r)). The
ligand may cross-link two receptors to form a dimeric receptor
aggregate (R(r,r!1).L(l!1,l!2).R(r!2,r)), which can
then interact with additional ligand via free receptor sites. Lig-
and-receptor interaction can form a distribution of linear chains
of alternating ligands and receptors (R(r,r!1).L(l!1,l!2).
R(r!2,r!3).L(l!3,l!4).…). Two simple rules, shown in
 Listing 3 , provide an elementary model of bivalent ligand–
bivalent receptor interaction under the assumptions that the
length of a chain does not affect its reactivity and that rings do
not form (see Note 44). A third rule that allows the formation
of rings of any size is shown in Listing 3 , but this rule is com-
mented out (see Note 45). For a different example of polymeriza-
tion in a biological context, see Note 46 .

148 Faeder, Blinov, and Hlavacek

begin seed species
 R(r,r) R0
 L(l,l) L0
end seed species

begin observables
Species FreeL L(l,l)
Dimers R==2
Trimers R==3
4mers R==4
5mers R==5
6mers R==6
7mers R==7
8mers R==8
9mers R==9
10mers R==10
gt10mers R>10
end observables

Simulation of a truncated network
generate_network({overwrite=>1,max_stoich=>{R=>10,L=>10}});
simulate_ode({t_end=>50, n_steps=>20});

Simulation on-the-fl y
generate_network({overwrite=>1,max_iter=>1});
simulate_ssa({t_end=>50,n_steps=>20});

 The observables block in Listing 3 introduces a new syntax
for using stoichiometry in the definition of observables, which
is needed to track the aggregate size distribution in models that
exhibit polymerization (see Note 47).

 Because chains can grow to any length, unless stopping cri-
teria are specified, the process of iterative rule application initi-
ated by a generate_network command will not terminate
until the user runs out of patience or the computer runs out of
memory. We discuss here two methods of simulating a network
that cannot be enumerated completely.

 The first method is to specify any of the restrictions described
in Subheading 3.6.1 on the generate_network command,
which will cause termination before all possible species and reac-
tions have been generated. The first pair of actions in Listing 3
shows how the max_stoich parameter can be used to limit the
stoichiometry of complexes, producing in this case a network of
30 species and 340 reactions, which can be rapidly simulated using
either the ODE or SSA methods. The accuracy of simulations on

 Rule-Based Modeling of Biochemical Systems with BioNetGen 149

artificially truncated networks is, however, not guaranteed and
may depend strongly on the parameter values. For the parameters
shown in Listing 3 , the population of clusters with more than
about 5 receptors is small, and little error results from network
truncation. However, if the value of the cross-linking parameter,
kp2, is increased by a factor of 10, the cluster size distribution
generated by the truncated network becomes inaccurate. The user
must therefore be careful to check results for convergence, particu-
larly when changing the parameter values over substantial ranges.

 The second method, which is specified by the second pair of
actions in Listing 3 , is to do a minimal initial round of network
generation and then allow the network to be generated as new
species become populated during a stochastic simulation. The call
to generate_network is required here to generate the reac-
tions that can take place among the seed species; otherwise, an
error will occur when a simulation command is invoked and there
are no reactions in the network. With max_iter set to 1 only
reactions involving seed species are initially generated. During
simulation initiated with the simulate_ssa command, Bio-
NetGen detects when a reaction event occurs that populates one
or more species to which rules have not been previously applied
and automatically expands the network through rule application.
This behavior is built into the simulate_ssa command and no
additional parameters need to be specified. The performance of
on-the-fly simulation is highly dependent on the system param-
eters and on the number of molecules being simulated. Increasing
the number of molecules while holding the concentrations fixed
(accomplished by changing the parameter f) increases the size of
the network that is generated by on-the-fly sampling. Because the
network generation involves the computationally expensive step
of generating and comparing canonical labels (see Note 33), the
simulation performance can become poor if one attempts to simu-
late on-the-fly under conditions that lead to the possible formation
of more than about 10 3 –10 4 species. Simulation of the dynamics
of 300 receptors up to steady state takes about 30 CPU seconds
on a MacBook Pro with the 2.4 GHz Intel Core Duo processor
and generates a network of about 50 species and 350 reactions.

 In the near future, a third and more powerful option will be
available for simulating large-scale networks, such as those that arise
when polymerization is possible or when some of the signaling mol-
ecules have high valence (see Note 48). Work is currently underway
to implement the discrete-event particle-based simulation method
that has been recently developed, which extends Gillespie’s method
to consider rules rather than individual reactions as event generators
 (30, 31) . The main idea behind this method is that by tracking indi-
vidual particles in a simulation rather than populations the need to
explicitly enumerate the possible species and reactions is eliminated.
The computational scaling of a stochastic, event-driven simulation

150 Faeder, Blinov, and Hlavacek

using the particle-based approach becomes effectively independ-
ent of network size and has moderate (logarithmic) scaling with the
size of the rule set. This rule-based kinetic Monte Carlo method
offers significantly better performance than the earlier particle-based
event-driven algorithm used in the STOCHSIM software, which uses a
less efficient event sampling algorithm that produces a high fraction
of nonreactive events (21) . The planned incorporation of the rule-
based kinetic Monte Carlo method will enable the efficient simula-
tion of comprehensive models of signal transduction networks on
the basis of molecular interactions, and, we hope, greatly increase
the power of predictive modeling of such systems.

 The plot in Fig. 5 shows simulation results for the number
of receptors in trimers as a function of time (in seconds) from
the ODE simulation of the truncated network (smooth line) and
the SSA simulation with on-the-fly network generation (jagged
line). Following the initial equilibration period about 10–20%
of the receptors are in trimers at any given time. The total time
required for network generation and simulation is comparable
in the two cases, with network generation consuming the vast
majority of the CPU time.

 The information provided here serves as both an introductory
guide and reference resource for the modeler interested in using
BioNetGen to develop and analyze rule-based models of bio-

 3.8. Concluding
Remarks

 Fig. 5 . Plot of simulation results obtained from BioNetGen input file for the bivalent ligand
bivalent receptor binding model shown in Listing 3 made using PhiBPlot. Smooth solid
line is the curve obtained from the simulate_ode command; jagged line with cir-
cles shows results from the simulate_ssa command .

 Rule-Based Modeling of Biochemical Systems with BioNetGen 151

chemical systems. Several applications of BioNetGen have been
presented and discussed, but the rule-based modeling approach
enabled by BioNetGen can be used for a much broader range
of purposes. We strive to be responsive to the needs of the Bio-
NetGen user community and encourage users to contact us to
share their experiences, to request new capabilities and features,
and to report bugs. The BioNetGen web site (http://bionetgen.
org) has a wiki format to allow users to contribute information
and models. Updates of the information presented here will be
announced at the wiki site. Rule-based modeling of biochemical
networks is a rapidly evolving area of research and BioNetGen
is therefore very much a work in progress, with new capabilities
being added continually.

 BioNetGen is an open-source project. Although contribu-
tions of code are welcome, the main reason the source code is
made available is so that users can see how the code works and
can confirm that model specifications are being processed as
expected. Because of the difficulties of checking the correctness
of a chemical reaction network or a simulation result generated
automatically from rules, key elements of BioNetGen have been
coded independently multiple times and crosschecked. After
extensive testing, we are confident that the software is reliable. By
following the guidance provided here, a modeler should be able
to precisely use BNGL to obtain intended model specifications.

 In the future, we hope to see the BioNetGen framework evolve
to enable community-driven development of comprehensive models
for cellular regulatory systems. The material components and
interactions of a cellular regulatory system are typically too numer-
ous and complicated for a single researcher to thoroughly docu-
ment and capture faithfully in a model of comprehensive scope.
For example, nearly 200 proteins are documented to be involved
in EGFR signaling in the NetPath database (http://netpath.org).
The ability to extend models through the composition of rules is a
key factor that makes incremental construction of large-scale mod-
els a real possibility (8, 27) . To take advantage of collective intel-
ligence for the construction of large-scale models, we are actively
pursuing the following extensions of the BioNetGen framework:
(1) implementation of methods capable of simulating models com-
posed of a large number of rules (30, 31) , (2) manipulation and
encoding of BNGL using an XML-based format proposed as an
extension of SBML (http://sbml.org) to better facilitate electronic
exchange and storage of models, and (3) development of conven-
tions and database-related tools for annotating models and model
elements (e.g., linking of molecule names in a model specification
to amino acid sequences and other information in standard data-
bases). However, for a long time to come, we foresee that a sound
understanding of the material presented here will be useful for
rule-based modeling with BioNetGen.

152 Faeder, Blinov, and Hlavacek

 1. Users familiar with a command line interface on any of these sys-
tems should have no trouble following the instructions for using
the software after reading this chapter. Other users may find the
RuleBuilder application, which provides a graphical user interface
to BioNetGen, more accessible. This application may be started
by double-clicking on the RuleBuilder-beta-1.51.jar file
in the RuleBuilder subdirectory of the BioNetGen distribution.
The RuleBuilder Getting Started Guide in the same directory
explains use of the software. Although this chapter focuses on the
text-based interface, the basic concepts of BioNetGen modeling
discussed here are essential for proper use of RuleBuilder.

 2. BioNetGen is invoked in a command shell using
prompt> path /Perl2/BNG2.pl file .bngl

 3. The syntax of a line in the parameters block is
[index] parameter [=] value where square brackets
indicate optional elements, parameter is a string consisting
of only alphanumeric characters plus the underscore character
(“_”) and containing at least one nonnumeric character. value
may be either a number in integer, decimal, or exponential
notation or a formula involving numbers and other parameters
in C-style math syntax. See Listing 1 for examples.

 4. The size of the system being simulated can be scaled by chang-
ing the value of the parameter f in Listing 1 . By scaling all
of the initial populations and the volumes by this factor, the
system size is scaled without changing the concentrations of
any of the constituents. For a deterministic simulation, the
simulation time and the behavior of the system (e.g., the value
of any observable divided by f) is independent of f. For a sto-
chastic simulation, however, the time required to carry out a
simulation will be proportional to f, whereas the noise will be
proportional to 1/sqrt(f).

 5. In current BNGL each component may have at most one
associated state label, which may take on an arbitrary number
of discrete values, specified as strings. The state is thus a scalar
variable that can be considered as an enum data type. Future
planned extensions of BNGL include nesting of components
to allow a single component to have multiple associated states
and binding sites.

 6. Names for all BioNetGen objects other than parameters,
which includes molecules, components, state labels, bonds,
labels, and observables may consist of alphanumeric characters
and the underscore character (“_”), but may not include the
dash character (“-”), which is sometimes used in the biologi-

4. Notes

 Rule-Based Modeling of Biochemical Systems with BioNetGen 153

cal literature as part of protein or domain names. It is not an
allowed character here because in some contexts it may be
confused with the arithmetic minus operator.

 7. The syntax of a line in the molecule types block is

 [index] moleculeType

 where moleculeType has the syntax described in the text
and illustrated in Listing 1 .

 8. If the molecule types block is present, all molecules in
the seed species block must match the type declarations
in the molecule types block. A molecule matches its
type declaration if each of its declared components is present
and each component state is a member of the declared set of
possible states. If the molecule types block is not present,
then the seed species block serves a typing purpose. The
first instance of a molecule in the seed species block is
taken to define the complete set of components in that mol-
ecule in the model, and only components that are assigned
a state in the first occurrence may subsequently have defined
states. For example, the Grb2 molecule implicitly defined
by the species Grb2(SH2,SH3) may not have any states
assigned to SH2 or SH3 components. However, the species
EGFR(L,CR1,Y1068~U) defines the Y1068 component of
EGFR as one that has an associated state label, which has
at least one allowed value, “U”, and potentially others to be
defined later. Occurrences of additional allowed state labels
may occur in the seed species block or in the reac-
tion rules block, and in either case BioNetGen gener-
ates a warning message that additional allowed state values
are being associated with the component.

 9. The syntax of a line in the seed species block is

 [index] species [initialPopulation]

 where species has the syntax for a BioNetGen species as
described in the text and illustrated in the seed species
block of Listing 1 and initialPopulation is a number
or formula that specifies the amount of the species present at
the start of the first simulation (default is zero).

 10. The amount of a chemical species may be specified to have
a constant value by prefixing the chemical species name in
the seed species block with a “$” character, as follows:
the expression “$EGF(R) 1” would set the amount of free
EGF in the system to 1. This feature is useful for consider-
ing certain scenarios.

154 Faeder, Blinov, and Hlavacek

 11. The syntax of a line in the observables block is

 [index] [observableType] observableName
pattern1 [, pattern2]…

 where observableType is either Molecules or Spe-
cies (defaults to Molecule if omitted) observa-
bleName is a valid name for a BioNetGen observable, and
each pattern is a valid BioNetGen pattern.

 12. Recall that bond names are arbitrary and are used only to
identify the bond endpoints. Thus, the bond names used in
a pattern do not affect the resulting matches.

 13. The “?” wildcard can also be used in state matching, but
leaving component state out of a match is more commonly
achieved by omitting the state label altogether. For example
the patterns “EGFR(Y1068)” and “EGFR(Y1068~?)” are
equivalent, i.e., generate the same matches.

 14. For each pattern, selected matches to species in the model of
 Listing 1 are listed with the image of the pattern elements
shown in bold . (These are not meant to be exhaustive, just
illustrative.) Note that some chemical species are matched
multiple times by a given pattern.
 a. EGFR() matches

EGFR(CR1,L,Y1068~U) ,EGF(R!1).
 EGFR(CR1,L!1,Y1068~U) , EGF(R!1). EGF(R!2).
 EGFR(CR1!3,L!1,Y1068~U) .EGFR(CR1!3,
L!2,Y1068~U), and EGF(R!1).EGF(R!2).EGFR(CR
1!3,L!1,Y1068~U). EGFR(CR1!3,L!2,Y1068~U)

 b. EGF(R) matches EGF(R)
 c. EGFR(CR1!+) matches EGF(R!1).EGF(R!2).

 EGFR(CR1!3 ,L!1,Y1068~U) .
EGFR(CR1!3,L!2,Y1068~U), and EGF(R!1).
EGF(R!2).EGFR(CR1!3,L!1,Y1068~P).
 EGFR(CR1!3 ,L!2,Y1068~U)

 d. EGFR(Y1068~P!?) matches EGF(R!1).
EGF(R!2). EGFR(CR1!3,L!1, Y1068~P) .
EGFR(CR1!3,L!2,Y1068~U), and EGF(R!1).
EGF(R!2). EGFR(CR1!3,L!1, Y1068~P!4) .
EGFR(CR1!3,L!2,Y1068~U).Grb2(SH2!4,SH3)

 e. Grb2(SH2,SH3!1).Sos1(PxxP!1) matches
 Grb2(SH2,SH3!1).Sos1(PxxP!1)

 f. EGFR(Y1068!1).Grb2(SH2!1,SH3!2).
Sos1(PxxP!2) matches EGF(R!1).EGF(R!2).
 EGFR(CR1!3,L!1, Y1068 ~P !4) .EGFR(CR1!3,L!2,
Y1068~U). Grb2(SH2!4,SH3!5).Sos1(PxxP!5)

 15. The sum corresponding to an observable is defined explicitly
in the .net file that is generated by BioNetGen when an input
file is processed. These sums are contained in the groups
block of the .net file (see Note 28).

 Rule-Based Modeling of Biochemical Systems with BioNetGen 155

 16. When an observable is defined by two or more patterns, the
associated functions are computed as follows. For an observ-
able of the Molecules type, the observable is a sum of the
observables defined by each individual pattern in the set. For an
observable of the Species type, the observable is an unweighted
sum of the populations of chemical species matched by any
of the patterns in the set. Multiple patterns can be useful for
specifying observables that are functions of multiple sites on a
molecule, e.g., the total phosphorylation level of a protein that
can be phosphorylated at multiple sites.

 17. The .gdat and .cdat files produced by BioNetGen simula-
tion commands are ASCII text files that list the time courses
of observables and concentrations, respectively, in a tabular
format. The first line of each file is a header beginning with
a “#” character, followed by a whitespace-separated list of
strings identifying the contents of each column. The first
column is “time” in both .gdat and .cdat formats. In a .gdat
file the remaining columns list the observable names cor-
responding to each column. In the .cdat file, the remaining
columns list the index of the species concentration corre-
sponding to each column.

 18. The syntax of a line in the reaction rules block is

 [index] rPattern1 [+ rpattern2] … arrow pPat-
tern1 [+ pPattern2] … rateLaw1 [, rateLaw2]
[command1]…

 where each Pattern is a valid BioNetGen pattern, arrow is
one of “–>” or “<–>,” each rateLaw is a parameter or a rate
law function (see Note 20), and commands have the syntax
described in Subheading 3.5.7 .

 19. If a component of a molecule appears in a reactant pattern,
the corresponding molecule in the product pattern, if it is
not deleted, must include that component. Failure to include
the full set of components referenced by the reactant pattern
will produce an error. Thus, the rule “A(a)–> A(b) kab”
produces an error, even if the A molecule has both compo-
nents a and b.

 20. Other rate laws are invoked by using one of the keywords for
the allowed rate law types followed by a comma-separated
list of numerical values or formulas in parentheses. As of
this writing, the three recognized rate law types are “Ele”,
“Sat”, and “MM”. The formula for the Ele rate law is

 1 1
1

Ele() ,
M

i
i

k k x
=

= ∏

 where M is the molecularity of the reaction (i.e., the number
of reactants) and x i is the population level of the i th reactant.

156 Faeder, Blinov, and Hlavacek

This rate law type is specified by default when only a numeri-
cal value or a formula is given following the product patterns
in a rule, as described in Subheading 3.5 . The current ver-
sion of BioNetGen supports a few nonelementary rate law
formulas, primarily to allow simulation of models from the
literature that incorporate these rate laws. The formula for
the Sat rate law is

 cat m cat m 1
1

Sat(,) / () ,
M

i
i

k K k x K x
=

= +∏

 where x 1 is the population level of the reactant matching
the first reactant pattern in the rule. Note that max cat 2V k x=
 and K m are the usual Michaelis–Menten parameters if M =
2 (47) and that these parameters should be specified in con-
sistent units. An example of a rule that uses this rate law is

Prot(Y ~ U)+ Kinase(aloopY ~ P)®Prot(Y ~ P)+

e(aloopY ~ P) Sat(kcat,Km)

 The formula for the MM rate law is

cat m cat 1 2 1m(,) / ()MM k K k x x K x+′ ′= ,

where ()2
1 1 2 m 1 2 m m 1() () 4 / 2x x x K x x K K x= + − + + − +′ .

 Note that this rate law type is applicable only if M = 2. The
MM rate law type is the same as the Sat rate law type when
 M = 2 except that x 1 is replaced by x ′ 1 to account for the
amount of “substrate” bound to “enzyme.” In the near
future it will be possible to define rate laws using arbitrary
mathematical formulas.

 21. A single-site rate law characterizes the rate of a reaction
that involves the formation or dissolution of a single bond.
In some cases, a reaction can occur in multiple ways that
are indistinguishable. In these cases, the single-site rate law
needs to be multiplied by a statistical factor to obtain the
appropriate observable rate of the reaction. For example, if
an antibody with two identical binding sites associates with
a monovalent hapten, then there are two indistinguishable
ways that this reaction could occur. If the single-site rate
constant is k , then the observable rate at which the reaction
occurs is 2 k [IgG] [hapten], where [IgG] is the concentra-
tion of bivalent antibody, [hapten] is the concentration of
monovalent hapten, and the statistical factor of 2 accounts
for the fact that hapten can add to either of the two sites
on the antibody. BioNetGen in generating or simulating a
reaction network automatically accounts for such statisti-

 Rule-Based Modeling of Biochemical Systems with BioNetGen 157

cal factors under the assumption that the rate law associated
with a rule applies to a single-site reaction. A modeler should
therefore be careful to always specify a single-site rate con-
stant when writing a rule. Likewise, BioNetGen automati-
cally adds a symmetry factor of 1/2 to account for reactions
such as A + A → product(s), a factor of 1/6 to account for
reactions such as A + A + A → product(s), etc. In general,
when assigning a rate constant to the elementary rate law
of a rule, one should assign the constant appropriate for a
reaction of the form A+B → product(s) where in this reac-
tion there is a unique path from the reactants to product(s).
BioNetGen will automatically correct rates of reactions for
statistical and symmetry factors. This feature is important
because these factors often vary from reaction to reaction
within a class of reactions defined by a single rule (28) .

 22. Any component in a reaction rule may be tagged by adding
the “%” character followed by the tag name. The scope of a
tag is local to the rule in which it appears.

 23. The application of rule 1 of Listing 1 to the species { EGF(R),
EGFR(L,CR1 ,Y1068~U) , EGFR(L,CR1 ,Y1068~P) ,
 EGFR(L,CR1 ,Y1068~P!1) .Grb2(SH2!1,SH3)}, pro-
duces the following reactions:

 EGF(R) + EGFR(L , CR1 ,Y1068~U) ->
 EGF(R!1) . EGFR(L!1,CR1 ,Y1068~U) kp1

 EGF(R) + EGFR(L,CR1 ,Y1068~P)->
 EGF(R!1) . EGFR(L!1,CR1 ,Y1068~P) kp1

 EGF(R) + EGFR(L,CR1 ,Y1068~P!1) .Grb2
(SH2!1,SH3) ->\

 EGF(R!2) . EGFR(L!2,CR1 ,Y1068~P!1) .Grb2(SH2!1,
SH3) kp1

 where the images of the reactant patterns are shown in bold
and the reaction centers are underlined. The rate law for an
individual reaction has the same format as a rate law in a
reaction rule (see Note 18).

 24. The scope of a bond name is restricted to the pattern in which
it appears. Bond names are not used in establishing the cor-
respondence between reactant and product patterns. Thus, the
rule “A(a!1).B(b!1~U) –> A(a!2).B(b!2~P)” has no
effect on the bond between A and B even though in the specifi-
cation the name of the bond changes between the reactant and
product sides. Similarly, in the expression “A(a!1).B(b!1)
+ C(c!1).D(d!1)” the fact that both bonds have the same
name has no consequence.

 25. Internally, BioNetGen represents all reactions generated
by rules as unidirectional and maintains this representation
when generating a .net file or exporting networks to SBML
and MATLAB M-file formats.

158 Faeder, Blinov, and Hlavacek

 26. Consider the action of the following two rules on the
 initial species “A(a1!1,a2!2).B(b1!1,b2!2)”, which
describes a complex between A and B molecules connected
by two bonds. Both rules break the bond between the a1
component of A and the b1 component of B. The first rule,
“A(a1!1).B(b1!1) –> A(a1)+B(b1),” has a molecular-
ity of two in the products, and thus does not apply to this
complex because breaking the bond still leaves the complex
held together by the bond between a2 and b2. The second
rule, “A(a1!1).B(b1!1) –> A(a1).B(b1)”, does not
require dissociation of the resulting complex and gener-
ates the reaction “A(a1!1,a2!2).B(b1!1,b2!2) –>
A(a1,a2!1).B(b1,b2!1)”.

 27. Describing dephosphorylation as a first order reaction involv-
ing only the substrate assumes that the responsible enzyme,
a phosphatase is constitutively active and is present at an
excess and unchanging level. Dephosphoryation reactions
have been handled this way (see , e.g., ref. 33) because the
identities of the phosphatases acting on a particular substrate
are often unknown.

 28. The two products are
 EGF(R!1). EGF(R!2). EGFR(CR1!3,L!1, Y1068~U) .

 EGFR(CR1!3,L!2,Y1068~P)

 EGF(R!1).EGF(R!2).EGFR(CR1!3,L!1,Y1068~P).

 EGFR(CR1!3,L!2, Y1068~U) , which are isomorphic, as
can be verified by switching the order of the two EGF and
two EGFR molecules and renumbering bonds 1 and 2.

 29. A correction is required for rules that are symmetric (26) .
BioNetGen automatically detects rule symmetry generates
reactions with the correct multiplicity. Consider the sym-
metric rule “A(a) + A(a) → A(a!1).A(a!1) k”
applied to the set of species {A(a,Y~U), A(a,Y~P)}.
The following reactions will be generated

 A(a,Y~U) + A(a,Y~U) → A(a!1,Y~U).A(a!1,Y~U)
0.5*k
 A(a,Y~U) + A(a,Y~P) → A(a!1,Y~U).A(a!1,Y~P) k
 A(a,Y~P) + A(a,Y~P) → A(a!1,Y~P).A(a!1,Y~P)
0.5*k

 where the first and third reactions are symmetric and thus
have a multiplicity of ½, for the reason discussed above in
 Note 21 . The second reaction has a multiplicity of 1 because
there is only one way that a bond may be added to join the
two A molecules.

 30. This would not be the case if EGFR had another binding
partner that could bind through the CR1 domain, such as
another member of the ErbB family of receptors to which

 Rule-Based Modeling of Biochemical Systems with BioNetGen 159

EGFR belongs. Consider a simplified example of the protein
“A(Y~U,b)”, where the b component is a binding site that
can bind either to the b site of a kinase B or to the b site of a
kinase-dead mutant of B called Bi. The rule “A(Y~U,b!+)–>
A(Y~P,b!+)” would not capture the described mechanism
because both A(Y~U,b!1) .B(b!1) and A(Y~U,b!1) .
Bi(b!1) would generate phosphorylation reactions under
action of this rule. The most obvious way to address this
problem is to explicitly specify that B must be present
for the rule to apply, as in “A(Y~U,b!1).B(b!1)–>
A(Y~P,b!1).B(b!1)”.

 31. Such counters can prevent the steady_state flag of
simulate_ode from reaching steady state because the
counter species will increase linearly in time if the steady-
state concentration of the A-containing species is nonzero.
If one wishes to preserve possible steady-state behavior, the
concentration of the Trash species should be fixed by pre-
pending a “$” character to its declaration in the seed spe-
cies block (see Note 10). In other words, Trash should
be declared as a seed species with fixed value using the line
“$Trash 0” in the seed species block.

 32. Species are compared during network generation by generating
a string label for the species from a canonical ordering of the
molecules, components, and edges (26) . A canonical order-
ing is one that guarantees that two graphs will generate the
same label if and only if they are isomorphic (48) . In this way,
the problem of determining graph isomorphism is reduced to
string comparison and testing a species found in a new reaction
for isomorphism with existing species is reduced to looking up
its label in a hash table. For labeled graphs, such as those used
in BioNetGen to represent species, the problem of canonical
ordering is trivial if all labels in the graph are unique (lexical sort-
ing will suffice). More powerful methods are needed if there are
multiple occurrences of nodes with identical labels (49) . There
are three different methods that BioNetGen can use to gener-
ate canonical labels and test species for isomorphism. To spec-
ify a canonical labeling method the command “setOption
(“SpeciesLabel”, method);” is placed anywhere in
the BNGL file outside of the input blocks and before the
first action command. In this command method is Auto,
HNauty, or Quasi. Use of this command is optional unless
overriding the default method, which is Auto. The default
method used by BioNetGen for generating canonical labels
is called “Auto,” which works by generating a quasi-canonical
label that includes all information about the Species except the
bonds, for which only the bond order of each Component
is listed. These quasi-canonical labels are quick to generate,
but they cannot distinguish all nonisomorphic species. Thus,

160 Faeder, Blinov, and Hlavacek

any two species that share a quasi-canonical label must be fur-
ther checked for isomorphism directly, for which BioNetGen
uses a variant of the Ullmann algorithm (50) . This method is
always correct, but may be very slow if the number of iden-
tical Molecules or Components in a complex is greater than
a handful, because it requires checking of a large number of
permutations. A second exact method called “HNauty” is
available that gives more robust performance when species are
formed that involve substantial numbers of repeated elements.
HNauty is a generalization of the Nauty algorithm of McKay
 (49) developed specifically to handle graphs representing spe-
cies in BioNetGen (51) . HNauty is slower than Auto when
most of the species in a network have low stoichiometry, but is
sometimes required to simulate networks in which substantial
oligomerization occurs. In some cases, such as when oligomers
are restricted to linear chains, the quasi-canonical strings used
as a filter by the Auto method turn out to be canonical. If that
is the case, the “Quasi” method can be used to turn off the
additional isomorphism check for species that match an exist-
ing quasi-canonical label, which can significantly accelerate
network generation. This method should only be used when
the user can confirm that the quasi-canonical labels are in fact
canonical; otherwise, failure to resolve nonidentical species will
result in unpredictable behavior.

 33. If a rule set implies a large or unbounded network and a
user attempts to generate the network, BioNetGen may not
complete execution in a reasonable amount of time. In such
cases a user has several options: (1) Restrict network generation
using arguments to generate_network, as discussed in
 Subheading 3.6 ; (2) Use the “print_iter 1” option of
the generate network command to cause BioNetGen
to dump an intermediate .net file for each iteration of rule
application and inspect the resulting .net file for indications
of runaway polymerization that may be unintended; (3) Run
a stochastic simulation with on-the-fly network generation
(see Subheading 3.7.2); (4) Wait for the network-free simu-
lation engine(s) to become available (see Fig. 2). (5) Use the
macro model reduction module for BioNetGen, which uses
the algorithms described in (52– 54) to reduce the size of the
network that needs to be generated to calculate the specified
observables. The module is included in BioNetGen distribu-
tions 2.0.47 and later, and is invoked using the command
“MacroBNG2.pl --macro file .bngl”.

34. The .net file produced by BioNetGen is a BNGL file with
the three additional blocks species, reactions, and
groups, which contain the species, reactions, and observ-
able function definitions that result from network genera-
tion. The syntax for the species block is identical to that

 Rule-Based Modeling of Biochemical Systems with BioNetGen 161

of the seed species block in the BNGL file. It contains a
complete list of the species in the network and their concen-
trations at the current time. The syntax for each line in the
reactions block is

 index reactantListproductList [multiplicity *]
 rateLaw

 where the reactantList and productList are comma-
separated lists referring to species by index, multiplicity
is an optional factor multiplying the rate law, and rateLaw
is either a single parameter (for an elementary type) or one
of the additional types (see Note 20). An example of a reac-
tion entry is

 1 1,7 8 2*kp1

 which specifies that species 1 and 7 undergo a bimolecular
association to produce species 8 with an elementary rate law
governed by the rate constant 2*kp1. The syntax for each
line in the observables groups block is

 index group Name speciesList

 where the speciesList is a comma-separated list
of species indices, each element of which has the form
[weight *] speciesIndex . An example of a sum defini-
tion for observable 6 of the example model in Listing 1 is

 6 Sos1_act 13,16,18,20,22,2*23

 In the sum, the population level of Species 23 has a weight
of two, whereas the population levels of all other species
have the default weight of one.

 35. The prefix command sets the basename to be the value
of its argument, whereas the suffix command appends
its argument to the basename. For example, the command
“prefix⇒test” would set the basename to test, and the
command “suffix⇒test” would append “_test” to the
basename. The scope of changes to the basename is local to
the command in which the prefix or suffix commands
appear. The basename for subsequent commands reverts to the
basename of the file unless overriden by additional commands.
The sole exception to this is the readFile action, which sets
the global basename to either the value of the prefix com-
mand, if present, or to the basename of the file command.

 36. In practice, a modeler should be careful to check by trial
and error that t_end is sufficiently large to reach steady
state. Recall that BioNetGen expects model parameters and
variables to have consistent units, so times specified in simu-
lation commands (e.g., by assigning a value to the t_end
parameter) should be given in units consistent with those

162 Faeder, Blinov, and Hlavacek

of rate constants, which have units of inverse seconds in all
examples presented here.

 37. In addition to reporting simulation output at evenly spaced
intervals, as specified using the t_end and n_steps param-
eters, BioNetGen can also report results at any set of times
specified in the sample_times array. When this option is
used, values of the t_end and n_steps parameters should
not be specified. An example of nonuniform time sampling
specified in this way is the command

 simulate_ode({sample_times [1,10,100]});

 which will result in observables and species concentrations
being reported at t = 0 (the start time), 1, 10, and 100.

 38. Rule-based networks tend to be sparse, that is, the vast
majority of elements of the Jacobian matrix are zero (the
elements of this matrix are ∂

∂= () /i

j

f
ij xJ x , where =� ()ix fi x is

the ODE describing the kinetics of species i). This may not
be the case for networks involving extensive oligomeriza-
tion. Empirically, we have found that networks with more
than a few hundred species tend to be accelerated by the use
of sparse methods, with major gains occurring for networks
of thousands to tens of thousands of species. The largest
network that has been simulated with BioNetGen has about
50,000 species and 100,000 reactions. Above that point, the
2 gigabytes of memory addressable on 32 bit architectures is
exceeded.

 39. The setConcentration command has the syntax

 setConcentration(species , value)

 where species is a valid BioNetGen species specification
(see Subheading 3.3) and value is a number or formula.

 40. Note that if the initial concentration of a species is set to a
parameter or a formula, changing the value of the parameter
or of parameters in the formula using the setParameter
after the first simulation is run will not affect the species con-
centrations, which are overwritten following the completion
of the simulation.

 41. It is straightforward to write scripts that utilize these com-
mands to automate such tasks as parameter scans or averaging
multiple stochastic simulations. The Perl script scan_var.pl,
which is provided in the Perl2 directory of the BioNetGen
distrbution, provides a simple example that can be used for
scanning the value of a single parameter and could be easily
extended to perform more complex actions.

 42. A .net file with the name “ basename .net” is automatically
generated prior to execution of any simulation command and
is read by the run_network program, which is executed as

 Rule-Based Modeling of Biochemical Systems with BioNetGen 163

a separate process. If a .net file with the same name already
exists, it is overwritten. If multiple simulation commands are
given in the same input file, it may be useful to use a different
basename for each (using either the prefix or suffix
commands), so that the input network to each simulation can
be inspected later for information and debugging purposes.
In the example shown in Listing 1 , the first simulate_ode
command produces the file “egfr_simple_equil.net”,
the second simulate_ode command produces the file
“egfr_simple.net”, and the simulate_ssa produces
the file “egfr_simple_ssa.net”.

 43. BioNetGen’s simulation engine, Network, has a command
line interface that can be used directly, bypassing BNG2.pl
altogether. Details of this interface are provided in the source
code of run_network.c, which is located in the Network2
subdirectory of the distribution. A summary is provided by
running the appropriate run_network executable in the
bin directory of the distribution. In addition, BNG2.pl
outputs the exact command used to execute run_network
following the tag “full_command:”

 44. Note that a nearly identical network of species and reac-
tions can be generated by the single rule “R(r)+L(r)<–>
R(r!1).L(r!1) kp1,km1,” where the difference is that
in the single-rule network all reactions will have the same rate
constant. This difference is important physically, because lig-
and that is bound to receptor is restricted to diffuse on the
surface of the cell, whereas free ligand diffuses freely in three
dimensions. Although restriction to the cell surface decrease
the diffusion constant of the ligand, the effective concentration
of receptor binding sites greatly increases resulting in a strong
enhancement of the ligand-receptor binding rate (55) .

 45. Rule 3 of Listing 3 is the simplest ring closure rule that can be
specified for this system, and permits the formation of all pos-
sible rings in this system, including a monomeric ring in which
a single receptor binds the same ligand twice. To exclude this
possibility, which may be sterically unfavorable, one could
extend the rule to read “L(l!1).R(r!1,r).L(l) <–>
L(l!1).R(r!1,r!2).L(l!2) kp3,km3,” which forces
the ring closure to involve a ligand molecule other than the
one to which the R molecule is bound. It is also possible to
restrict the range of chain sizes that can undergo ring closure
by explicitly including all of the molecules that form the ring,
or by using a combination of include_reactants and
exclude_reactants commands. For example, the add-
ing the commands “include_reactants(1,R.R)” and
“exclude_reactants(1,R.R.R.R)” to either ring clo-
sure rule would only allow the formation of rings containing
two or three R molecules. This is desirable from a biophysical

164 Faeder, Blinov, and Hlavacek

perspective because the rate of ring closure may depend on the
distance between the two endpoints of the chain that are being
connected (56) . In the future, it will be possible to specify such
relationships in a single rule using rate laws that depend on the
specific properties of a species matched by a pattern in a rule.

 46. Actin, which is one of the major components of the cytoskel-
eton, forms branched structures that play a critical role in many
cellular processes including motility (57) . A simple model for the
formation of branched actin structures is given by the definition
of an actin molecule as “A(b,p,br),” where the components
b, p, and br represent the barbed end, the pointed end and the
branching sites of actin respectively, a rule for chain elongation
“A(b)+A(p)<–> A(b!1).A(p!1) kp1,km1”, and a rule
for chain branching “A(br)+A(p)<–> A(br!1).A(p!1)
kp2,km2.” The first rule generates linear filaments of actin,
which become branched through the action of the second
rule. Filaments may be extended either through the addition of
monomers or by combination with another filament.

 47. The basic syntax is “ molecule op number ,” where mole-
cule is a molecule name, op is one of the comparison operators
“==,” “<,” “>,” “⇐,” or “>=,” and number is a non-negative
integer. This allows the stoichiometry of a single molecule type
within a complex to be selected. If the observable is of type
Molecules (the default), the observable will reflect the total
number of molecules in species matching the selected stoichi-
ometry. If the observable is of type Species, the observable
will reflect the total population of species matching the selected
stoichiometry. The current syntax allows stoichiometry of only
a single molecule type to be considered at a time.

 48. In our experience, the combinatorial explosion becomes a
major bottleneck to generating and simulating networks in
any realistic model that considers more than a handful of
components. A recent model of EGFR signaling by Danos
et al. (27) provides an example. The model considers 13 pro-
teins, a small subset of the proteins that are active in EGFR
signaling, and is composed of 70 rules that generate about
10 23 species. Other rule-based models of growth factor sign-
aling have produced similar eye-popping numbers (58, 59) .
Even models that consider a few components may exhibit
polymerization. For example, a simple model of Shp2 regu-
lation constructed in BioNetGen involves only two molecule
types, and yet must be truncated because the combination of
binding and enzyme–substrate interactions generates infinite
chains (36) . For the trivalent ligand bivalent receptor prob-
lem described in Yang et al. (31) there is a phase transition in
which nearly all of the receptors coalesce into a single giant
aggregate, which makes accurate truncation of the network
effectively impossible.

 Rule-Based Modeling of Biochemical Systems with BioNetGen 165

 Work on BioNetGen has been supported by NIH grants
GM035556, RR18754, and GM76570 and DOE contract
DE-AC52-06NA25396. J.R.F. also acknowledges support from
the Department of Computational Biology at the University of
Pittsburgh School of Medicine. Integration of BioNetGen into
the Virtual Cell was supported by U54 RR022232 NIH-Road-
map grant for Technology Centers for Networks and Pathways.
Special thanks to Byron Goldstein for the initial impetus that led
to the development of BioNetGen and for his active and ongoing
support. We thank the many people who have contributed to the
development of BioNetGen and BioNetGen-compatible tools,
including Jordan Atlas, Nikolay Borisov, Alexander Chistopolsky,
Joshua Colvin, Thierry Emonet, Sarah Faeder, Leigh Fanning,
Matthew Fricke, Bin Hu, Jeremy Kozdon, Mikhail Kravchenko,
Nathan Lemons, Michael Monine, Fangping Mu, Ambarish
Nag, Richard Posner, Amitabh Trehan, Robert Seletsky, Michael
Sneddon, and Jin Yang. We also thank Gary An, Dipak Barua,
Marc Birtwistle, James Cavenaugh, Ed Clarke, Vincent Danos,
Jerome Feret, Andrew Finney, Walter Fontana, Leonard Harris,
Jason Haugh, Michael Hucka, Sumit Jha, Jean Krivine, Chris
Langmead, Paul Loriaux, Boris Kholodenko, Michael Saelim,
Ed Stites, Ty Thomson, and Aileen Vandenberg for their help-
ful discussions and input. People contributing to the integration
of BioNetGen with the Virtual Cell include James Schaff, Ion
Moraru, Anuradha Lakshminarayana, Fei Gao, and Leslie Loew.

Acknowledgments

 1 . Blinov , M. L. , Faeder , J. R. , Goldstein , B. , and
 Hlavacek , W. S. (2004) BioNetGen: software
for rule-based modeling of signal transduc-
tion based on the interactions of molecular
domains . Bioinformatics 20 , 3289 – 3291 .

 2 . Kholodenko , B. N. (2006) Cell-signalling
dynamics in time and space . Nat. Rev. Mol.
Cell Biol. 7 , 165 – 176 .

 3 . Aldridge , B. B. , Burke , J. M. , Lauffenburger ,
 D. A. , and Sorger , P. K. (2006) Physicochemi-
cal modelling of cell signalling pathways . Nat.
Cell Biol. 8 , 1195 – 1203 .

 4 . Dueber , J. E. , Yeh , B. J. , Bhattacharyya , R. P. ,
and Lim , W. A. (2004) Rewiring cell signaling:
the logic and plasticity of eukaryotic protein cir-
cuitry . Curr. Opin. Struct. Biol. 14 , 690 – 699 .

 5 . Pawson , T. and Linding , R. (2005) Synthetic
modular systems – Reverse engineering of sig-
nal transduction . FEBS Lett. 579 , 1808 – 1814 .

 6 . Bashor , C. J. , Helman , N. C. , Yan , S. , and
 Lim , W. A. (2008) Using engineered scaffold
interactions to reshape MAP kinase pathway
signaling dynamics . Science 319 , 1539 – 1543 .

 7 . Hlavacek , W. S. , Faeder , J. R. , Blinov , M. L. ,
 Perelson , A. S. , and Goldstein , B. (2003) The
complexity of complexes in signal transduc-
tion . Biotechnol. Bioeng. 84 , 783 – 794 .

 8 . Hlavacek, W. S., Faeder, J. R., Blinov, M. L.,
Posner, R. G., Hucka, M., and Fontana, W.
(2006) Rules for modeling signal-transduc-
tion systems. Sci. STKE 2006, re6.

 9. Gomperts , B. D. , Kramer , I. M. , and Tatham ,
 P. E. R. (2003) Signal Transduction . Elsevier
Academic Press , San Diego, CA .

 10 . Hunter , T. (2000) Signaling: 2000 and
beyond . Cell 100 , 113 – 127 .

 11 . Cambier , J. C. (1995) Antigen and Fc recep-
tor signaling: The awesome power of the

 References

166 Faeder, Blinov, and Hlavacek

immunoreceptor tyrosine-based activation
motif (ITAM) . J. Immunol. 155 , 3281 – 3285 .

 12 . Pawson , T. and Nash , P. (2003) Assembly of
cell regulatory systems through protein inter-
action domains . Science 300 , 445 – 452 .

 13 . Pawson , T. (2004) Specificity in signal trans-
duction: From phosphotyrosine-SH2 domain
interactions to complex cellular systems . Cell
 116 , 191 – 203 .

 14 . Seet , B. T. , Dikic , I. , Zhou , M. M. , and Paw-
son , T. (2006) Reading protein modifications
with interaction domains . Nat. Rev. Mol. Cell
Biol. 7 , 473 – 483 .

 15 . Mathivanan , S. , Periaswamy , B. , Gandhi , T. K. B. ,
 Kandasamy , K. , Suresh , S. , Mohmood , R. ,
 Ramachandra , Y. L. , and Pandey , A. (2006) An
evaluation of human protein-protein interac-
tion data in the public domain . BMC Bioinfor-
matics 7 , S19 .

 16 . Mathivanan , S. , Ahmed , M. , Ahn , N. G. ,
 Alexandre , H. , Amanchy , R. , Andrews , P. C. ,
 Bader , J. S. , Balgley , B. M. , Bantscheff , M. ,
 Bennett , K. L. , et al. (2008) Human Protein-
pedia enables sharing of human protein data .
 Nat. Biotechnol. 26 , 164 – 167 .

 17 . Ong , S. E. and Mann , M. (2005) Mass spec-
trometry-based proteomics turns quantitative .
 Nat. Chem. Biol. 1 , 252 – 262 .

 18 . Olsen , J. V. , Blagoev , B. , Gnad , F. , Macek , B. ,
 Kumar , C. , Mortensen , P. , and Mann , M.
 (2006) Global, in vivo, and site-specific phos-
phorylation dynamics in signaling networks .
 Cell 127 , 635 – 648 .

 19 . Kholodenko , B. N. , Demin , O. V. , Moehren , G. ,
and Hoek , J. B. (1999) Quantification of short
term signaling by the epidermal growth factor
receptor . J. Biol. Chem. 274 , 30169 – 30181 .

 20 . Schoeberl , B. , Eichler-Jonsson , C. , Gilles , E. D. ,
and Muller , G. (2002) Computational mod-
eling of the dynamics of the MAP kinase cas-
cade activated by surface and internalized EGF
receptors . Nat. Biotechnol. 20 , 370 – 375 .

 21 . Morton-Firth , C. J. and Bray , D. (1998) Pre-
dicting temporal fluctuations in an intracellular
signalling pathway . J. Theor. Biol. 192 , 117 – 128 .

 22 . Endy , D. and Brent , R. (2001) Modelling cel-
lular behaviour . Nature 409 , 391 – 395 .

 23 . Jorissen , R. N. , Walker , F. , Pouliot , N. , Gar-
rett , T. P. J. , Ward , C. W. , and Burgess , A. W.
 (2003) Epidermal growth factor receptor:
Mechanisms of activation and signalling . Exp.
Cell Res. 284 , 31 – 53 .

 24 . Danos , V. and Laneve , C. (2004) Formal
molecular biology . Theor. Comput. Sci. 325 ,
 69 – 110 .

 25 . Faeder, J. R., Blinov, M. L., and Hlavacek, W. S.
(2005) Graphical rule-based representation

of signal-transduction networks, in SAC ‘05:
Proc. ACM Symp. Appl. Computing , ACM,
New York, NY, pp. 133–140.

 26 . Blinov , M. L. , Yang , J. , Faeder , J. R. , and Hla-
vacek , W. S. (2006) Graph theory for rule-
based modeling of biochemical networks .
 Lect. Notes Comput. Sci. 4230 , 89 – 106 .

 27 . Danos , V. , Feret , J. , Fontana , W. , Harmer , R. ,
and Krivine , J. (2007) Rule-based modelling
of cellular signalling . Lect. Notes Comput. Sci.
 4703 , 17 – 41 .

 28 . Faeder , J. R. , Blinov , M. L. , Goldstein , B. , and
 Hlavacek , W. S. (2005) Rule-based modeling of
biochemical networks . Complexity 10 , 22 – 41 .

 29 . Lok , L. and Brent , R. (2005) Automatic gen-
eration of cellular networks with Moleculizer
1.0 . Nat. Biotechnol. 23 , 131 – 36 .

 30 . Danos , V. , Feret , J. , Fontana , W. , and Kriv-
ine , J. (2007) Scalable simulation of cellular
signalling networks . Lect. Notes Comput. Sci.
 4807 , 139 – 157 .

 31 . Yang, J., Monine, M. I., Faeder, J. R., and
Hlavacek, W. S. (2007) Kinetic Monte Carlo
method for rule-based modeling of biochemi-
cal networks. arXiv:0712.3773 .

 32 . Goldstein , B. , Faeder , J. R. , Hlavacek , W. S. ,
 Blinov , M. L. , Redondo , A. , and Wofsy , C. (2002)
 Modeling the early signaling events mediated by
Fc e RI . Mol. Immunol. 38 , 1213 – 1219 .

 33 . Faeder , J. R. , Hlavacek , W. S. , Reischl , I. ,
 Blinov , M. L. , Metzger , H. , Redondo , A. ,
 Wofsy , C. , and Goldstein , B. (2003) Investi-
gation of early events in FceRI-mediated sig-
naling using a detailed mathematical model .
 J. Immunol. 170 , 3769 – 3781 .

 34. Faeder , J. R. , Blinov , M. L. , Goldstein , B. , and
 Hlavacek , W. S. (2005) Combinatorial com-
plexity and dynamical restriction of network
flows in signal transduction . Syst. Biol. 2 , 5 – 15 .

 35 . Blinov , M. L. , Faeder , J. R. , Goldstein , B. , and
 Hlavacek , W. S. (2006) A network model of
early events in epidermal growth factor recep-
tor signaling that accounts for combinatorial
complexity . BioSystems 83 , 136 – 151 .

 36 . Barua , D. , Faeder , J. R. , and Haugh , J. M.
 (2007) Structure-based kinetic models of
modular signaling protein function: focus on
Shp2 . Biophys. J. 92 , 2290 – 2300 .

 37 . Barua , D. , Faeder , J. R. , and Haugh , J. M.
 (2008) Computational models of tandem Src
homology 2 domain interactions and appli-
cation to phosphoinositide 3-kinase . J. Biol.
Chem. 283 , 7338 – 7345 .

 38 . Mu , F. P. , Williams , R. F. , Unkefer , C. J. ,
 Unkefer , P. J. , Faeder , J. R. , and Hlavacek , W. S.
(2007) Carbon-fate maps for metabolic reac-
tions . Bioinformatics 23 , 3193 – 3199 .

 Rule-Based Modeling of Biochemical Systems with BioNetGen 167

 39 . Rubenstein , R. , Gray , P. C. , Cleland , T. J. ,
 Piltch , M. S. , Hlavacek , W. S. , Roberts , R. M. ,
 Ambrosiano , J. , and Kim , J. I. (2007) Dynamics
of the nucleated polymerization model of prion
replication . Biophys. Chem. 125 , 360 – 367 .

 40 . Gillespie , D. T. (1976) A general method for
numerically simulating the stochastic time evolu-
tion of coupled chemical reactions . J. Comp. Phys.
 22 , 403 – 434 .

 41 . Gillespie , D. T. (1977) Exact stochastic simu-
lation of coupled chemical reactions . J. Phys.
Chem. 81 , 2340 – 2361 .

 42. Gillespie , D. T. (2007) Stochastic simulation
of chemical kinetics . Annu. Rev. Phys. Chem.
 58 , 35 – 55 .

 43 . Hucka , M. , Finney , A. , Sauro , H. M. , Bolouri ,
 H. , Doyle , J. C. , Kitano , H. , Arkin , A. P. ,
 Bornstein , B. J. , Bray , D. , Cornish-Bowden , A. ,
 et al. (2003) The systems biology markup lan-
guage (SBML): A medium for representation
and exchange of biochemical network models .
 Bioinformatics 19 , 524 – 531 .

 44 . Hoops , S. , Sahle , S. , Gauges , R. , Lee , C. , Pahle ,
 J. , Simus , N. , Singhal , M. , Xu , L. , Mendes , P. ,
and Kummer , U. (2006) COPASI--a COm-
plex PAthway SImulator . Bioinformatics 22 ,
 3067 – 3074 .

 45 . Cohen , S. D. , and Hindmarsh , A. C. (1996)
 CVODE, A Stiff/Nonstiff ODE Solver in C .
 Comp. Phys. 10 , 138 – 143 .

 46 . Hindmarsh , A. C. , Brown , P. N. , Grant , K. E. ,
 Lee , S. L. , Serban , R. , Shumaker , D. E. , and
 Woodward , C. S. (2005) SUNDIALS: Suite of
nonlinear and differential/algebraic equation
solvers . ACM Trans. Math. Softw. 31 , 363 – 96 .

 47. Berg , J. M. , Tymoczko , J. L. , and Stryer , L.
 (2006) Biochemistry . W. H. Freeman , New York .

 48 . Gross, J. L., and Yellen, J. (eds.) (2003)
 Handbook of Graph Theory .CRC Press, Boca
Raton, FL.

 49 . McKay , B. D. (1981) Practical graph isomor-
phism . Congressus Numerantium 30 , 45 – 87 .

 50 . Ullmann , J. R. (1976) An algorithm for sub-
graph isomorphism . J. ACM 23 , 31 – 42 .

 51 . Lemons, N. and Hlavacek, W. S. private com-
munication.

 52 . Borisov , N. M. , Markevich , N. I. , Hoek , J. B. ,
and Kholodenko , B. N. (2005) Signaling
through receptors and scaffolds: Independent
interactions reduce combinatorial complexity .
 Biophys. J. 89 , 951 – 966 .

 53 . Borisov , N. M. , Markevich , N. I. , Hoek , J.
B. , and Kholodenko , B. N. (2006) Trading
the micro-world of combinatorial complex-
ity for the macro-world of protein interaction
domains . BioSystems 83 , 152 – 166 .

 54 . Borisov, N. M., Chistopolsky, A. S., Kholodenko,
B. N., and Faeder, J. R. (2008) Domain-ori-
ented reduction of rule-based network models
 IET Syst. Biol. 2, 342–351.

 55 . Lauffenburger, D. A. and Linderman, J. J.
(1993) Receptors: Models for Binding, Traffick-
ing, and Signalling. Oxford, New York, NY.

 56 . Posner , R. G. , Wofsy , C. , and Goldstein , B.
 (1995) The kinetics of bivalent ligand-bivalent
receptor aggregation: Ring formation and the
breakdown of the equivalent site approxima-
tion . Math. Biosci. 126 , 171 – 190 .

 57 . Pollard , T. D. and Borisy , G. G. (2003) Cellu-
lar motility driven by assembly and disassem-
bly of actin filaments . Cell 112 , 453 – 465 .

 58 . Koschorreck , M. , Conzelmann , H. , Ebert , S. ,
 Ederer , M. , and Gilles , E. D. (2007) Reduced
modeling of signal transduction – A modular
approach . BMC Bioinformatics 8 , 336 .

 59 . Heath , J. , Kwiatkowska , M. , Norman , G. ,
 Parker , D. , and Tymchyshyn , O. (2007) Prob-
abilistic model checking of complex biologi-
cal pathways . Lect. Notes Comput. Sci. 4210 ,
 32 – 47 .

 Chapter 6

 Ingeneue: A Software Tool to Simulate
and Explore Genetic Regulatory Networks

 Kerry J. Kim

 Summary

 Here I describe how to use Ingeneue, a software tool for constructing, simulating, and exploring models
of gene regulatory networks. Ingeneue is an open source, extensible Java application that allows users
to rapidly build ordinary differential equation models of a gene regulatory network without requiring
extensive programming or mathematical skills. Models can be in a single cell or 2D sheet of cells, and
Ingeneue is well suited for simulating both oscillatory and pattern forming networks. Ingeneue provides
features to allow rapid model construction and debugging, sophisticated visualization and statistical tools
for model exploration, and a powerful framework for searching parameter space for desired behavior.
This chapter provides an overview of the mathematical theory and operation of Ingeneue, and detailed
walkthroughs demonstrating how to use the main features and how to construct networks in Ingeneue.

 Key words: Software , Computer simulation , Biological models , Gene expression regulation ,
 Genetic models , Signal transduction , Regulator genes , Kinetics .

 Many essential cellular and developmental functions are accom-
plished by groups of genes working together. Both traditional
and recent high-throughput systems biology approaches have
greatly expanded our knowledge of the regulatory interactions
between genes. From this wealth of information, we are begin-
ning to understand higher-level function arises in gene networks.
However, it is difficult to synthesize the available information to
produce useful hypotheses and predictions.

 Computer simulations are useful and powerful tools for
understanding genetic networks. Reconstituting the network of

 1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_6

169

170 Kim

regulatory interactions between genes into a set of rules or equa-
tions allows computers to predict and explore the consequences
of those interactions. Computer simulations thus provide a bridge
between molecular mechanism and network function. A common
way to build computer models is to translate the biological inter-
actions into a set of differential equations (for examples, see refs.
 1– 6 , for other ways of building models, see refs. 7– 12) . In such
models, the rate of change of each biomolecule concentration is
determined by adding its production and degradation terms, and
the computer model calculates how those concentrations change
over time.

 The opportunities offered by computer modeling have
prompted the development of software tools for both building
and analyzing genetic networks. Specifically, computer simula-
tions of networks are useful for:
 • Determining sufficiency of understanding . Human intuition

fails when confronted with a sufficiently complicated system,
such as a genetic network. Computer simulations provide
a rigorous and objective way to explore the consequences
of the known interactions and to determine whether such
interactions can account for the observed behavior/task. A
model that reconstitutes all known interactions but that fails
to reproduce the behavior of the real network indicates that
there are essential but undiscovered regulatory interactions
required.

 • Prediction and hypothesis generation . With a working model
of a network, it is easy to simulate various changes or pertur-
bations to the network, to explore “what-if” situations or to
perform virtual experiments on the model. By doing this, the
model will generate predictions for the network behavior that,
if interesting, can be tested experimentally.

 • Providing explanatory power and mechanistic insight . A
mechanistic model allows scientists to work through the
causal chain of events in the operation of the network, which
is particularly useful when the network exhibits nonintuitive
behavior. By exploring the behavior of the model – aided by
proper visualization tools – users can develop intuition for
how the network works and fails under different conditions.
For example, models of the yeast cell cycle show how cell
cycle progression is tightly coupled to cell growth (2) . Addi-
tionally, the explanatory power offered by modeling is useful
in teaching dynamical systems theory and network thinking
to students.

 • Insight into network emergent behavior . Networks are designed
by evolution rather than an engineer, and general properties
of networks are beginning to be determined. For example,
one emerging design principle is that biological networks are

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 171

robust to quantitative variation: It has been shown that the
 Drosophila segment polarity network (5, 13) can continue to
function despite enormous variation (several orders of mag-
nitude) in the kinetics. Such robustness is not a property of
most human-designed systems, as they often require carefully
matched components.

 Ingeneue is a free, open source computer program that provides
an intuitive and rapid way to build differential-equation-based
models of genetic networks to tackle the problems listed above.
It has tools to visualize the model output, systematically explore
how quantitative changes alter model behavior, and automate
searches for desired model behavior. Ingeneue was designed to
be used by biologists without requiring extensive experience in
programming and mathematics, and can be run on any lab com-
puter with Java installed (Mac, PC, or Unix). To aid new users,
Ingeneue comes with a manual, several tutorials, in-program
help, and several networks. Ingeneue can be easily extended and
modified, and the Ingeneue download contains the documented
source code. Finally, all input and output files used by Ingeneue
are human-readable plain text files that can be imported into
other software packages (such as Mathematica, Excel, Matlab,
etc.), for specialized analysis.

 Many programs can solve systems of differential equations rapidly
and dependably (Mathematica, Matlab, etc.). The most difficult
and challenging step is translating the known molecular facts,
and the spatial arrangement of cells, into a system of differential
equations. Ingeneue was designed to meet this challenge.
Ingeneue can simulate networks in a single cell or in a 2D sheet
of interacting cells as depicted in Fig. 1 . Figure 1A shows the
geometry of Ingeneue models: Each cell is hexagonal with seven
compartments: one cytoplasmic compartment and six membrane
compartments representing each side of the cell. Ingeneue models
track the time evolution of the concentrations of all biomolecules
in all cells and compartments.

 Building a computational model from scratch is a significant
undertaking, requiring one to specify and debug the system of
equations (which can be thousands of equations in a large network
with many cells), and also program the computer to solve and display
the results. Ingeneue greatly simplifies the practice of building
gene network models. One uses a text editor to write a plain text
file that lists the important biomolecules (mRNA, proteins, and
complexes) in the network and the regulatory interactions between
them. Rather than writing differential equations, one tells Ingeneue
what qualitative biological interactions occur: phosphorylation,
translation, transcriptional activation, dimerization, etc., and
the mathematical forms of these processes are already defined in

 1.1. Overview of
Ingeneue

 1.1.1. Ingeneue Simplifies
Network Construction

172 Kim

Ingeneue. Ingeneue allows users to specify networks in terms of
predefined building blocks (called affectors), and Ingeneue assembles
the mathematical system of differential equations. Ingeneue currently
comes packaged with over 80 affectors (which are formulae for how
molecules combine or interact), and additional affectors can be
added easily by anyone familiar with Java programming.

 This strategy building networks by selecting the right affec-
tor is faster and more intuitive than writing differential equations
because it allows the model builder to focus on the biology rather
than algebra. Should one want to modify the network, it is clear
what interactions are already present and which to modify, bypass-
ing the need to interpret complex lists of equations. Additionally,
debugging an Ingeneue network is easier because mistakes are
less likely to be made than typing the equations by hand.

 After constructing a model, one can explore the behavior of
the model, and search for desired behavior. The behavior of the
model depends on the parameters (rate constants, expression levels,
etc.) and the initial conditions. Ingeneue offers a powerful tool
for automated searches of parameter space for combinations that
cause specific network behavior (such as making a particular
spatial pattern). That is, one can specify the target network
behavior and have Ingeneue systematically or randomly explore
parameter values or initial conditions, and simulate the effects
of various mutations or other perturbations. This is important,

 1.1.2. Modeling Analysis
Tools in Ingeneue

 Fig. 1. Modeling a cellular layer with Ingeneue. (A) Geometry of a 3 × 4 cell Ingeneue model. Ingeneue simulates a two-
dimensional sheet of hexagonal cells, with all cells containing the same genetic network. Cells have one cytoplasmic
compartment, and six membrane-bound compartments (one for each side of the cell). Models have periodic (toroidal)
boundary conditions, with the right edge wrapping around to the left, and the top connected to the bottom. (B) Schematic
of a discrete cell Turing network. This is a two-gene network with a membrane-bound inhibitor and a cytoplasmic activator.
The activator protein turns on transcription of both genes, while the inhibitor blocks the action of the activator. The nine
nodes in the network are the activator mRNA (act), the inhibitor mRNA (inh), the cytoplasmic activator protein (ACT), and
the six membrane-bound compartments of the inhibitor protein (INH). The INH can diffuse laterally to different sides of
the same cell and diffuse across to neighboring cells. All nodes also are degraded at different rates. Legend shows the
different biological processes corresponding to each arrow , and the name of the corresponding Ingeneue affector.

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 173

because in most networks, the parameters have not been experi-
mentally measured, requiring exploration of parameter space (13, 14)
to determine whether the model can reproduce the biology.

 Ingeneue was developed initially to reconstitute the interactions
between the core genes in the Drosophila segment polarity (5, 13)
and neurogenic (6) networks. In these, the network exists in a sheet
of cells that communicate through membrane-bound messenger
molecules to stabilize spatial patterns of gene expression. The beha-
vior of the model depended on the model parameters (reaction
rates and other quantitative traits of the network), and Ingeneue
searched for parameter sets that reproduce the observed pattern of
gene expression. Each parameter was randomly varied over seve-
ral orders of magnitude and, surprisingly, the model produced
working behavior over the full range of nearly every parameter, and
also showed a remarkable robustness to parameter changes.

 Ingeneue is currently being used to investigate a cell cycle
oscillator, pattern forming in C. elegans vulval development, the
effects of ploidy (comparison of diploid vs. haploid networks), and
the robustness of randomly wired networks. It has also been used in
several courses, and has been a useful tool for teaching students how
to build models of biological networks. Ingeneue has been freely
available for download on the Web (with source code) since 2000.

 Ingeneue is written in the object oriented programming language
Java, and can be modified easily by the scientific community. The
source code is freely available and included with the Ingeneue
download. This section describes the main design features under-
lying the mathematical implementation and software framework
of Ingeneue models.

 Ingeneue can simulate a network in a single cell or in a two-
dimensional sheet of cells. Ingeneue uses periodic (toroidal)
boundary geometry with the left edge touching its right edge
and the top touching the bottom. Ingeneue models are specified
in a plain-text file that contains all the information to simulate the
network: the width and height of the sheet of cells, the relevant
biomolecules (mRNA transcripts, proteins, complexes, etc.), the
interactions between the biomolecules, initial conditions, and all
parameters. In Ingeneue networks, Nodes refer to the concentra-
tion of a particular biomolecule in a specific compartment.

 When Ingeneue reads a network file, it constructs the set of
differential equations describing the model kinetics (see Note 2).
The interactions between biomolecules are defined within a single

 1.1.3. Development and
Uses of Ingeneue

 2. Ingeneue
Implementation

 2.1. Network
Construction

174 Kim

cell, or between two neighboring cells, and Ingeneue then repli -
cates the network in all cells in the sheet. To allow for commu ni-
cation between cells, Ingeneue membrane bound nodes can diffuse
to neighboring cells, or interact with nodes on the opposing cell
face (see Fig. 1B for an example).

 For most genetic networks, the differential equation describing
how a node X (concentration within a particular compartment)
changes over time is the sum of contributions from several
biological processes:

= − ± ±d
synthesis degredation conversion fluxes.

d
X
t

Figure 1B shows a detailed schematic for a hypothetical
network. The inh mRNA in a cell depends on its rate of synthesis
(transcription) and degradation. In terms of the biological processes,
the inh mRNA concentration [inh] in Fig. 1B is given by:

() ()= −M inh

d[inh]
Transcription [ACT], , , Decay [inh], ,

d
K T H

t
n

 where the rate of transcription is a function of concentration of
the transcriptional activator [ACT] and the K , n , and T M param-
eters described in Subheading 2.2.1 . Likewise, degradation
(first-order decay) depends on [inh] and its half-life H inh . Inge-
neue has the mathematical form for these processes predefined
in objects called affectors that encapsulate how a single process
changes a node. Most processes are independent of each other,
thus the individual affectors can be added to describe how the
node changes over time (Ingeneue has advanced features allow-
ing for interactions using metaaffectors, see the Ingeneue docu-
mentation for details).

 The affectors that come with Ingeneue represent processes either
with first- or second-order mass action kinetics (such as decay,
translation, and binding/unbinding), or are built from Hill
functions to quantify complex processes (such as transcriptional
regulation or cooperative enzymatic reactions). The mathemati-
cal form to represent many biological processes is unknown, and
Hill functions are an approximation that captures the qualitative
behavior of many processes (saturation and monotonicity), and
can be tuned with few parameters. The Hill functions F (rep-
resenting activation) and Y (representing inhibition) are math-
ematically defined as:

()

() ()

=
+

= −

[Node]
[Node], , ,

[Node]
[Node], , 1 [Node], , .

K
K

K K

n

n nF n

Y n F n

 2.1.1. Mathematical
Framework

 2.2. Hill Functions
and Parameterization

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 175

 F varies from 0 to 1. K is the value of [Node] for F = 0.5,
and n determines the steepness or apparent cooperativity of the
curve. Use of the Hill equation assumes that the components are
in pseudo-steady-state equilibrium. Figure 2 shows a plot of the
Hill function F .

 More complicated processes such as transcription under the
control of multiple activators and repressors are constructed
by combining Hill functions (15) . For example, consider tran-
scription under the influence of one activator and one inhibi-
tor with the inhibitor titrating away the activator according
to a Hill function. In this, the remaining effective activa-
tor [EA] = ()()−[ACT] 1 [INH], ,I IKF n and the transcription
rate is ()[EA], ,A AKF n . Additional details for these complicated
affectors can be found in the Ingeneue documentation for Affec-
tors, a tutorial on writing Ingeneue affectors bundled with Inge-
neue, and in (15) .

 Most affectors in Ingeneue are nondimensionalized and have a
different form than one might expect from standard chemical
reaction kinetics. Nondimensionalization is a standard technique to
have all variables changed to dimensionless scalar quantities. This is
not an approximation, but a rescaling that substantially reduces the
number of free parameters in the model while allowing the model to
maintain its full dynamical range of behaviors. The cost of this is that
the meaning of many parameters is altered, as explained below. For
in-depth discussion of nondimensionalization, see the supplements
in (13, 15) and the dimensional analysis section in (16) .

 Ingeneue uses a nondimensionalization strategy where most
nodes are constrained to the range from 0 to 1. All nodes, time,

 2.2.1. Nondimension-
alization

 Fig. 2. Plots of the Hill function F for three different combinations of K and n . The
activator concentration is [Act] and F varies from 0 to 1. The apparent cooperativity, n ,
determines the steepness of activation; high values are switch-like, lower values are
more shallowly graded. K is the value of [Act] when F is 0.5; low levels of K correspond
to strong activation (little activator needed for full effect).

176 Kim

and parameters become scalar quantities with no units/dimen-
sions by using the following change of variables:

o

o

,
() (),

t t
x t x x

t
t

=
=

 where t and x (t) are the dimensional time and node (concentra-
tion), t o and x o are scaling factors for nondimensionalization, and
 t and x (t) are the nondimensional time and node. The scaling
factors t o and x o are arbitrary, and so we will set them to values so
the maximum steady state due to synthesis and first-order decay
for any node x is 1. To do this, one simply solves for the maximal
steady-state value when synthesis is maximal and degradation is
minimal. For example, the differential equation governing inh in
 Fig. 1B using the equations in Table 1 is

 Table 1
 Mathematical form of affectors

 Process and
affector name Formula

 Nondimensional
formula Parameters

 Transcription
activated by 1
activator (ACT)
(Txn1AAff)

 TMF([ACT], K, n)

ACT

(ACT(), ,)K
H

F t ¢ n
¢

 T M = maximum transcription
rate

 K = half maximum [ACT]
 K¢ = half maximum ACT(t)
 n = cooperativity of activation
 H¢ACT = rate of approach to

steady state

 Translation
of mRNA
into protein
(TlnAff)

 [mRNA]RT

mRNA

mRNA()
H

t
¢

 R T = maximum translation rate
 H¢mRNA = rate of approach to

steady state

 First-order decay
of a Node
(DecayAff) Node

[Node]
H

−

Node

Node()
H

t
¢

−
 H Node = mean lifetime of node
 H¢Node = rate of approach to

steady state

 Diffusion of
membrane-
bound Node to
neighboring side
(LMXferEAff)
or cell
(MXferOutAff)

 [Node]D− Node()D t− D = fraction of Node that
diffuses per unit time

 Transcription
regulated by 1
activator (ACT)
and 1 inhibitor
(INH) that can
completely block
the activator
(Txn2aAff)

()

()

M [EA], , ,

[EA] [ACT]

[INH], ,

A A

I I

T K

K

F n
y

n
=

()

()

F ¢ n
¢

t Y
t ¢ n

=
ACT

EA, ,

EA ACT()

INH(), ,

A

I

A

I

K
H

K

 T M = maximum transcription
rate

 K A = half maximum [ACT]
K ¢A = half maximum ACT(t)
 n A = cooperativity of activation
 K I = half maximum [INH]
 K ¢I = half maximum INH(t)
 n I = cooperativity of inhibition
 H¢ACT = rate of approach to

steady state

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 177

[] ()M
inh

d inh [inh]
[ACT], , ,

d
T K

t H
F n= −

 where [inh] is the dimensional concentration, [ACT] is the
dimensional concentration of activator protein, and H inh is the
mean lifetime of the inh mRNA. The maximal steady state of
[inh], [inh] ss , would occur when d[inh]/d t = 0:

[] () ss
M

inh

d inh [inh]
0 [ACT], , .

d
T K

t H
F n= = −

 Solving for [inh] ss yields:

()ss M inh[inh] [ACT], , .T K HF n=
[inh] ss is maximal when there is saturating [ACT] (when [ACT]
>> K , F → 1):

 Max([inh]ss) = TMHinh.

 Now, if we transform the original equation for [inh] into the
nondimensional form with inh o = 1/Max([inh] ss):

()
inh

ACT(), , inh()d inh()
.

d
K

H
F t ¢ n tt

t ¢
−

=

 In the nondimensionalized equation, one parameter, T M is
gone, and the nondimensional parameters K ¢ and H ¢ inh are now
dimensionless, scalar quantities. K ¢ is the fraction of the nondi-
mensional ACT(t) node for half-maximal activation of transcrip-
tion, and H ¢ inh is the fractional rate at which inh(t) approaches
steady state. Unitless parameters such as cooperativity, n , are
unchanged by nondimensionalization. Table 1 shows the nondi-
mensional form of the affectors used in Ingeneue.

 Ingeneue has a scripting language to search for parameter sets that
produce some desired behavior. Using this, Ingeneue will assign
a score to each model run with different parameter sets measur-
ing how far that run was from the desired behavior according to
selected criteria (correct pattern formation, steady state or oscil-
latory behavior, etc). Ingeneue can then save parameter sets with
sufficiently good scores and subject them to additional analysis
(i.e., simulating the effects of mutations or other perturbations).

 This section shows how to use most features and tools in Ingeneue.
Not all features are discussed here, but most are self-explanatory
or are discussed in the manual or tutorials that come bundled with
Ingeneue.

 2.3. Searching
Parameters for
Desired Behavior

 3. Using Ingeneue

178 Kim

 1. Install Java version 1.4 or higher if it is not on your computer
(see Note 2).

 2. Download the latest version of Ingeneue from
 http://ingeneue.com. Follow the instructions on the Web
site for installing Ingeneue.

 3. Read the README.txt file in the Ingeneue root directory
or from the Ingeneue Web site; this file contains last-minute
information and details for using Ingeneue.

 Ingeneue comes with several networks located in the networks
directory of Ingeneue. This section shows how to load the seg-
ment polarity network (5, 13) and how to use the Ingeneue
interface to alter the model and visualize the results. The same
procedure can be used for any network:
 1. Start Ingeneue following the instructions on the Ingeneue

Web site or the README.txt file. When Ingeneue starts, you
will see a large window similar to Fig. 3 . You can access the
manual and several tutorials through the help frame on the

 3.1. Getting Ingeneue

 3.2. Loading and
Running the Segment
Polarity Network

 Fig. 3. The Ingeneue window. Your view may be slightly different because of your operating system, Java version, or
Ingeneue version, but there should be two frames displayed the first time you run Ingeneue: (1) The Ingeneue Help frame
provides access to the Ingeneue manual, tutorials, and detailed documentation. (2) The output console displays any mes-
sages or errors generated by Ingeneue. The menu bar is at the top of the window (“File,” “Viewers,” etc.). Model runs are
controlled by the “Start,” “Step,” and “Reset” buttons in the upper right corner of the Ingeneue window.

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 179

right side (see Note 3). Information and error messages are
displayed in the console frame at the bottom.

 2. Load a network file by clicking on “File → Open” (i.e., click
on “File” from the menu bar, then click on “Open”). A dialog
box will appear. From the main Ingeneue directory, navigate to
the “networks/segmentpolarity” subdirectory, and open the
file “spg1_01.net.” Two new frames will appear, one labeled
“Network Viewer” (Fig. 4A) showing a schematic diagram of
the segment polarity network, and one labeled “Cell Viewer”
(Fig. 4D) showing several black hexagons.

 3. Run the network by clicking on the “Run” button in the upper
right corner of the screen. When you do this, the system of
differential equations will be integrated forward in time for
1,000 min (see Note 1). The current simulation time (shown
in the upper right corner in minutes) will rapidly increase, and
the changing colors of the hexagons in the Cell Viewer show
the progression of the pattern of gene/protein expression. In
the Cell Viewer, each hexagon indicates one cell (similar to
 Fig. 1A), and the concentrations of selected Nodes are shown
in each cell with brighter colors indicating higher concentra-
tion. You may press the Run button again to rerun the model.
The “Reset” button sets the time to 0, and each time the Step
button is pressed, the time will advance a small amount (the
exact amount varies because of the adaptive-step size numerical
integrator, see Note 4) and the Cell Viewer will be updated.

 4. Change parameter values by clicking on “Viewers→Network
Parameters.” A new frame will appear (Fig. 4C) that lists all
parameters in the model, their current values, and how they
should be sampled in a random search: the range (minimum
and maximum), and whether the sampling should be linear or
logarithmic (low values have a higher probability than high).
The “step” values are unused. Try changing one or more
parameters (be sure you change the value, not the low, high,
or step setting), then click on the “set all” button (parameter
values you type in are not applied until you click a “set” but-
ton). Rerun the model and note how some changes alter the
final gene expression pattern, while others do not. Press “reset
all” before proceeding to the next step; this which will restore
all parameters to default values (defined in the net file).

 5. Change initial conditions by clicking on “Viewers→Node
Viewer” or double clicking on any cell (hexagon) in the Cell
Viewer. A frame will appear (Fig. 4B) showing the initial and
current concentration for all nodes in the selected cell. The
top of the frame shows a field of hexagons that represent the
different cells in the network; node values can be viewed for
any cell by clicking on the cell. Try changing the initial condi-
tions for en and wg in several of the cells to see whether you
can disrupt the pattern of gene expression.

180 Kim

 Fig. 4. Tools for visualizing network behavior and altering model parameters or initial conditions. These are accessible
from the Viewers menu after a network is loaded. (A) Network Viewer shows a simplified graphical schematic of the con-
centrations (nodes) and interactions (affectors) in the network. Click on any node or affector for details. Selecting “turn
on active display” under the active display menu will color-code each node according to its concentration, allowing you to
visualize the model dynamics in a selected cell during the model run. (B) Node Viewer shows the current and initial value
of each node in the selected cell. Cells can be selected by clicking on the hexagon at the top of the window. The initial
and current levels of each node can be changed by entering a new value for init or value, respectively. (C) Parameter
Viewer shows the current values of all model parameters, and allowed range. Parameters can be changed by entering a
new value in the “value” column, followed by pressing the “set all” button at the top of the frame. The “reset all” button
will restore all parameters to the value stored in the net file. (D) Cell Viewer indicates the concentration of selected nodes
in all cells, with black being 0, and brighter colors meaning higher concentration. During model running, an animation for
the time progression of the pattern of expression is shown.

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 181

 1. Plots of concentration vs. time are shown by clicking on
“Viewers → Time graph.” A new frame will appear, as shown
in Fig. 5A , giving you three options for plotting node values
vs. time:

 2. Manual method : To set up plots for one or a few specific nodes:
 (a) In the Time Graph frame, click on “New,” and a new

frame will appear (Fig. 5A). Click on the cell you wish
to view in the field of hexagons, then click on the node
you wish to plot, and select the color for plotting it. Click
on “add” when you are done. Along the bottom of the
graph, you will see the color legend for the graph. You
can add as many nodes to the graph as you wish using this
procedure.

 (b) To delete or alter the nodes in a graph, click on the node
you wish to change in the legend at the bottom of the
graph. This will summon the frame you used to choose the

 3.3. Plots of
Concentration
Versus Time

 Fig. 5. Time graphs show a plot of node value vs. time for any node in any cell in the network. (A) Manual selection of
node to plot; click on the “New” button on the left , then in the new frame (shown) click on a hexagon to select the cell,
and choose a node and display color to add to the graph. (B) Graph wizard menu for adding multiple nodes to a time plot.
Accessible by clicking on “Auto Graphs → Graph wizard.” (C) After the nodes are selected, click on the “Run” button in
the upper right corner, and the time plot will be displayed. (D) Time Graph options frame. Click on the “Opt” button on
the left to the graphing options.

182 Kim

node, and you can now either delete the node from the
plot by clicking on “delete,” or alter the node by select-
ing a different cell, node, or color, followed by pressing
“Add.” To delete all the nodes from the graph, click on
the “clr” button.

 (c) To make additional graphs, select “Graphs→Add new
graph.”

 3. Automatic : To plot all nodes in all cells, click on “Auto
Graphs→Quick Graphs.”
 (a) “All Nodes/All Cells option, one cell per graph” displays

all nodes grouped into graphs by cell as shown in Fig.
5C .

 (b) “All Nodes/All Cells, one node per graph” displays all
nodes grouped into graphs by node.

 4. Graph wizard : Use this if you want to plot many nodes, but
the Auto Graphs do not suit your needs:
 (a) Click on “Auto Graphs→Graph wizard.” A new frame

will appear as shown in Fig. 5B .
 (b) In this new frame you can select multiple nodes and mul-

tiple cells for display. Click on the node names to toggle
selection of the desired nodes. After making your choices,
use the buttons in the lower half of the panel to choose
whether to plot all nodes in the same graph or split them
into different graphs by node or by cell (similar to the
automatic method above).

 5. After you have set up your graphs, click the “Run” button to
see the plotted results. Every time you run the model while
the Time Graphs frame is open, the graphs will be updated.

 6. Additional options are available to customize the display of
the graphs by clicking on the “opt” button next to any graph
(Fig. 5D) that allows you to display grid lines and adjust
colors.

 7. The node values for all cells and time points can be saved to a
tab-delimited file for analysis in other programs (see Note 5).
To save the data for all runs stored in the Time Plots frame,
click on “File→Save data set” and enter a name for the file.

 This section demonstrates how to search for parameter sets in the
segment polarity network that produce the biologically observed
pattern of en, wg, and hh stripes. To do this, Ingeneue loads an
iterator file that specifies how to vary parameters and the criteria
that delineate “good” sets of parameter values. The real segment
polarity network stabilizes the striped pattern of en, wg, and hh
gene expression shown in Fig. 4D . Ingeneue comes with an itera-
tor file that randomizes all parameters over their biological range
and searches for this pattern of behavior (see Note 6).

 3.4. Finding Parameter
Sets Using Automated
Searches

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 183

 1. There are two ways to use iterator files. Do either of the fol-
lowing and wait until Ingeneue finds at least three parameter
sets (see Note 7).
 (a) Command line : Use this option for a fast search that does

not use the graphical user interface. Exit Ingeneue and
access the command prompt on your computer. From
the Ingeneue root directory, type the following command
all on one line (do not press enter between lines):

java main.GeneNet networks/segmentpolarity/
spg1_4cell.netnetworks/segmentpolarity/
randomsampler.iter

 This tells Ingeneue to start by loading the network file “spg1_4cell.
net” and then run the “randomsampler.iter” iterator file. The
“spg1_4cell.net” network has a 1 × 4 cell array, which is topologi-
cally identical to the 2 × 8 model (because of the toroidal bound-
ary conditions) and will run four times faster. “Good” parameter
sets (see Note 6) are saved in the “output” subdirectory, and will
have a filename with a prefix of “spg,” followed by a timestamp.
Ignore any warning messages that appear in the console.
 (b) Using the graphical interface : Choose “File→open” and

open “spg1_4cell.net.” Next, choose “File→open,” and
open “randomsampler.iter.” A new frame will appear labeled
“iterator control,” shown in Fig. 6A . Click on “Run” in
the iterator control frame. The model will be repeatedly run
with randomized parameters, and you can see expression
patterns changing as the search proceeds. Ingeneue prints a
message every time a successful parameter set is found.

 Fig. 6. Tools for searching and visualizing desired model behavior. These windows are opened when loading an iterator file or
an iterator output file, and require that a network be loaded first. (A) Iterator Control is displayed when an iterator is loaded. The
results of the search will be saved to the file name specified here. Click on “run” to begin the search. During the search, the
successful parameter sets will be shown, as well as the number of attempts (“runs”), the number of successful sets (“passed”),
and the percent of successful sets (“Rate”). Click on “stop” to halt the search. When halted, clicking on the successful param-
eter sets will load the parameter set into the current model. (B) Cam viewer shows a spoke and wheel plot for all successful
parameter sets generated by an iterator. This window is displayed when you load an output file generated by an iterator.

184 Kim

 1. In Ingeneue, choose “File→Open,” and open “spg1_4cell.
net.” Then, choose “File→Open,” and navigate to the “out-
put” subdirectory, and open the file that was generated in Sub-
heading 3.3 (the file will usually be called “spg_XX” where
XX are numbers indicating the time of the run; alternatively,
you can load the “spg.params” file from the “networks/seg-
mentpolarity” directory). A new window will appear labeled
with the name of your file as shown in Fig. 6B (see Note 8).

 2. This window contains a wheel plot representing the values
of all parameters in working parameter sets. Points near the
center/edge of the wheel correspond to minimum/maximum
of the range explored in the random parameter search. You
can view different parameter sets by clicking on the < and >
buttons. You can view a superposition of all parameter sets by
clicking on the “Plot all” button.
 (a) By clicking “load cam,” the displayed parameter values

will be written to the model for more detailed visualiza-
tion (i.e., you can then run the model to make time plots
or view the pattern of expression). While the final pattern
is the same for all parameter sets, the dynamic behavior of
the model through time is different.

 3. The “statistics” menu option has the following options:
 (a) Summary . Saves the mean, range, and variance for the

parameter sets.
 (b) Param tendencies . Saves the range explored for each

parameter in the parameter search.
 (c) Cross corr . Saves the cross correlation coefficients (see

 Note 9) for all pairs of parameters. Also prints out a list of
the pairs of parameters that have the largest absolute value
cross correlation coefficient.

 (d) Dump . Saves all parameter values into a tab-delimited
plain text file.

 This section is a step-by-step walkthrough showing all steps in
building a model, from writing the net file, troubleshooting the
model, and searching for parameter sets using a new iterator. The
steps outlined here are the same you would follow for building
any network.

 The model you will build in this section is the two-gene net-
work shown in Fig. 1B , in a 2 × 2 field of cells. This is a modified
Turing network that is capable of stabilizing spatial patterns of

 3.5. Analysis and
Visualization of
Working Parameter
Sets Found by Iterators

 4. Buliding
Networks in
Ingeneue

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 185

gene expression as well as oscillations and propagating waves of
gene expression (17, 18) . You can either type in this example as
you work through this section or find the completed files in the
networks/turing subdirectory.

 Ingeneue network files contain all the information necessary to build
the network in the following order: Name of model, geometry,
nodes, interactions, parameters, and initial conditions. Each line in
the network file starts with an ampersand “&” followed by a keyword
that tells Ingeneue what kind of information the line contains.
Comments (which are ignored by Ingeneue) begin with “//” (see
 Note 10). The overall structure of a network file is as follows:

& Model
// Information about model geometry
 & Network networkname
 & Nodes
 // Information about nodes
 & endNodes
 & Interactions
 // Information about Interactions
 & endInteractions
 & Parameters
 // Information about parameters
 & endParameters
 & InitialConditions
 // Information about initialconditions
 & endInitialConditions
& endNetwork

 Indentation is not necessary, but makes the file easier to read.
The various sections of the network file are surrounded by &sec-
tion and &endsection. The sections below describe how to
write a net file.

 1. Start your favorite text editor to begin writing the contents of
the net file. You will specify the following:
 (a) &Model indicates the start of an Ingeneue net file.
 (b) &width and &height are both set to 2 to indicate a 2 × 2

array of cells.
 (c) &numsides is 6 for hexagonal cells.
 (d) &Network turing tells Ingeneue that the name of the

network is “turing.”
 2. To specify a network of a 2 × 2 array of hexagonal cells, type

the following:

 &Model
 &width 2

 4.1. Writing
Network Files

 4.1.1. Model Name and
Geometry

186 Kim

 &height 2
 &numsides 6
 &Network turing

 Figure 1B shows the four nodes in the Turing network: the
activator mRNA (act), the inhibitor mRNA(inh), the cytoplasmic
activator protein (ACT), and the membrane-bound inhibitor
protein (INH). By convention, names of mRNA are all lowercase,
and names of proteins are all uppercase. The order in which you
define the various nodes does not matter, but Ingeneue is case
sensitive, meaning “act” is different from “aCt” and “ACT.”
There is no need to have the gene itself (the DNA) in Ingeneue
models as the DNA concentration is usually unchanging
(exceptions would be if one were modeling a cell cycle or a cell
growth process).
 1. Type the following line to indicate the beginning of the Nodes

section: &Nodes
 2. Give information for each of the nodes in the following format:

 (a) &Nodename: Name of the node starting with an amper-
sand (&).

 (b) &Location: Location in the cell: cytoplasmic (cyto) or
membrane.

 (c) &Color: Color for display in the Cell Viewer. Choices
are: red, green, blue, cyan, magenta, pink,
yellow, white, and orange.

 (d) &Show: Either on (show by default in the Cell Viewer) or
off (hidden).

 (e) &Scale: Magnification factor for plotting; if a node
always has a low concentration, set this to a large value
and the concentration will be multiplied by this factor for
display. Normally, set this to 1.

 (f) &Type: rna for a messenger RNA (mRNA); protein,
or complex for dimers or other assemblies.

 (g) &endNodename: Tells Ingeneue that you have specified
all the information about the Node.

 3. The act node is a cytoplasmic mRNA, and will be displayed in
the color cyan in the Cell Viewer. To do this, type in the fol-
lowing:
 &act
 &Location cyto
 &Color cyan
 &Show on
 &Scale 1
 &Type rna
 &endact

 4.1.2. Nodes

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 187

 4. You will specify the other nodes in the same way. For simplicity,
&Scale will be set to 1 for everything, and we’ll show the
mRNA the same color as the protein. Type the following:
 &ACT
 &Location cyto
 &Color cyan
 &Show on
 &Scale 1
 &Type protein
 &endACT
 &inh
 &Location cyto
 &Color red
 &Show on
 &Scale 1
 &Type rna
 &endinh
 &INH
 &Location membrane
 &Color red
 &Show on
 &Scale 1
 &Type protein
 &endINH

 5. To indicate the end of the nodes section, type in the following
line: &endNodes

 The Interactions section specifies what processes affect each of
the Nodes. Table 2 shows a summary of the most commonly
used affectors. Click on the “Help→Detailed Documentation→
Affectors” for instructions on how to use each affector. List the
affectors that affect each node as follows:
&AffectorName <nodes> <params>

 Where <nodes> are the nodes that modulate the affector
and <params> are the parameters that affect the quantitative
behavior of the affector. Each affector requires different nodes
and parameters; see the documentation for the affectors to deter-
mine this. The order that you list affectors does not matter, but
you must follow the order of parameters and nodes given to each
affector according to the detailed documentation. Parameters can
be named, however, you like; Table 3 shows the naming conven-
tions for commonly used parameters.
 1. Type the following line to indicate the beginning of the inter-

actions section: &Interactions
 2. For each node, list all of the affectors that influence it. This

process is simplified if you have drawn a wiring diagram similar

 4.1.3. Interactions
and Affectors

188 Kim

to Fig. 1B that shows all the processes affecting each node. See
 Table 2 and the detailed documentation for the affectors to
determine what affectors to use for your network. The detailed
documentation lists what nodes and parameters are required
by each affector. The following affectors affect the act node:
 (a) Txn2bAff: act mRNA transcription is activated by ACT,

and inhibited by INH. To use this affector, first specify the
inhibitor node (INH) and then the transcriptional activa-
tor (ACT). Next you will give the parameters for activa-
tion (half maximal activation and cooperativity), the half
life of the act mRNA, and finally the inhibition parameters
(half maximal inhibition and cooperativity).

 (b) DecayAff: the act mRNA undergoes first-order decay.
This affector requires you to specify the node under decay
(act) and its half-life.

 Table 2
 Commonly used affectors

 Affector name Description Affects

 DecayAff First-order decay of a node All nodes

 TlnAff Translation of protein from mRNA Proteins

 Txn*Aff Transcriptional affectors. Many affectors
available due to wealth of transcriptional
control logic

 mRNA

 LMXfer*Aff Lateral diffusion of membrane-bound nodes to
(LMXferEAff) or from (LMXferIAff)
neighboring faces of same cell

 Membrane Nodes

 MXfer*Aff Diffusion of membrane-bound nodes
to (MXferOutAff) or from
(MXferOutAff)facing side of adjacent cell

 Membrane Nodes

 Dimerize*Aff Binding of two nodes to form a complex.
Different affectors allow for binding within
and between cells

 Free monomer nodes

 Dissociation*Aff Unbinding of complex into component nodes.
Opposite of Dimerize affectors above

 Dimer node

 Endo*Aff Endocytosis of membrane-bound node into
the cytoplasm. EndoEAff is for use on the
membrane-bound node, EndoIAff for he
cytoplasmic

 Membrane and
cytoplasmic nodes

 Exo*Aff Exocytosis of cytoplasmic node to membrane
(placed on all membranes equally). Opposite
of endocytosis affectors above.

 Membrane and
cytoplasmic nodes

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 189

 3. Type the following for the interactions for the act mRNA,
using the scheme from Table 3 for naming parameters:

 &act
 &DecayAff act H_act
 &Txn2aAff INH ACT K_ACTact nu_ACTact H_act
K_INHact nu_INHact

 &endact

 4. The inh mRNA and the ACT protein interactions are pretty
similar. Both undergo first-order decay (DecayAff). The ACT
protein is simply translated from the act mRNA (TlnAff),
and inh mRNA transcription is activated by ACT protein
(Txn1Aff). Note that some of the parameters appear in more
than one affector, and that translation is not an affector for
the mRNA nodes (we assume translation alters the protein
concentration, not the mRNA). Type the following:

 Table 3
 Parameter meaning and naming convention

 Prefix Range Meaning

 H 1–200, Linear Half life. Because of nondimensionalization, the time constant over
which synthesis and decay act. Low values indicate concentration
changes quickly, high is slowly

 K 0.01–1, Log Half maximal concentration of a regulatory node, parameter used in
Hill functions. Low values indicate a strong activator (little activator
needed for effect; see Fig. 2)

 nu 1–10, Linear Apparent cooperativity for activation. Low values are linear, high means
switch-like behavior. Almost always appears in an affector when a K
parameter (above; see Fig. 2) is used

 Mxfer 0.0001–1, Log Rate that node diffuses to facing side of opposite cell, somewhat like a
diffusional permeability. Low values mean slow transfer/diffusion

 LMXfer 0.0001–1, Log Rate that node diffuses to adjacent sides of same cell. Low values mean
slow transfer/diffusion

 Endo 0.001–1, Log Rate that membrane-bound node gets endocytosed into cytoplasm.
Low values mean slow endocytosis

 Exo 0.001–1, Log Rate that cytoplasmic nodes get excocytosed into membrane. Low
values mean slow exocytosis

 max 1–1,000, Log Relative stoichiometric amount of node. Needed because
nondimensionalization normalizes all nodes to a max of 1, but
stoichiometric consequences remain

190 Kim

 &ACT
 &TlnAff act H_ACT
 &DecayAff ACT H_ACT
 &endACT
 &inh
 &DecayAff inh H_inh
 &Txn1Aff ACT K_ACTinh nu_ACTinh H_inh
 &endinh

 5. The INH protein has six affectors: first-order decay, transla-
tion, and two affectors each for lateral membrane diffusion
and cell–cell diffusion.
 (a) MXferOutAff and MXferInAff are for diffusion to

and from the facing side of the opposite cell. These are
implemented as two separate affectors to allow for the
possibility of unidirectional transport.

 (b) LMXferEAff and LMXferIAff are for diffusion to and
from adjacent membrane sides of the same cell.

 6. Type the following for the INH node:

 &INH
 &TlnAff inh H_INH
 &DecayAff INH H_INH
 &MxferOutAff INH Mxfer_INH
 &MxferInAff INH Mxfer_INH
 &LMxferEAff INH LMxfer_INH
 &LMxferIAff INH LMxfer_INH
 &endINH

 7. End the interactions section by typing:

 &endInteractions

 The parameters section lists all parameters (used by the affec-
tors in the interactions section), their default value, their allowed
range (maximum and minimum values), and whether random
searches should explore this range linearly or logarithmically. For
each parameter, specify these values in the following format:

 &Paramname DefaultValue MinValue MaxValue Sampling

 DefaultValue is the value for the parameter when the
net file is first loaded, and the other fields determine the range
(MinValue to MaxValue) and sampling (Linear or Loga-
rithmic) for random parameter searches.
 1. Type the following line to indicate the beginning of the

parameters section:
 &ParameterValues

 2. Ingeneue requires that you define default values and ranges
for all parameters you used in the interactions section. When
building a network for the first time, just guess default values;

 4.1.4. Parameters

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 191

in the next section you will write an iterator to search for
parameter sets producing oscillations. Typical ranges for
parameters are shown in Table 3 . Type the following (notice
the use of comments, see Note 11):

 // Mean lifetimes:
 &H_act 10.0 1.0 100.0 Linear
 &H_ACT 10.0 1.0 100.0 Linear
 &H_inh 10.0 1.0 100.0 Linear
 &H_INH 10.0 1.0 100.0 Linear
 // Diffusion rates of INH:
 &Mxfer_INH 0.1 0.0001 1.0 Logarithmic
 &LMxfer_INH 0.1 0.0001 1.0 Logarithmic
 // Transcriptional activation:
 &K_ACTact 0.1 0.01 1.0 Logarithmic
 &K_ACTinh 0.1 0.01 1.0 Logarithmic
 &K_INHact 0.1 0.01 1.0 Logarithmic
 &nu_ACTact 3.0 1.0 10.0 Logarithmic
 &nu_ACTinh 3.0 1.0 10.0 Logarithmic
 &nu_INHact 3.0 1.0 10.0 Logarithmic

 3. End the parameters section by typing:

 &endParameterValues

 The last section in the net file specifies the initial values of all nodes
in all cells. For the Turing network, we will set the initial values
for the inh and INH nodes to 0 everywhere, but set act and ACT
to 0.3 in two cells and 0.7 in two other cells. Ingeneue provides
a set of objects called InitialConditions that allow you to
construct spatial patterns of initial conditions. Table 4 shows the
most useful InitialConditions; details on how to use them can
be viewed by clicking on “Help→Detailed Documentation→Initial
conditions.”

 4.1.5. Initial Conditions

 Table 4
 Commonly used initial conditions

 Name Effect

 CellIC Allows setting of the concentration for a specific cell

 RowIC Sets the node value for a whole row (horizontal line) of cells

 ColumnIC Sets the node value for a whole column (vertical line) of cells

 IncrementingIC Produces a linear gradient from left to right

 CenterIC Sets the node value for a specific cell, and also sets the value in its adjacent
neighbors

192 Kim

 1. Type the following line to indicate the beginning of the
parameters section:
 &InitLevels

 2. For each of the nodes, enter the default expression level in all
cells. We will modify the initial conditions in the next step. To
set the initial level of act and ACT to 0.3 and the other nodes
to 0, type:
 &BackgroundLevel act 0.3
 &BackgroundLevel ACT 0.3
 &BackgroundLevel inh 0.0
 &BackgroundLevel INH 0.0

 3. To set act and ACT to 0.7 in the upper left and lower right cells
(in the grid of 2 × 2 cells), we’ll use the CellIC Initial-
Condition, (see the detailed documentation for CellIC for
the meaning of its inputs). Type the following:
 &CellIC // High in upper left cell:

 &Node act
 &Value 0.7
 &XPos 0
 &YPos 0

 &endIC
 &CellIC

 &Node ACT
 &Value 0.7
 &XPos 0
 &YPos 0

 &endIC
 &CellIC // High in lower right cell:

 &Node act
 &Value 0.7
 &XPos 1
 &YPos 1

 &endIC
 &CellIC

 &Node ACT
 &Value 0.7
 &XPos 1
 &YPos 1

 &endIC

 4. End the parameters section by typing:
 &endInitLevels

 5. Type the following to indicate the end of the model:
 &endNetwork

 6. Save the file to networks directory and call it “turing.net”.

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 193

 Debugging is almost always a normal step in constructing any
model, as your initial attempt to make a network will prob-
ably have some errors. Whenever Ingeneue loads a net file, it
is checked for errors, and Ingeneue will print error messages in
the output console if any errors are found. If you see any error
messages or if the network fails to load (i.e., the Network Viewer
frame does not appear), this is an indication there are mistakes in
your net file.

 Fix errors one at a time, starting from the first error message.
After fixing an error, save the file, and reload it until no errors
remain (you need not restart Ingeneue). Often, a single error
in a net file may trigger several error messages, and fixing a sin-
gle mistake may eliminate multiple messages. The most common
errors are:
 1. Misspelling (or miscapitalization) of parameter, node, or

affector names. The error message from Ingeneue will usually
indicate the misspelled variant of the name. Most commonly,
these errors appear in the interactions section.

 2. Incorrect format for an affector. Each affector requires a dif-
ferent set of nodes and different parameters. Ingeneue will
report which affector is incorrectly used in the interactions
section. Check the detailed documentation for affectors to
verify that the affector has the correct nodes and parameters.

 3. Forgetting or misspelling the &endSection tag. Each section
of the net file (nodes, parameters, etc.) must be ended using
the &endSection.

 Iterator files are scripts that instruct Ingeneue to find parameter
sets that produce some desired behavior. This section describes
how to write an iterator file that randomly picks values for all
parameters searching for parameter sets that produce temporal
oscillations in all four cells of the Turing network. The format of
iterator files is similar to that of net files (commands begin with
& and comments with //). It is easier to write iterator files from
the inside-out – i.e., we will not be writing the iterator file from
start to finish, but from most specific to most general.

 Iterator files use stopper objects, which monitor, control,
and score the results of the model according to different criteria.
 Table 5 lists the most commonly used stoppers and their behavior.
A detailed description for using these stoppers can be found
by clicking on “Help→Detailed Documenation→Stoppers.” By
convention, lower scores (near 0) indicate a better fit to the
behavior the stopper searches for, larger scores are worse fits.
Here, we will use four stoppers (one for each cell) to search for
temporal oscillations in the act node:
 1. In a text editor, make a new empty plain-text file.

 4.2. Debugging Net
Files

 4.3. Writing Iterators
to Automate Parameter
Space Searches

194 Kim

 2. The OscillatorStop stopper allows Ingeneue to find tem-
poral oscillations in a single node in a specific cell. Type the
following to search for act oscillations in the upper left cell of
the Turing network; see the detailed documentation for the
OscillatorStop for the meanings of its inputs:
 &Stopper OscillatorStop

 &StopTime 1000
 &Node act
 &Position 1
 &MaxNumPeaks 3
 &TransientPeriod 250
 &MinAmplitude 0.1
 &Tolerance 0.2
 &NoDamping True

 &endStopper

 3. The OscillatorStop searches for temporal oscillations in a
single cell. To search for oscillations in all four cells, copy the
above code three times, changing the &Position value to 2
(upper right cell), 3 (lower left), and 4 (lower right) so your
iterator file contains the following:

 Table 5
 Commonly used stoppers

 Stopper name Explanation

 MetaStop A container that checks for multiple conditions. Almost all models
will use this. Allows scores to be combined in several ways (sum,
maximum, etc.) from individual stoppers

 MetaStopTwo Similar to MetaStop, offers a few more features

 SimpleStop Halts integration after specified time. Does not return a score on the
pattern

 OscillatorStop Detects periodic oscillations in a node. Lower scores indicate more
regular oscillations. Useful for searching for oscillatory solutions

 ThresholdStop Scores a specific node in the specified cell relative to a threshold. Low
scores indicate the threshold criteria were met and the node is far
from the threshold. Useful for finding pattern forming solutions

 OscillatingStripeStop Looks for a column of cells with a high value of a Node, surrounded
by columns of cells with low values of that Node. Gives low scores
for nonoscillatory solutions. Useful for finding stable pattern
forming solutions

 NoChangeStop Halts integration when a node’s rate of change is very slow (i.e.,
when the absolute value of the 1st derivative becomes small) in all
cells. Score is the derivative normalized to the node value

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 195

 &Stopper OscillatorStop
 << copied from above, &Position 1>>
 &endStopper
 &Stopper OscillatorStop
 << copied from above, &Position 2>>
 &endStopper
 &Stopper OscillatorStop
 << copied from above, &Position 3>>
 &endStopper
 &Stopper OscillatorStop
 << copied from above, &Position 4>>
 &endStopper

 4. Each OscillatorStop will return a score from 0 (large, regu-
lar temporal oscillations) to 1000 (no oscillations), based on the
behavior of the act node. To have Ingeneue save parameter
sets where all four cells are oscillating, modify your file to that
shown below:
 &MetaStop
 &StopTime 1000
 &Cutoff 0.2
 &StopMode And
 &ValueMode Max
 << code from above >>
 &endStopper

 5. The above code enclosed the four stoppers within a MetaStop,
which allows Ingeneue to select for parameter sets meeting
criteria from many stoppers. The &Cutoff line tells Ingeneue
to save any parameter sets with an OscillatorStop score of
less than 0.2 (lower scores mean better parameter sets). The
&ValueMode line tells Ingeneue to apply the cutoff to the
largest of the scores; this ensures that all four cells are oscillating.
For details on the other input values to MetaStop, see the
detailed documentation.

 6. The iterator file also specifies the details of how the model
should be run, and what information to save. Modify your file
to that shown below:
 &Evaluators
 &Stopper FinalCut StartAtBeginning Savefi-
nalpars Integrator= CashKarp
 << code from above >>
 &endEvaluator

 7. The &Stopper line specifies how to run the model:
 (a) FinalCut: The name for the combination of stoppers

we used. This can be set to anything.
 (b) StartAtBeginning: Resets the model time to 0 before

each run.

196 Kim

 (c) SaveFinalPars: Saves the parameter sets satisfying
the stoppers.

 (d) Integrator= CashKarp: Sets the numerical integrator
for running the model (see Note 4).

 8. You will need to specify how to randomize parameters and
where to save the output files:

 (a) &Iterator: Tells Ingeneue which iterator object to use;
use UberIterator.

 (b) &OutputPathName: The subdirectory within Ingeneue
where the saved parameter sets should be stored. Enclose
this in quotation marks.

 (c) &ParamsToVary: A list of all parameters, and how to
randomize them. The format and interpretation of this
section is identical to the parameters section of the network
file. You can copy the parameters section from the net file
into this section.

 9. The iterator file will have Ingeneue randomize parameters
over the same range as in the net file, and save the good
parameter sets to the output subdirectory. Type the follow-
ing to set up the UberIterator for a random search of the
Turing network:
 &Iterator UberIterator
 &OutpathName “output”
 &ParamsToVary // Copied from Turing.net
 &H_act 10.0 1.0 100.0 Linear
 <<…rest of parameters from section

 4.1.4 >>
 &nu_INHact 3.0 1.0 10.0 Logarithmic
 &endParamsToVary
 << code from above >>
 &endIterator

 10. Save the file to networks directory and call it “oscillator.iter”.

 Use this iterator to find parameter sets that produce temporal
oscillations in the Turing network. The file “Turing.params” in
the models/Turing directory has several parameter sets that have
been found. Note differences in the details of the phasing of the
oscillations between different parameter sets. From this point,
you are encouraged to explore on your own (see Note 12).

 Ingeneue is a powerful and useful tool for both building and
exploring simple or arbitrarily complex genetic networks in order
to provide valuable insight into how, and how robustly, networks

 5. Conclusions

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 197

accomplish pattern-forming, or temporal oscillations tasks. Inge-
neue is extensible and is actively being developed to add addi-
tional features. Future versions of Ingeneue will provide more
sophisticated graphical tools for constructing networks, a more
flexible framework for specifying affectors without modifying
source code, more mechanistically detailed simulation of tran-
scriptional logic, and the ability to simulate evolution of genetic
networks.

 1. Ingeneue solves systems of ordinary differential equations in
which an initial value is specified for every dependent vari-
able (node). The existence and uniqueness of solutions to the
system of equations hinge on mathematical details we will not
cover here. The affectors supplied with Ingeneue have been
constructed so that, given positive parameter values, every
set of initial conditions determines a unique solution which
extends indefinitely far into the future. Ingeneue does not
solve boundary value problems in which target values for dif-
ferent dependent variables are assigned at different times.

 2. See the installation instructions on the Ingeneue Web site for
instructions on how to determine whether your computer has
Java installed. Ingeneue will work if you have the Java Runtime
environment (JRE), but you will be unable to make changes to
the Ingeneue source (i.e., add new affectors); the Java Devel-
opers Kit (JDK) is required if you want to make changes (i.e.,
add affectors or stoppers) to Ingeneue. The JDK is included
on computers running Mac OS X (be sure that you have all the
latest updates installed).

 3. All help files in Ingeneue are in html format, meaning they can
be viewed (and printed) from any Web browser. Two versions
of the Ingeneue manual are in the “manual” subdirectory:
“manual.html” has the entire manual in a single file for easy
printing, while “manual00toc.html” will allow you to navigate
to the different sections of the manual. Tutorials are located in
the “tutorials” subdirectory.

 4. Integrators and the stop time for integration can be set from
“Run→Options.” Ingeneue has five numerical integrators, four
of which are standard (19) . The default Cash-Karp integrator
is best for most systems; experiment with other integrators if
you desire faster integration. The integrators differ in accuracy
and their speed; the semiexplicit APC usually is the fastest but
has the lowest accuracy – for some models or parameter sets,

 6. Notes

198 Kim

it may produce erroneous results, but it can be useful as a first
cut to eliminate parameter sets that fail to produce the desired
behavior. The relative performance and detailed implementa-
tion of the integrators is described in Supplement B of (15) .
 See Note 7 for additional tips on increasing Ingeneue speed.

 5. The format of the file is in five columns as follows (1) Data set;
starts with 0. Multiple runs can be stored by deselecting the
“overwrite” button. (2) Simulation time in minutes. (3) Cell
number. Numbering starts with 0 and proceeds sequentially
rightward and downward (i.e., in same order that you read
words on a page). (4) The node number (order is same as
specified in net file). (5) Value of node.

 6. The iterator does the following: Randomize all parameters,
then integrate to 200 min and check whether en, wg, and hh
have the correct spatial pattern of expression. If the pattern
is correct, integrate to 1,000 min, and Ingeneue considers a
parameter set successful if the spatial pattern persists without
oscillations. About 1 in 200 parameter sets is successful.

 7. Searches are substantially faster when Ingeneue is run from
the command line compared to when Ingeneue is run using
the graphical interface; however, you will not be able to see
the details of the search, so the graphical interface may be
desirable for early searches. To speed up the graphical inter-
face (1) Close any unneeded/unused frames, especially the
Node Viewer, Cell Viewer, and Time Graphs. (2) Change the
integration scheme (see Note 4) and reduce the integration
time to the minimum necessary. (3) Use the newest Java and
Ingeneue versions; newer versions usually are faster. (4) Close
other programs while Ingeneue is running. (5) Reduce the
dimensions of the model (width and height) to the lowest
value possible (i.e., for the segment polarity network, a 1 × 4
field of cells is faster than 2 × 8).

 8. Some Ingeneue frames are separate from the main Ingeneue
window and can get “lost” behind it. If frames are disappear-
ing, try minimizing or moving the Ingeneue window to see
what is behind it.

 9. The cross-correlation coefficient r a,b is mathematically defined as:

()()()
,

() ()
,

Var() Var()a b

E a E a b E b
r

a b

− −
=

 where a and b are two distributions, E is the mean, and Var is
the variance. The cross-correlation coefficient is useful to deter-
mine whether there is compensation between parameters in the
model – i.e., a large negative r indicates parameter a usually
increases when parameter b decreases. Because of symmetry, r a,b
= r b,a . All parameters fully correlate with themselves; r a,a = 1.

 Ingeneue: A Software Tool to Simulate and Explore Genetic Regulatory Networks 199

 10. A tutorial bundled with Ingeneue explains how to write
your own affectors. This requires knowledge of the Java
programming language and is beyond the scope of this chap-
ter. Existing affectors are extensively documented, and from
this documentation it should be clear to Java beginners how
to code new affectors by modifying existing ones. See the
file AffectorTemplate in the Affectors directory; it has
detailed comments to show you how to write your own
affectors with any mathematical function you desire.

 11. I strongly recommend that you use comments liberally in
your network and iterator files to aid in later understanding
and debugging. Typical areas to use comments: (1) At the
very start of the file, identifying your name, the date and ver-
sion of the model, and a brief summary of what the file does.
(2) Group similar parameters together labeled by category
(i.e., half-lives). (3) At the start of the initialconditions
section describing the qualitative pre-pattern. Also, you can
temporarily delete interactions by adding a “//” to the start
of the line, causing Ingeneue to ignore that affector.

 12. Things to explore: After finding many parameter sets, do
you notice trends or restrictions on parameters (when visu-
alizing, or using the summary/cross-correlation statistics)?
How does the model behavior change if you change the
periodicity of the network from 2 × 2 to 3 × 3? What types
of striped patterns can the network produce? Try making the
activator membrane-bound and diffusible as well and inves-
tigate the network dynamics.

 I thank Garrett Odell, Edwin Munro, and George von Dassow
for helpful discussions, and Garrett Odell and Li Hua for com-
ments on this chapter. This work and continued development of
Ingeneue are supported by NIGMS: 5 P50 GM66050.

 Acknowledgments

 References

 1 . Tyson , J. J. , Novak , B. , Odell , G. M. , Chen , K. ,
and Thron , C. D. (1996) Chemical kinetic
theory: Understanding cell-cycle regulation .
 Trends Biochem. Sci . 21 , 89 – 96 .

 2. Chen , K. C. , Calzone , L. , Csikasz-Nagy , A. ,
 Cross , F. R. , Novak , B. , and Tyson , J. J. (2004)
 Integrative analysis of cell cycle control in bud-
ding yeast . Mol. Biol. Cell 15 , 3841 – 3862 .

 3 . de Jong , H. (2002) Modeling and simula-
tion of genetic regulatory systems: A literature
review . J. Comput. Biol . 9 , 67 – 103 .

 4. Rust , M. J. , Markson , J. S. , Lane , W. S. ,
 Fisher , D. S. , and O’Shea , E. K. (2007)
 Ordered phosphorylation governs oscillation
of a three-protein circadian clock . Science 318 ,
 809 – 812 .

200 Kim

 5 . von Dassow , G. and Odell , G. M. (2002)
 Design and constraints of the Drosophila
segment polarity module: Robust spatial pat-
terning emerges from intertwined cell state
switches . J. Exp. Zool . 294 , 179 – 215 .

 6 . Meir , E. , von Dassow , G. , Munro , E. , and
 Odell , G. M. (2002) Robustness, flexibility,
and the role of lateral inhibition in the neuro-
genic network . Curr. Biol . 12 , 778 – 786 .

 7. Schlitt , T. and Brazma , A. (2007) Current
approaches to gene regulatory network mod-
elling . BMC Bioinform. 8 (Suppl 6) , S9 .

 8 . Aguda , B. D. and Goryachev , A. B. (2007)
 From pathways databases to network models
of switching behavior . PLoS Comput. Biol . 3 ,
 1674 – 1678 .

 9. Alberts , J. B. and Odell , G. M. (2004) In
 silico reconstitution of Listeria propulsion
exhibits nano-saltation . PLoS Biol. 2 , e412 .

 10. de Silva , E. and Stumpf , M. P. (2005) Com-
plex networks and simple models in biology .
J. R. Soc. Interface 2 , 419 – 430 .

 11 . Longabaugh , W. J. , Davidson , E. H. , and
 Bolouri , H. (2005) Computational represen-
tation of developmental genetic regulatory
networks . Dev. Biol . 283 , 1 – 16 .

 12 . van Riel , N. A. (2006) Dynamic modelling
and analysis of biochemical networks: mech-

anism-based models and model-based experi-
ments . Brief Bioinform . 7 , 364 – 374 .

 13. von Dassow , G. , Meir , E. , Munro , E. M. , and
 Odell , G. M. (2000) The segment polarity
network is a robust developmental module .
 Nature 406 , 188 – 192 .

 14 . Zwolak , J. W. , Tyson , J. J. , and Watson , L. T.
 (2005) Parameter estimation for a math-
ematical model of the cell cycle in frog eggs .
 J. Comput. Biol . 12 , 48 – 63 .

 15 . Meir , E. , Munro , E. M. , Odell , G. M. , and
 Von Dassow , G. (2002) Ingeneue: A versatile
tool for reconstituting genetic networks, with
examples from the segment polarity network .
 J. Exp. Zool . 294 , 216 – 251 .

 16. Edelstein-Keshet , L. (2004) Mathematical
Models in Biology . SIAM , Philadelphia, PA .

 17. Murray , J. (2004) Mathematical Biology. II:
Spatial Models and Biomedical Applications .
 Springer , Heidelberg .

 18 . Miura , T. and Maini , P. K. (2004) Periodic
pattern formation in reaction-diffusion sys-
tems: An introduction for numerical simula-
tion . Anat. Sci. Int . 79 , 112 – 123 .

 19. Press , W. H. , Flannery , B. P. , Teukolsky , S. A. ,
and Vetterling , W. T. (1992) Numerical Recipes
in C: The Art of Scientific Computing . Cam-
bridge University Press , Cambridge .

 Chapter 7

 Microfluidics Technology for Systems Biology Research

 C. Joanne Wang and Andre Levchenko

 Summary

 Systems biology is a discipline seeking to understand the emergent behavior of a biological system by integrative
modeling of the interactions of the molecular elements. The success of the approach relies on the quality
of the biological data. In this chapter, we discuss how a systems biology laboratory can apply microfluidics
technology to acquire comprehensive, systematic, and quantitative data for their modeling needs.

 Key words: Microfluidics , Systems biology , High-throughput screening , Microfabrication , Microfluidic
large-scale integration , Cell culture , Single cell analysis .

 The last decade has witnessed the rapid development of technol-
ogies enabling the complete sequencing of the human genome.
Now the challenge is to understand how the identified genes and
their expressed products dynamically interact with each other
and respond to environmental cues. A well-accepted, although
not always adopted, view is genes and the corresponding pro-
teins can and should be considered components of a system.
Characterizing the properties of a single component is necessary
but not sufficient for true understanding of the behavior of the
entire system. A set of principles and methodologies have recently
been developed to link the actions of individual biological mole-
cules to an integrated physiological response. Unified under the
name of systems biology, the general framework of the approach
is to (a) comprehensively perturb and then systematically meas-
ure the temporal responses of all the molecular elements at the
distinct levels of the biological system, (b) integrate the quan-

 1. Introduction

 1.1. Systems Biology
Approach

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_7

203

204 Wang and Levchenko

titative information into a network model to recapitulate the
systems behavior, (c) formulate new hypotheses and test them
experimentally, and (d) refine the model to include new findings
and then repeat the cycle (1– 3) . The insights generated by this
emerging field not only change the way biology research is con-
ducted but they can also directly impact human health. Systems
biology has already revolutionized how one examines diseases
by exploring the hypothesis that one can distinguish between a
normal and diseased state by comparing the dynamic expression
and activity patterns of genes identified as key nodes within the
network (1, 4) . Although systems biology is rapidly approaching
maturity, there still remains several challenges accompanying its
ambitious vision (5) . This review will concentrate on a subset of
these challenges, namely how the needs for comprehensive, sys-
tematic, and quantitative measurements (6, 7) can arguably be
met by new developments in microfluidics technology (1, 7– 9) .
We begin by giving an overview of the measurements suitable
for system level modeling.

 Biological information is hierarchical in nature: gene and gene
regulatory networks → protein → signal transduction pathways →
pathway networks → cell → multicellular organism (Fig. 1A). Each
distinct level in this hierarchy can be viewed as a system. The functions
of each of these systems reside in the temporal interactions of the

 1.2. Measurement for
Systems Biology

 1.2.1. Single Cell as a
Basic Response System

 Fig. 1 . Single cell is the established fundamental unit of measurement in the realm of
systems biology. (A) Biological information is hierarchical in nature. (B) Two possible
sources of graded response, which is not distinguishable if the measurement is made
with biochemical assays that average the response .

 Microfluidics Technology for Systems Biology Research 205

internal components and adjacent systems in the hierarchy (10) .
A single cell is the established fundamental unit of measurement in
the realm of systems biology (1) . When a cell receives an input from
the environment, the cell’s internal networks of genes and proteins
process the information and generate a physiological response.
Heterogeneity of physiological responses among individual cells is
often observed, even when the cell population is genetically homo-
geneous. If one extracts the average response from a population
of cells instead of measuring it individually, one risks neglecting
responses that can stochastically be significantly different from the
mean, including all-or-none type behavior (11, 12) . The differences
in how individual cells respond to the same perturbation can reveal
the control mechanism and other system properties (Fig. 1B).
In general, therefore, one cannot reliably generate information
about the total wealth of regulatory network behavior based solely
upon measurements of mixed population of cells; cell responses
should be explored at the single-cell level, if possible and practical.

 For mammalian cells, single cells can be derived from multiple
sources. The source of the single cell needs to be determined
based on the goal of the model. The sources range from (a) biopsy
samples, (b) monolayer cell culture, and (c) organ-type (or three-
dimensional) culture. Compared with biopsies, cultured monol-
ayer cells undoubtedly allow tighter controls, but their ability to
reflect physiological functions is often debatable. Extensive cell–cell
communication can occur in populations of cells, homotypic or
heterotypic. Cells can communicate by diffusion of their actively
secreted product, cell–cell contact, or exertion of forces. These
parameters can influence cellular responses; therefore, it is desirable
to preserve the spatial relationship of the cells and the surrounding
fluidic environment. In addition to working with primary cells
extracted from biopsy samples, a potential attractive practical solu-
tion is to construct an organ-type (or three-dimensional) cell
culture (13) . This approach would aim at mimicking in vivo tissue
geometry by recapitulating the arrangement of heterogeneous
types of cells in three-dimensional spaces (14, 15) .

 To completely describe a system’s response to a particular pertur-
bation, a threshold number of components in the system must
be measured over time. Eventually the measurements will need
to be integrated into a coherent model for understanding and
predicting the behavior of the system. To accomplish this goal,
ideally multiple measurements should be made simultaneously
from a single sample (1) . At the very least, the preparation of the
samples and the context from which they are obtained need to be
consistent across all the measurements. Any alterations invariably
introduce new parameters, making integration of measurements
more challenging than it already is.

 1.2.2. Cell Lines Versus
Heterogeneous Cell
Populations

 1.2.3. Context of
Measurement Needs
Consistency

206 Wang and Levchenko

 Even though the interrogated biological molecules may be differ-
ent in identity, in general the data falls into three main types:
(1) concentration, (2) kinetic parameters (essentially time-series
measurement of concentration), and (3) regulatory interactions.
Specific modeling approaches will have specific data require-
ments. For example, ordinary differential equation (ODE)-based
dynamics modeling requires highly accurate measurements of
kinetic parameters and concentrations. Existing high-throughput
technologies (i.e., DNA microarray, and mass spectrometry with
isotope-coded affinity tags) have great coverage of nodes and can
be quantitative, but they are limited to population measurements
with low temporal resolution. Thus, these data are not suitable for
ODE-based modeling. Technology for generating high-through-
put measurements meeting the needs of systems modeling has
yet to be developed. Finally, it is interesting to speculate on how
many measurements are necessary to reverse engineer a system
 (16, 17) . The exact number is bound to be staggering, and our
ability to develop automation technology to meet this quantity
will be the limiting factor constraining the success achievable by
the systems biology approach.

 In addition to introducing truly novel measurement principles,
ingenious adaptation of existing technologies can also generate
powerful methods for acquiring the biological data necessary for
modeling. Earlier, we have established the fundamental meas-
urement scale to be defined by a single cell. The order of magni-
tude estimates of single cell length are 1–10 μ m and a volume of
several picoliters. However, manual and automated biochemical
assays are usually performed in microliter to milliliter volumes of
cellular matter, mainly due to limitations in conventional fluid
handling techniques. The difficulties of handling small volumes
of fluid include evaporation, loss during transfer, and high surface
tension (resulting from the increased surface to volume ratio at
small volume).

 Microfluidics refers to an integrated system of miniaturized
components handling small fluidic volumes on the nanoliter scale
and below (8, 18, 19) . Standard components (channels, pumps,
and mixers) utilized to transport and store reagents are micrometer
in scale (Fig. 2A , hence the name of the technology. Because the
feature size of the operating components is at the same length
scale as a single cell, microfluidics is poised to meet the experimental
needs of systems biology (1, 7– 9) . Using recently developed micro-
fluidic devices, some of which are described later, one can easily
move single cells around within a network of tiny channels, change
the fluidic environment to expose cells to complex spatiotemporal
perturbation and detect the output, or lyse cells and transfer the
picoliter volume of the intracellular contents to various “process-
ing stations” on the chip (Fig. 2B) (20) . Computer programmable

 1.2.4. Types
of Measurements

 1.3. Why Microfluidics?

 Microfluidics Technology for Systems Biology Research 207

moving parts (i.e., micromechanical valves) can automate all
fluidic operations (21) . The miniaturized nature of microflu-
idics allows multiple parallel runs of typically low-throughput
biochemical assays, thereby converting them to powerful high-
throughput methods (8) . Decreasing analyte volume down to
the detection limit theoretically allows multiple measurements to
be made simultaneously from the same single cell sample. Micro-
fluidics offers high spatiotemporal resolution in fluidic control,
and allows more accurate modeling of the in vivo environmental
context prior to or during a measurement. Furthermore, it can
be used to model the in vivo spatial relationship between cells
within a functional multicellular ensemble (20) . Microfluidics is
also viewed by many as the ideal technology to steer lysates from
individual cells to measurement platforms based upon emerging
nanotechnology-based methods (1, 7, 22) .

 In this review we highlight a specific subset of microfluidic
devices fabricated using soft lithography that are characterized
by their ease of application in a typical laboratory setting and
suitability for generating data for systems level modeling (Fig.
 3). Soft lithography produces microscale features by molding
soft polymer, using microfabricated silicon-based wafer tem-
plates (Fig. 4A) (23) . A single wafer allows multiple casting, thus
significantly reducing the cost of mass production. Polydimeth-

 2. Material and
Methods: How to
Set Up Your Wet
Bench to Use mLSI
Microfluidics Chip

 2.1. General Method

 Fig. 2 . Integrated microfluidics cell analysis system. (A) A high-throughput immunofluorescence staining device imaged
next to a US quarter (46) . The fluidic layer is filled with red food dye (appears as gray in the image), and the control layer
with blue food dye (appears as black in the image). (B) Conceptual depiction of how different microfluidic operations can
be integrated with each other to carry out cell micropatterning, stimulation, sorting, lysis, and finally interrogation on a
single chip (reproduced from ref. 20 with permission from Nature Publishing Group) .

208 Wang and Levchenko

 Fig. 3 . Microfluidic devices. (A) Analysis of cell chemotaxis using a chip with a Christmas tree design for gradient
generation (reproduced from ref. 36 with permission from Nature Publishing Group). (B) Diffusion-based and flow-free
gradient generation (reproduced from ref. 39 with permission from Royal Society of Chemistry). (C) T-step stimulation
device allowing generation of stepwise gradients (reproduced from ref. 41 with permission from Nature Publishing
Group). (D) Unit chambers of a high-throughput microfluidic platform on the basis of mechanically trapping the TF-DNA
binding pairs using micromechanical valves (reproduced from ref. 56 with permission from AAAS). (E) Progressive steps
in visualization of self-organization of an Escherichia coli colony in a microfluidic chamber (reproduced from ref. 48 under
the terms of Creative Commons License). (F) Single-cell isolation and genome-amplification chip (reproduced from ref.
 60 under the terms of Creative Commons License) .

 Fig. 4 . Soft lithography. (A) Process flow: (a) Photoresist was spin-coated onto a silicon wafer and (b) the mask patterns
were lithographically transferred onto the photoresist with an UV aligner and following development, (c) results in pre-
cisely fabricated microfeatures on the wafer. (d) This master is used as a mold for casting a ~ 5-mm-tall PDMS layer.
(e) The elastomeric layer is released from the mold and laid flat on a clean glass coverslip, resulting in the final device.
(B) The NanoFlex ™ valve and its operation (reprinted from ref. 21 with permission from Royal Society of Chemistry) .

 Microfluidics Technology for Systems Biology Research 209

ylsiloxane (PDMS) is a widely used polymer for chip construc-
tion. Gas-permeable and optically transparent, PDMS is highly
appropriate for a variety of cellular studies. A PDMS fabricated
surface can be chemically tailored to the needs of a specific applica-
tion. The impressive versatility of PDMS microfluidic devices has
motivated countless applications in various scientific disciplines
(9, 20) . Such devices will likely make a significant impact on systems
biology because of the potential to replace conventional biological
automation paradigms (8) . Central to achieving this goal is
the development of microfluidic large-scale integration (mLSI)
 technology – a simple fabrication process for constructing chips
with hundreds to thousands of integrated micromechanical valves
 (24) . The NanoFlex ™ valve (25) is the basic unit of fluidic han-
dling in mLSI, essential for automation and parallel execution
of multiple picoliter-scale operations (Fig. 4B). The NanoFlex ™
valves stop and start flow on-chip by pneumatically deflecting a
flexible membrane (25) , givin one the ability to manipulate fluid
transport without accounting for the properties of the fluid. Func-
tionality of a microfluidic device is encoded in its fluidic channel
design, and in the near future, in-chip operation of all existing
biochemical assays will be demonstrated. An almost infinite variety
of layouts is possible for performing the same task, and should be
tailored to the needs of the specific cellular system.

 The microfluidic devices highlighted in this review generally do
not possess stand-alone functions and need peripheral equipment
to support their operation. Fundamentally, one needs to be able to
actuate the devices through exercising fluidic pressure control
and image the experimental outcomes generated by various
cellular labels (26, 27) .

 As PDMS-based microfluidic devices are optically transparent,
they can be used in combination with virtually any type of optical
microscopy, including epifluorescent, confocal, and multiphoton.
Optical microscopes are currently a staple of almost any biological
lab and are commonly available as shared equipment. For increased
throughput and experimental versatility in using the devices, it is
desirable to have a microscope equipped with a motorized XYZ
stage driven by automation software. If on-chip live-cell imaging
is to be performed, the microscope also needs to be enclosed by
a temperature and CO 2 incubation chamber (28) .

 Pressure-driven flow in a microfluidic device is generally in
the range of nanoliter per minute. This flow rate can be achieved
by placing the media reservoirs feeding the inlets and outlets at
different hydraulic heights. Analogous to Ohm’s law, the pressure
difference is determined by multiplying the desired volumetric
flow rate by the channel’s resistance, with the latter frequently
easily computable using standard hydraulic resistance formulas.
Alternatively, a syringe pump can be used to maintain a constant
flow rate if the internal resistance of the device varies over time.

 2.2. Peripheral
Equipment

210 Wang and Levchenko

 Actuation pressure for turning on and off the NanoFlex ™
valves requires a high external pressure source ~ 20–80 pounds per
square inch (psi). This high pressure is fed into an array of mini-
aturized solenoid valves [e.g., available from The Lee Company
 (29)] , which is interfaced to a computer via a National Instru-
mentation PCI card (25, 30) . One can write custom programs
to automate valve switching. Alternatively, one can purchase a
ready-made control module from Fluidigm (31) .

 Micro-to-macro fluid adaptation is often a challenge in tradi-
tional glass- or silicon-based microfluidic devices. The flexible
nature of PDMS allows easy punching of holes for flow channel
access. Adaptors slightly larger than the cording tool generate
tight seals sustaining up to ~ 40 psi of pressure with no leakage,
even when no additional adhesive is applied. The hole punching pro-
cedure and the sources of the adaptors and corder are described
in detail in (32) .

 A PDMS microfluidic chip is typically sealed with a glass coverslip
bottom (Fig. 4A). This technique has the advantage of providing
structural support to the otherwise flexible device. One has the
option of reversibly bonding the two parts by oven baking at 80°C
from a few hours to overnight. In our experience, this type of bond
can withstand up to 10 psi of pressure, a value much greater than
the pressure differential necessary for driving flow in the device.
Prior to the operation of most devices, bubbles in the channels
occasionally created during the initial filling of the device with cell
medium or a buffer must be removed in a “dead-end priming step,”
as follows. The permeability of PDMS to nonpolar gases, including
O 2 , N 2 , and CO 2 , is not only beneficial for the rapid enrichment of
the medium inside the chip with atmospheric components essen-
tial for cell survival, but can also be used to drive air bubbles out
of the chip. This is achieved by uniformly increasing the hydro-
static pressure in the chip to higher than atmospheric levels and
maintaining it at these levels throughout the experiment (note that
we mean here the absolute hydrostatic pressure; pressure differential
needed to drive flow can be superimposed on this absolute pres-
sure level). After an experiment, the PDMS chip can be separated
from the glass and cleaned with Alconox, water, and then with 70%
ethanol and reused.

 Irreversible bonding of a PDMS device and glass coverslip
components can also be accomplished within a vacuum plasma
chamber or using an inexpensive hand-held corona unit (33) . A
vacuum plasma chamber is the established method for creating a
permanent bond between PDMS and PDMS interfaces, or PDMS
and glass interfaces. However, it is typically expensive, bulky, and
requires high maintenance. The inexpensive hand-held corona unit
is a validated and suitable alternative for the purpose of bonding
the chips described in this chapter. Bonding is achieved by plasma

 2.3. Chip Bonding and
Bubble Degassing

 Microfluidics Technology for Systems Biology Research 211

(or corona) treating the cleaned bonding surfaces, and then the
two surfaces are brought in contact with each other and left undis-
turbed for at least an hour for bonding to take effect. In addition
to activating surfaces for bonding, plasma treatment has the advan-
tage of temporarily increasing the hydrophilicity of PDMS for ~ 24 h,
during which the channel surface is energetically unfavorable for
bubble formation. Monomer extraction from the PDMS bulk can
prolong the hydrophilic effect to weeks (34) . Irreversibly bonded
devices are usually difficult to reuse after one operation.

 Flow is predominantly laminar in microchannels (19) . Because
chemicals in laminar streams flowing in contact with each other
can only mix by diffusion, different concentrations of a chemical
of interest present in different parts of the stream can gradually
blend to create stable and reproducible concentration gradients
with complex profiles (35) . On this principle, Jeon et al. dem-
onstrated how one can use a prominent layout, the so-called
 Christmas tree structure (Fig. 3A), to investigate gradient sens-
ing and chemotaxis in a neutrophil-like cell line (36) . This
novel method filled an important void in the cell biology
toolbox since previously there was no simple means to gener-
ate instantaneous and stable linear gradients. Armed with this
technology, one can easily vary chemical concentration gradient
parameters, such as shape, slope, and mean value to achieve a
systems understanding of how single cells sense chemical gradi-
ents and respond to them. This strategy can also be adapted
to generate gradients of substratum-bound extracellular matrix
(ECM) components (37) . Dertinger et al. used this approach to
investigate axon specification in rat hippocampal neurons, and
discovered the quantitative threshold value of laminin gradient
that biased the orientation of axon specification. Recently, we
developed a high-throughput chip enabling the creation of
composite gradients of both diffusible and surface-bound guid-
ance cues to more realistically mimic the conditions growth
cones encounter in vivo (38) . Applying this assay to Xenopus
embryonic spinal neurons, we demonstrated how the presence
of a surface-bound ECM gradient can finely tune the polarity of
growth cone responses to soluble neurotropic factor gradients.
The data generated from the chip experiments allowed us to
develop a computational model to explain biochemical mecha-
nisms responsible for converting the multiple gradient inputs
into a binary turning decision (report in preparation).

 3. Case Studies

 3.1. Perturbing
Single Cells

 3.1.1. Spatial Concentration
Gradient

212 Wang and Levchenko

 Strategies also exist for exposing nonadherent or shear-
sensitive cells to stable concentration gradients (12, 39, 40) .
Paliwal et al. described a microfluidic device capable of testing
yeast responses to pheromone gradients characterized by different
mean concentration values and steepness (12) . Budding yeast,
a nonadherent type of simple eukaryotic cell, has the ability to
respond to graded pheromone levels by altering the expression
of multiple genes and orienting its growth toward higher pherom-
one concentrations. The functional area of the device used in
these experiments consists of an array of shallow parallel hori-
zontal test chambers of various lengths, and two flow-through
vertical channels adjacent to the opposite edges of the test cham-
bers. The gradient inside the test chambers is created by diffusion
between the two flow-through channels, each carrying a high or
low concentration solution. As the design of the chip allowed
for various test chamber lengths in a single experiment, the yeast
cells were exposed to a range of linear pheromone gradients each
with a different steepness but with the same mean concentration
values. The rich datasets generated by this high-throughput device
enabled ODE-based modeling of transcriptional regulation in the
pheromone response. This integration of modeling and microflu-
idic experimentation revealed how bimodality in gene expression
allows a cell population to adapt its transcriptional response in
different pheromone gradients and mean concentrations.

 A similar diffusion-based strategy can also create stable
chemical gradients, but requires no active fluid flow (Fig. 3B).
The device embodying this idea has two very large stationary
reservoirs at the same hydrostatic pressure levels: the diffusion
sink and source, at the opposite sides of a test channel of a much
smaller height (39, 40) . Instability of the gradients in the test
channel caused by stimuli addition can be eliminated by covering
the sink and the source with a high fluidic resistance membrane,
whose pores still allow diffusive transport of chemical species into
the channel (39) . This design can be easily arrayed up for the
screening of multiple soluble factors. In comparison to a con-
ventional Boyden chamber assay, this platform has the advantage
of better optical accessibility, which allows easier characterization
of generated gradients as well as extraction of more quantitative
cellular migration data. However, it is important to note that
the transient time for gradient generation using a diffusion-based
strategy is dependent on the molecular weight of the chemical.
The characteristic diffusion time should be compared to the esti-
mated chemotactic response time to determine whether the effect
of transient gradient stimulation is negligible in comparison to
stable gradient stimulation.

 As described earlier, various microfluidic device designs
take advantage of constructing a laminar flow with at least two
 adjacent streams carrying solutions with different concentrations

 Microfluidics Technology for Systems Biology Research 213

of chemicals of interest. At the initial contact interface between
the streams, due to the negligible time available for diffusion,
the gradient profile is step-like (Fig. 3C). Very similarly, one can
create a step-like temperature gradient using streams carrying
solutions at different temperatures. This phenomenon has been
exploited to uncover spatial control mechanisms in both intercel-
lular and intracellular signaling networks. For instance, Lucchetta
et al. used a simple T-shaped device to create a temperature step
around a live Drosophila embryo (41) . This clever approach to
investigating the robustness of early embryo patterning to tem-
perature-dependent perturbations suggested that the mechanism
of compensation during embryo development is not a simple
reciprocal gradient system. This microfluidic device design can be
scaled up, and combined with the molecular genetic toolbox of
 Drosophila to screen for essential genes involved in regulating the
compensation mechanism during development. The T-shaped
channel functional unit can also be integrated with downstream
cell sorting and single-cell biochemical analysis operations to allow
generation of cross-level measurements in the biological hierarchy
(see Subheading 1.2.1). Within this type of integrated device,
embryos perturbed in the temperature step can be transported
to the downstream units by fluidic flow to undergo embryo dis-
sociation and cell sorting, followed by lysing the sorted single cell
individually to release the intracellular content; finally the nucleic
acids and proteins are transported to the analysis modules for
quantification. (The biochemical analysis modules are described
in detail in Subheading 3.2) et al. used the same chip design
to investigate spatial propagation of signals in single cells (42) .
Single cancer cells were partially exposed to a stream carrying
exogenous growth factor and the extent of spreading of an intra-
cellular fluorescently tagged protein from the location of stimu-
lation was monitored real-time. They discovered the key nodes
controlling the local and global activation of their pathway of
interest, receptor density, and endocytosis rate.

 Perturbing cells with transient or pulsed stimuli is especially
useful for revealing the presence of feedback interactions (43, 44) .
Various proof-of-concept devices have been developed with this
modality (45) . Central to performing temporally varying pertur-
bation are the aforementioned NanoFlex ™ valves, which allow
programmable on-chip switching of fluid access to different parts
of devices. By using a multiplexed system of valves, stimulations
of different durations can be delivered to individual subgroups
of a population of cells (Fig. 2A). Subsequent to the resulting
complex cell stimulation protocols, the intracellular content of
single cells within each subgroup can be probed with immuno-
cytochemistry to assess the relative changes in protein concentra-
tion in response to stimulation (46, 47) . This approach is akin to

 3.1.2. Temporally Varying
Stimuli Input

214 Wang and Levchenko

robotics-based high-content screening, but with the advantage
of reduced sample consumption and better reproducibility due
to higher precision in fluid delivery. This technology was used by
Kaneda et al. to measure the kinetic parameters of a phosphor-
ylated protein in primary cell lines harboring different expression
levels of an epigenetically imprinted growth factor gene (47) .
Signaling analysis revealed an unusual ligand hypersensitivity, which
could be exploited to propose a novel in vivo chemopreventive
strategy, primarily targeting colon cancer. Because of its low cell
number and reagent requirements this chip has the potential to
analyze primary cells derived from an individual patient, confer-
ring the ability to distinguish between normal and diseased states
by comparing the dynamic expression and activity patterns of
the key nodes within the signaling network.

 The precise nature of microfabrication inherent in creating
microfluidic devices can afford higher accuracy in approximating the
natural boundaries surrounding cells and tissues. Thus, one can
combine the advantages of controlling cellular chemical micro-
environments discussed in the previous sections with the ability
to specify the mechanical properties and geometries of the cham-
bers enclosing groups of cells. For example, the initial stages of
developing bacterial biofilms involve embedding cells in small
naturally occurring cavities (48) . Cho et al. and Groisman et al.
developed a series of devices (Fig. 3E) to discover and study
the dynamical self-organization of bacterial cell colonies tightly
packed in microchambers of different shapes and sizes (48, 49) .
A simple mechanical model of cell–cell and cell–wall interactions
explained the observed colony self-organization, leading to
important insights on how young biofilms might be spatiotem-
porally organized, maximizing their survival chances. The chip
permitted real-time microscopy at single-cell resolution, holding
the promise for deciphering molecular sensing elements respon-
sible for converting inputs from physical forces into physiological
responses, such as mitosis or cell migration.

 The close resemblance in length scale and shape of micro-
channels frequently used in various microfluidic devices to the
body’s own microfluidic transport system, the vasculature, implies
considerable potential for studying a variety of blood flow-related
problems, such as the behavior of medium-suspended blood cells
 (50, 51) . Microfluidic devices allow independent modulation of
relevant parameters, such as flow rate, channel (vessel) diameter,
hematocrit, and chemical and gas concentration. Higgins et al. used
this approach to study sickle cell anemia, a prominent example of
a single genetic mutation leading to pathology at the organism
level. Although the molecular pathology of the disease is well char-
acterized, sickle cell patients are heterogeneous in their clinical
presentations (52) . The observed heterogeneity is usually attrib-

 3.1.3. Mimicking the
In Vivo Cell and Tissue
Boundaries

 Microfluidics Technology for Systems Biology Research 215

uted to differences harbored by the tissue microenvironment.
Data acquired in this well-defined multiscale experimental model
will likely facilitate further systems-based network analysis of
the relationship between the cell microenvironment and genetic
defects. Ultimately, this approach might provide a mechanistic
basis for predicting the specific pathophysiological patterns in a
patient-specific manner.

 Microfluidic digital polymerase chain reaction (PCR) (53, 54)
is a powerful method arising from the clever combination of dig-
ital PCR and microfluidics. Digital PCR (55) includes the partition-
ing of a complex pooled sample into single molecule templates
for individual PCR amplifications. The practicality of such separate
amplifications relies on the accuracy of parallel isolations of single
molecular templates during the initial steps, which can be greatly
improved and enhanced by microfluidics. Ottesen et al. applied
microfluidic digital PCR to perform multigene profiling of the
genomes of single bacterial cells harvested from the wild, and
systematically determined the fraction of cells within complex eco-
systems encoding the genes of interest (53) . An interesting exten-
sion of this technique is to perform microfluidic digital PCR using
complimentary DNA templates generated from a single-cell-based
reverse transcriptase (RT) reaction. Microfluidics is proven neces-
sary in this instance because it overcomes the major limitation pre-
venting RT-PCR from achieving its theoretical sensitivity required
for single cell gene-expression analysis, namely the handling of the
single cell content and the measurement of the output. Warren
et al. used the microfluidic chip-based digital RT-PCR assay to
systematically and quantitatively analyze transcription factor (TF)
expression within a population of hematopoietic stem cells (54) .
The ability to quantitatively characterize the developmental states
of single cells at snapshots of time can thus bring us a step closer
toward understanding the transcriptional regulatory networks
governing the transition from stem cells to diverse terminally dif-
ferentiated states.

 Quantifying the affinities of molecular interactions in intracellu-
lar environments or in free solutions is critical to understanding
the collective properties of regulatory networks. The technical
challenges include systematically measuring the parameter space
of the governing biochemical processes (e.g., the activities of
interacting molecules and rate constants of individual reactions
or transport events) and capturing transient, low-affinity bind-
ing events. In conventional assays, the weakly bound material
is often rapidly lost during the rigorous washing steps. Maerkl
and Quake developed a high-throughput microfluidic platform
based on mechanically trapping TF-DNA binding pairs using
micromechanical valves (Fig. 3D), thereby eliminating the off-

 3.2. Intracellular
Content Analysis

 3.2.1. Microfluidic Digital
PCR and RT-PCR

 3.2.2. Regulatory
Interaction Measurement

216 Wang and Levchenko

rate problem (56) . They used a microarray to spot dilute series
of DNA sequences to achieve a dense array of DNA templates
coding for the TF and the target DNA. Then, the TF was synthe-
sized in situ in the nanoliter volume microchamber followed by
incubation with the target DNA. Finally, micromechanical valves
were brought into contact with the surface, physically trapping
surface-bound material (the TF-DNA pairs) while the solution-
phase unbound molecules were washed away. Hopefully, their
success in predicting biological functions by combining purely in
vitro biophysical measurements with in silico modeling will soon
become a standard practice as systems biology matures.

 The microfluidic devices described in the last subheading parti-
tion the pooled intracellular content from externally lysed cells
into nanoliter portions, where PCR reactions based on single
molecule templates can take place. This powerful strategy is suit-
able for analyzing entities present at a single copy per cell, but
many more abundant proteins or metabolites lose the informa-
tion of their cellular origin upon release from membrane encap-
sulation. A microfluidic approach to solving this problem is to
perform single cell sorting on-chip (57– 59) , followed by lysing
the single cells, and then analyzing the content with a high-
affinity reporter system, which in principle does not require the
size-separation step, e.g., through quantitative PCR for detect-
ing DNA and RNA, antibodies for detecting protein (Fig. 3F , refs.
60– 62 . The methods proposed by both Fu et al. and Takahashi et
al. involve computational analysis of digitally acquired images,
where positive identification of a target triggers a sorting on-chip
valve to isolate the cell of interest (57, 58) . Wang et al. switched
the streams optically to improve throughput (59) . Any of these
cell sorters are powerful representative technologies for bridging
the information acquired from microfluidic chip-based cellular assays
described in the last section with other single-cell-based intracel-
lular biochemical analyses described in this section.

 In Subheading 3 , we examined microfluidic devices that have
immediate applications benefiting systems biology analysis. The
discussed devices make measurements at a specific level of the
biological hierarchy. Thus far, integration between modules and
high-throughput cross-level measurements has not been achieved
on a microfluidic platform. In the near future we envision the
introduction of integrated devices capable of performing all opera-
tions simultaneously on one chip. In the first module, micro-

 3.2.3. On-Chip Cell-Sorting
Followed by Nucleic Acid
Extraction and Purification

 4. Conclusion:
Future Develop-
ment Driven by the
Needs of Systems
Biology

 Microfluidics Technology for Systems Biology Research 217

fabricated multicellular constructs recapitulating physiological
or pathophysiological function will be subjected to a panel of
perturbations, such as small molecule inhibitors or growth fac-
tors. Their output responses can be detected by a variety of non-
invasive imaging techniques. Multicellular constructs or single
cells displaying the target behavior can then be transported to
the second module where they can be sorted into individual
cells and lysed independently to release their intracellular con-
tent. Finally, biochemical analysis of the states of the multiple
nodes, the hypothetical regulators of the output response, will
be performed at the last device module, thus linking molecular
interactions to a physiological response at the single-cell level.
Incorporating nanotechnologies (22, 63) capable of interrogat-
ing dynamics of biomolecules in label-free and higher sensitivity
reactions will further enrich the functionalities of microfluidics.
Akin to how technology has spearheaded the genome sequenc-
ing project, the multifaceted capabilities offered by the unifying
platform of microfluidics will help realize the untapped potential
of systems biology.

 The authors would like to thank Benjamin Lin for reading the
manuscript critically.

 Acknowledgments

 References

 1 . Hood , L. , Heath , J. R. , Phelps , M. E. , and
 Lin , B. (2004) Systems biology and new tech-
nologies enable predictive and preventative
medicine . Science 306 , 640 – 643 .

 2 . Kitano , H. (2002) Systems biology: a brief
overview . Science 295 , 1662 – 1664 .

 3 . Ideker , T. , Galitski , T. , and Hood , L. (2001)
 A new approach to decoding life: systems
biology . Annu. Rev. Genomics Hum. Genet.
 2 , 343 – 372 .

 4 . Irish , J. , Hovland , R. , Krutzik , P. O. , Perez ,
O. D. , Bruserud , Ø . , Gjertsen , B. T. , and
 Nolan , G. P. (2004) Single cell profiling of
potentiated phospho-protein networks in cancer
cells . Cell 118 , 217 – 228 .

 5 . Levchenko , A. (2003) Dynamical and integra-
tive cell signaling: challenges for the new biology .
 Biotechnol. Bioeng. 84 , 773 – 782 .

 6 . Szallasi, Z. (2006) Biological data acquisition
for system level modeling – an exercises in the

art of compromis , in system Modeling in Cellular
Biology: From Concepts to Nuts and Bolts (Szal-
lasi, Z., Stelling, J.R., and Periwal, V., eds.),
MIT Press, Cambridge, MA, pp. 201 – 220 .

 7. Heath, J., Phelps, M. E., and Hood, L. (2003)
Nanosystems biology. Mol. Imaging Biol. 5,
312–325

 8 . Melin , J. and Quake , S. R. (2007) rofluidic
large-scale integration: the evolution of design
rules for biological automation . Annu. Rev.
Biophys. Biomol. Struct. 36 , 213 – 231 .

 9 . Breslauer , D. , Lee , P. , and Lee , L. Mic Micro-
fluidics-based systems biology . Mol. Syst. Biol.
 2 , 97 – 112 .

 10 . Kholodenko , B. (2006) Cell-signalling dynamics
in time and space . Nat. Rev. Mol. Cell Biol. 7 ,
 165 – 176 .

 11 . Ferrell , J. J. and Machleder , E. (1998) The bio-
chemical basis of an all-or-none cell fate switch
in Xenopus oocytes . Science 280 , 895 – 898 .

218 Wang and Levchenko

 12 . Paliwal , S. , Iglesias , P. , Campbell , K. , Hilioti ,
 Z. , Groisman , A. , and Levchenko , A. (2007)
 MAPK-mediated bimodal gene expression
and adaptive gradient sensing in yeast . Nature
 446 , 46 – 51 .

 13 . Nelson , C. , Vanduijn , M. M. , Inman , J. L. ,
 Fletcher , D. A. , and Bissell , M. J. (2006) Tissue
geometry determines sites of mammary
branching morphogenesis in organotypic cultu-
res . Science 314 , 298 – 300 .

 14 . Desai , T. (2000) Micro- and nanoscale struc-
tures for tissue engineering constructs . Med.
Eng. Phys. 22 , 595 – 606 .

 15 . Bhatia , S. and Chen , C. (1999) Tissue engi-
neering at the micro-scale . Biomed. Microdevices
 2 , 131 – 144 .

 16 . Andrec , M. , Kholodenko , B. , Levy , R. , and
 Sontag , E. (2004) Inference of signaling and
gene regulatory networks by steady-state per-
turbation experiments: structure and accuracy .
 J. Theor. Biol. 232 , 427 – 441 .

 17 . Sontag , E. , Kiyatkin , A. , and Kholodenko , B.
 (2004) Inferring dynamic architecture of cellu-
lar networks using time series of gene expression,
protein and metabolite data . Bioinformatics
 20 , 1877 – 1886 .

 18 . Whitesides , G. M. (2006) The origins and the
future of microfluidics . Nature 442 , 368 – 373 .

 19 . Beebe , D. J. , Mensing , G. A. , and Walker , G. M.
 (2002) Physics and applicaitons of microflu-
idics in biology . Annu. Rev. Biomed. Eng. 4 ,
 261 – 286 .

 20 . El-Ali , J. , Sorger , P. K. , and Jensen , K. F.
 (2006) Cells on chips . Nature 442 , 403 – 411 .

 21 . Haeberle , S. and Zengerle , R. (2007) Micro-
fluidic platforms for lab-on-a-chip applica-
tions . Lab Chip 7 , 1094 – 1110 .

 22 . Helmke , B. P. and Minerick , A. R. (2006)
 Designing a nano-interface in a microfluidic
chip to probe living cells: challenges and per-
spectives . Proc. Natl. Acad. Sci. USA 103 ,
 6419 – 6424 .

 23 . Xia , Y. and Whitesides , G. M. (1998) Soft lithog-
raphy . Annu. Rev. Mater. Sci. 28 , 153 – 184 .

 24 . Thorsen , T. , Maerkl , S. J. , and Quake , S. R.
 (2002) Microfluidic large-scale integration .
 Science 298 , 580 – 584 .

 25. Unger , M. A. , Chou , H.-P. , Thorsen , T. ,
 Scherer , A. , and Quake , S. R . (2000) Mono-
lithic microfabricated valves and pumps by mul-
tilayer soft lithography . Science 288 , 113 – 136 .

 26 . Meyer , T. and Teruel , M. N. (2003) Fluores-
cence imaging of signaling networks . Trends
Cell Biol. 13 , 101 – 106 .

 27 . Xie , X. S. , Yu , J. , and Yang , W. Y. (2006) Living
cells as test tubes . Science 312 , 228 – 230 .

28. Goldman, R.D. and Spector, D.L. (eds.)
(2004) Live Cell Imaging. Cold Spring

Harbor Laboratory Press, Cold Spring Har-
bor, NY.

29. The Lee Company (http://www.theleeco.com).
 30 . National Instrumentation (http://www.ni.com).
 31 . Fluidigm Corporation, USA (http://www.

fluidigm.com).
 32 . Kartalov , E. P. and Quake , S. R. (2004)

 Microfluidic device reads up to four consecutive
base pairs in DNA sequencing-by-synthesis .
 Nucleic Acids Res. 32 , 2873 – 2879 .

 33 . Haubert , K. , Drier , T. , and Beebe , D. (2006)
 PDMS bonding by means of a portable, low-
cost corona system . Lab Chip 6 , 1548 – 1549 .

 34 . Vickers , J. A. , Caulum , M. M. , and Henry ,
 C. S. (2006) Generation of hydrophilic poly
(dimethylsiloxane) for high-performance
micro chip electrophoresis . Anal. Chem. 78 ,
 7446 – 7452 .

 35 . Jeon , N. L. , Dertinger , S. K. W. , Chiu , D. T. ,
 Choi , I. S. , Stroock , A. D. , and Whitesides , G. M.
 (2000) Generation of solution and surface
gradients using microfluidic systems . Lang-
muir 16 , 8311 – 8316 .

 36 . Jeon , N. L. , Baskaran , H. , Dertinger , S. K. ,
 Whitesides , G. M. , Van de Water , L. , and
 Toner , M. (2002) Neutrophil chemotaxis in
linear and complex gradients of interleukin-8
formed in a microfabricated device . Nat. Bio-
technol. 20 , 826 – 830 .

 37 . Dertinger , S. K. , Jiang , X. , Li , Z. , Murthy ,
 V. N. , and Whitesides , G. M. (2002) Gradi-
ents of substrate-bound laminin orient axonal
specification of neurons . Proc. Natl. Acad. Sci.
USA 99 , 12542 – 12547 .

 38. Wang , C. J. , Li , X. , Lin , B. , Shim , S. , Ming ,
 G.-L. , and Levchenko , A . (2008) A micro-
fluidics-based turning assay reveals complex
growth cone responses to integrated gradients
of substrate-bound ECM molecules and dif-
fusible guidance cues . Lab Chip 8 , 227 – 237 .

 39 . Abhyankar , V. V. , Lokuta , M. A. , Huttenlocher ,
 A. , and Beebe , D. J. (2006) Characterization of
a membrane-based gradient generator for use in
cell-signaling studies . Lab Chip 6 , 389 – 393 .

 40 . Taylor , A. M. , Blurton-Jones , M. , Rhee , S. W. ,
 Cribbs , D. H. , Cotman , C. W. , and Jeon , N. L.
 (2005) A microfluidic culture platform for
CNS axonal injury, regeneration and trans-
port . Nat. Methods 2 , 599 – 605 .

 41 . Lucchetta , E. M. , Lee , J. H. , Fu , L. A. , Patel ,
 N. H. , and Ismagilov , R. F. (2005) Dynamics
of Drosophila embryonic patterning network
perturbed in space and time using microfluidics .
 Nature 434 , 1134 – 1138 .

 42 . Sawano , A. , Takayama , S. , Matsuda , M. , and
 Miyawaki , A. (2002) Lateral propagation of
EGF signaling after local stimulation is depend-
ent on receptor density . Dev. Cell 3 , 245 – 257 .

 Microfluidics Technology for Systems Biology Research 219

 43 . Bhalla , U. S. , Ram , P. T. , and Iyengar , R.
 (2002) MAP kinase phosphatase as a locus of
flexibility in a mitogen-activated protein kinase
signaling network . Science 297 , 1018 – 1023 .

 44. Krishnan , J. and Iglesias , P. A . (2004) Uncover-
ing directional sensing: where are we headed?
Syst. Biol. 1 , 54 – 61 .

 45 . King , K. R. , Wang , S. , Jayaraman , A. , Yar-
mush , M. L. , and Toner , M. (2008) Micro-
fluidic flow-encoded switching for parallel
control of dynamic cellular microenviron-
ments . Lab Chip 8 , 107 – 116 .

 46 . Cheong, R., Wang, C. J., and Levchenko,
A. (2008) High-content cell screening in a
microfluidic device. Mol Cell Proteomics, in
press.

 47 . Kaneda , A. , Wang , C. J. , Cheong , R. , Timp , W. ,
 Onyango , P. , Wen , B. , Iacobuzio-Donahue ,
 C. A. , Ohlsson , R. , Andraos , R. , Pearson , M. A. ,
Sharov , A. A. , Longo , D. L. , Ko , M. S. ,
 Levchenko , A. , and Feinberg , A. P. (2007)
 Enhanced sensitivity to IGF-II signaling links
loss of imprinting of IGF2 to increased cell pro-
liferation and tumor risk . Proc. Natl. Acad. Sci.
USA 104 , 20926 – 20931 .

 48 . Cho , H. , Jönsson. H . , Campbell , K. , Melke , P. ,
 Williams , J. W. , Jedynak , B. , Stevens , A. M. ,
 Groisman , A. , and Levchenko , A . (2007) Self-
organization in high-density bacterial colonies:
efficient crowd control . PLoS Biol . 5 , e302 .

 49 . Groisman , A. , Lobo , C. , Cho , H. ,
Campbell , J. K. , Dufour , Y. S. , Stevens , A. M. ,
and Levchenko , A. (2005) A microfluidic
chemostat for experiments with bacterial and
yeast cells . Nat. Methods 2 , 685 – 689 .

 50 . Higgins , J. M. , Eddington , D. T. , Bhatia , S. N. ,
and Mahadevan , L. (2007) Sickle cell vasooc-
clusion and rescue in a microfluidic device . Proc.
Natl. Acad. Sci. USA 104 , 20496 – 20500 .

 51 . Runyon , M. K. , Johnson-Kerner , B. L. , and
 Ismagilov , R. F. (2004) Minimal functional
model of hemostasis in a biomimetic micro-
fluidic system . Angew. Chem. Int. Ed. Engl.
 43 , 1531 – 1536 .

 52. Loscalzo , J. , Kohane , I. , and Barabasi , A.-L .
 (2007) Human disease classification in the
postgenomic era: a complex systems approach
to human pathobiology . Mol. Syst. Biol . 3 , 124 .

 53 . Ottesen , E. A. , Hong , J. W. , Quake , S. R. , and
 Leadbetter , J. R. (2006) Microfluidic digital PCR
enables multigene analysis of individual environ-
mental bacteria . Science 314 , 1464 – 1467 .

 54 . Warren , L. , Bryder , D. , Weissman , I. L. , and
 Quake , S. R. (2006) Transcription factor pro-
filing in individual hematopoietic progenitors
by digital RT-PCR . Proc. Natl. Acad. Sci. USA
 103 , 17807 – 17812 .

 55 . Vogelstein , B. and Kinzler , K. W. (1999)
 Digital PCR . Proc. Natl. Acad. Sci. USA 96 ,
 9236 – 9241 .

 56 . Maerkl , S. J. and Quake , S. R. (2007) A sys-
tems approach to measuring the binding energy
landscapes of transcription factors . Science 315 ,
 233 – 237 .

 57 . Fu , A. Y. , Chou , H.-P. , Spence , C. , Arnold , F. H. ,
and Quake , S. R . (2002) An integrated microfab-
ricated cell sorter . Anal. Chem . 74 , 2451 – 2457 .

 58 . Takahashi , K. , Hattori , A. , Suzuki , I. , Ichiki , T. ,
and Yasuda , K. (2004) Non-destructive on-chip
cell sorting system with real-time microscopic
image processing . J. Nanobiotechnol. 2 , 5 .

 59 . Wang , M. M. , Tu , E. , Raymond , D. E. ,
 Yang , J. M. , Zhang , H. , Hagen , N. , Dees , B. ,
 Mercer , E. M. , Forster , A. H. , Kariv , I. ,
 Marchand , P. J. , and Butler , W. F. (2005)
 Microfluidic sorting of mammalian cells by
optical force switching . Nat. Biotechnol. 23 ,
 83 – 87 .

 60 . Marcy , Y. , Ishoey , T. , Lasken , R. S. ,
Stockwell , T. B. , Walenz , B. P. , Halpern , A. L. ,
 Beeson , K. Y. , Goldberg , S. M. , and Quake , S. R.
 (2007) Nanoliter reactors improve multiple dis-
placement amplification of genomes from single
cells . PLoS Genet. 3 , 1702 – 1708 .

 61 . Hong , J. W. , Studer , V. , Hang , G. , Anderson ,
 W. F. , and Quake , S. R. (2004) A nanoliter-
scale nucleic acid processor with parallel archi-
tecture . Nat. Biotechnol. 22 , 435 – 439 .

 62 . Marcus , J. S. , Anderson , W. F. , and Quake , S. R.
 (2006) Microfluidic single-cell mRNA isolation
and analysis . Anal. Chem. 78 , 3084 – 3089 .

 63 . Burg , T. P. , Godin , M. , Knudsen , S. M. , Shen , W. ,
Carlson , G. , Foster , J. S. , Babcock , K. , and
 Manalis , S. R. (2007) Weighing of biomol-
ecules, single cells and single nanoparticles in
fluid . Nature 446 , 1066 – 1069 .

Chapter 8

 Systems Approach to Therapeutics Design

 Bert J. Lao and Daniel T. Kamei

 Summary

 A general methodology is described for improving the therapeutic properties of protein drugs by engineering
novel intracellular trafficking pathways. Procedures for cellular trafficking experiments and mathematical
modeling of trafficking pathways are presented. Previous work on the engineering of the transferrin traffick-
ing pathway will be used to illustrate how each step of the methodology can be applied.

 Key words : Drug design , Protein drugs , Trafficking , Mathematical model , Transferrin .

 Drug design has traditionally emphasized improving drug/receptor
binding at the cell surface. Following receptor binding, however,
many protein drugs are endocytosed into a cell and trafficked to
various cellular destinations (1) . An internalized protein drug may
be sorted to a degradative lysosome, for example, or recycled back to
the cell surface where it can continue to function and exert its thera-
peutic effects. Such sorting decisions can have a significant impact
on drug half-life and bioactivity (2) .

 A focus on trafficking may be a promising approach for advanc-
ing drug design, since the trafficking pathways of protein drugs can
limit their therapeutic function. This is because intracellular traf-
ficking has evolved to suit the functions of physiological proteins
naturally present in the body, not protein drugs. By modifying the
molecular properties of a protein drug, however, the trafficking
pathway of the drug can be manipulated in a rational manner so as
to better suit its therapeutic function.

 1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_8

221

222 Lao and Kamei

 This chapter describes a broad methodology for modifying
intracellular trafficking pathways to increase the potency of pro-
tein drugs. The methodology is organized into four steps: (1)
perform a systems-level analysis of protein drug trafficking to
establish a trafficking design goal, (2) apply a mathematical model
of protein drug trafficking to identify molecular design criteria,
(3) engineer the protein drug according to the most promising
molecular design criteria identified from the mathematical model,
and (4) experimentally validate the new trafficking pathway and
improved protein drug properties.

 In previous work, we have demonstrated that creating a new
intracellular trafficking pathway for transferrin (Tf) increases its effi-
cacy as a drug carrier (3) . This work will be used as a case study to
demonstrate how each step of the methodology can be applied.

 1. Transferrin (Sigma-Aldrich, St. Louis, MO).
 2. HeLa cells (American Type Culture Collection, Manassas, VA).
 3. Na 125 I (MP Biomedicals, Irvine, CA).
 4. IODO-BEADS (Pierce Biotechnology, Rockford, IL).
 5. Sephadex G-10 column (Sigma-Aldrich, St. Louis, MO).
 6. 35-mm Dishes (Becton Dickinson and Company, Franklin

Lakes, NJ).
 7. MEM supplemented with 2.2 g/L sodium bicarbonate

(Invitrogen, Carlsbad, CA).
 8. Fetal bovine serum (Hyclone, Logan, UT).
 9. Sodium pyruvate (Invitrogen, Carlsbad, CA).
 10. Penicillin (Invitrogen, Carlsbad, CA).
 11. Streptomycin (Invitrogen, Carlsbad, CA).
 12. Cell incubator (VWR, West Chester, PA).
 13. WHIPS: 20 mM HEPES, pH 7.4 containing 1mg/mL poly-

vinylpyrrolidone (PVP), 130 mM NaCl, 5 mM KCl, 0.5 mM
MgCl 2 , 1 mM CaCl 2 (all components from Sigma-Aldrich,
St. Louis, MO).

 14. Acid strip solution: 50 mM glycine–HCl, pH 3.0 containing
100 mM NaCl, 1 mg/mL PVP, 2 M urea (all components
from Sigma-Aldrich, St. Louis, MO).

 15. Mild acid strip solution: 50 mM glycine–HCl, pH 3.0 containing
100 mM NaCl, 1 mg/mL PVP (all components from Sigma-
Aldrich, St. Louis, MO).

 2. Materials

 Systems Approach to Therapeutics Design 223

 16. Z2 Coulter counter (Beckman Coulter, Fullerton, CA).
 17. Packard Cobra Auto-Gamma counter (Packard Instrument

Co., Downers Grove, IL).
 18. NaOH (Sigma-Aldrich, St. Louis, MO).
 19. Incubation medium: MEM supplemented with 20 mM

HEPES, pH 7.4 containing 1% sodium pyruvate, 100 units/
mL penicillin, 100 μ g/mL streptomycin (all components
from Sigma-Aldrich, St. Louis, MO).

 In the first step of the methodology, a systems-level analysis is
performed to establish a goal for how the trafficking of a pro-
tein drug can be modified to improve its therapeutic properties.
Formulation of this trafficking goal can be aided by identifying
features of the trafficking pathway that influence its therapeutic
function. Depending on the state of knowledge regarding the
trafficking of the protein drug, it may also be useful to conduct
cellular trafficking experiments to obtain further information.

 Key considerations for the selection of a protein drug are the extent
to which the drug undergoes intracellular trafficking and the degree
to which this trafficking affects its therapeutic function. For example,
some cytokines possess a significant trafficking component in that
they can be internalized by a cell via receptor-mediated endocytosis
following receptor binding, and then sorted to either a degradative
lysosome or recycled to the cell surface (4) . Lysosomal degradation
can have a substantial impact on protein half-life. Therefore, adjust-
ing the balance of the endosomal sorting decision represents one
method for modulating cytokine half-life. In fact, the trafficking
of granulocyte colony-stimulating factor (GCSF) has previously
been engineered to promote cellular recycling over lysosomal
degradation, leading to an extension of GCSF half-life (2) .

 We selected the serum iron transport protein Tf for trafficking
modification, since the trafficking that Tf undergoes when it
binds the Tf receptor (TfR) is integral to its therapeutic function.
Tf has been studied extensively as a drug carrier because TfR is
overexpressed in cancer cells, allowing the possibility of specific
targeting of therapeutics to tumors and minimization of expo-
sure of noncancerous cells to the therapeutic (5) . Tf undergoes
receptor-mediated endocytosis upon binding to TfR, and is then
trafficked to an endosomal compartment. The acidic pH of the
endosome promotes iron release from Tf, and iron-free Tf is then
recycled back to the cell surface (6) . Notably, iron-free Tf has

 3. Methods

 3.1. Systems-Level
Analysis of Protein
Drug Trafficking

 3.1.1. Selection of Protein
Drug for Trafficking
Modification

224 Lao and Kamei

little to no affinity for TfR at bloodstream pH, and must rebind
iron in order to reenter the TfR trafficking pathway. This traffick-
ing pathway can be exploited for drug delivery by conjugating
therapeutics to Tf, which allows the therapeutics to access the
interior of cells that overexpress TfR.

 To obtain information about the trafficking pathway of the pro-
tein drug, cellular trafficking experiments can be performed.
Radiolabeling the protein is an established approach, allowing
one to obtain quantitative rate constants that characterize indi-
vidual steps of the trafficking pathway. This information can be
incorporated into a mathematical model of protein trafficking,
which is discussed further in Subheading 3.2. Later, methods
for performing cellular trafficking experiments to obtain rate
constants for the Tf trafficking pathway (Fig. 1) are presented.

 To determine the association rate constant (k FeTf,TfR) and dissocia-
tion rate constant (k FeTf,TfR,r) for iron-loaded Tf (FeTf) binding to
TfR, two in vitro cell-surface binding studies can be performed.
To isolate the binding events and minimize the trafficking processes,
both of these experiments are conducted with HeLa cells on ice.
 1. Iodinate iron-loaded Tf proteins with Na 125 I using IODO-

BEADS. Purify radiolabeled Tf using a Sephadex G-10 column
with bovine serum albumin present to block nonspecific binding
(see Note 1).

 2. Seed the HeLa cells on 35-mm dishes in MEM supplemented
with 2.2 g/L sodium bicarbonate, 10% FBS, 1% sodium pyruvate,

 3.1.2. Cellular Trafficking
Experiments

3.1.2.1. Measurements of
Association (k FeTf,TfR) and
Dissociation (k FeTf,TfR,r) Rate
Constants

 Fig. 1 . Schematic of the Tf/TfR trafficking pathway .

 Systems Approach to Therapeutics Design 225

100 units/mL penicillin, and 100 μ g/mL streptomycin at a
pH of 7.4.

 3. Incubate cells overnight at 37°C in a humidified atmosphere
with 5% CO 2 to a final density of 4×10 5 cells/cm 2 .

 4. Incubate cells with radiolabeled Tf in serum-free media at
concentrations of 10, 30, 100, 300, and 1,000 ng/mL for a
few hours to allow equilibrium to be obtained.

 5. Take an aliquot of the medium to determine the concentration
of Tf in the bulk media (L eq) at equilibrium.

 6. Aspirate the remainder of the media, and wash the cells with
WHIPS to remove most of the nonspecifically bound Tf. Then,
wash cells with acid strip solution to dissociate Tf from TfR.
This collected sample will correspond to the number of cell-
surface Tf/TfR complexes at equilibrium (C eq) (see Note 2).

 7. The equilibrium dissociation constant (K D), as well as the total
number of cell-surface TfR molecules (R T), can be determined
as follows. Since trafficking is minimized, the total number of
cell-surface TfRs remains constant at its initial value, and we
have the following relation:

T eq eq ,R R C= + (1)

 where R eq is the number of free cell-surface TfRs at equilibrium.
Solving the previous equation for R eq and substituting into the
following definition for K D , we have the following equation:

 eq eq
D

eq

.
L R

K
C

≡ (2)

 Performing some algebraic manipulation yields the follow-
ing equation:

 eq T
eq

eq D D

1
.

C R
C

L K K
= − + (3)

 A Scatchard analysis can then be performed, where a plot
of C eq /L eq vs. C eq will yield a straight line with the slope equal
to −1/ K D and the ordinate intercept equal to R T /K D .

Since the equilibrium dissociation constant is also equal to
the ratio of the FeTf dissociation rate constant (k FeTf,TfR,r) to
that of the FeTf association rate constant (k FeTf,TfR), we have
the following relationship between these two rate constants:

 FeTf ,TfR ,r D FeTf ,TfR .k K k= (4)

 The second binding experiment, which will now be
described, will then be used to provide a second relationship
between these two constants that can be solved for the two
unknowns, k FeTf,TfR and k FeTf,TfR,r .

226 Lao and Kamei

 1. Seed the HeLa cells onto 35-mm dishes and incubate them
with radiolabeled Tf in serum-free media at the concentration
equal to the K D found earlier.

 2. At 0, 3, 6, 9, 12, and 15 min, obtain an aliquot of the bulk
media to determine the concentration of Tf in the bulk media
(L) for a given time point.

 3. Aspirate the media and perform WHIPS washes and acid strips
to determine the number of cell-surface Tf/TfR complexes
(C) for the same time point.

 4. Since this experiment is not at equilibrium and there is only
binding occurring, we have the following relationship that
applies based on mass-action kinetics:

FeTf ,TfR FeTf ,TfR ,r

d
.

d
C

k LR k C
t

= − (5)

 Combining Eqs. 1 , 4 , and 5 yields the following equation:

 ()FeTf ,TfR T FeTf ,TfR D

d
,

d
C

k L R C k K C
t

= − − (6)

 where R T and K D were determined from the first experiment.
 Equation 6 can be used to fit k FeTf,TfR to the experimental data,
and the k FeTf,TfR value can then be substituted into Eq. 4 to
yield the k FeTf,TfR,r value. These association and dissociation rate
constants correspond to those at 0°C, and not at 37°C, since
the cells were placed on ice to minimize trafficking.

 In both of these experiments, the number of cells on each
dish is determined by using control dishes that do not contain
radiolabeled Tf and counting the number of cells on these
dishes with a Coulter counter (see Note 3).

 Unlike the two binding experiments described in Subheading
 3.1.2.1 , this experiment is performed with the cells incubated at
37°C to allow internalization to occur.
 1. Seed the HeLa cells onto 35-mm dishes and incubate them

with radiolabeled Tf in serum-free media at the concentra-
tion equal to the K D found from the experiment described in
 Subheading 3.1.2.1.

 2. At short time periods (e.g., 0, 2, 4, 6, and 8 min), obtain the
number of cell-surface Tf/TfR complexes (C) by performing
the acid strip sampling described earlier (see Note 4).

 3. At these same time points, obtain values for the amount of inter-
nalized Tf (C i) by solubilizing the cells with 1M NaOH and
placing the resulting solution in a tube to be placed in a gamma
counter to quantify the total amount of Tf inside the cells.

 4. The species balance on the number of internalized complexes per
cell at any given time (C i) is given by the following equation:

 3.1.2.2. Measurement
of Internalization Rate
Constant (k int)

 Systems Approach to Therapeutics Design 227

 i
int

d
,

d
C

k C
t

= (7)

 where k int is the internalization rate constant. Integrating this
ordinary differential equation (ODE) yields the following
equation:

i int 0

d .
t

C k C t= ∫ (8)

 Since C i and C can be measured at each time point, C i can be
plotted vs. the integral of C to yield a line that has k int as the
slope.

 1. Seed the HeLa cells onto 35-mm dishes at 37°C and incubate
them with radiolabeled Tf in serum-free media at the concen-
tration equal to the K D found from the experiment described
in Subheading 3.1.2.1.

 2. Allow the trafficking processes to reach steady state by sam-
pling C and C i at 30-min intervals over a period of 3 h to
determine when these quantities begin to plateau. Typically,
trafficking processes associated with receptor-mediated endo-
cytosis will attain steady state in a couple of hours.

 3. Following achievement of steady state, wash the cells with ice-
cold WHIPS and mild acid strip solution.

 4. Add serum-free media containing an excess of Tf to prevent
recycled Tf from rebinding to TfR. Incubate cells at 37°C,
and obtain aliquots of the bulk solutions at different time
points (0, 3, 6, 9, 12, and 15 min). Each aliquot will be passed
through a filter, where the radioactivity associated with the
retentate (i.e., stuck on the filter) will correspond to the radio-
activity of the recycled Tf in the bulk solution (see Note 5).

 5. For each time point, perform WHIPS and acid strip washes
followed by 1M NaOH solubilization to determine C i .

 6. As in the case of the internalization rate constant, the recycling
(k rec) rate constant can be found by generating plots based on
the following integral:

 = ∫rec rec c i0
d ,

t
N k N C t (9)

 where N c is the number of cells on a dish, and N rec is the total
number of recycled Tf molecules.

 When formulating the trafficking design goal, it is helpful to iden-
tify features of the protein drug trafficking pathway that may affect
its therapeutic function. For example, degradative lysosomes are a
common destination of intracellular protein trafficking pathways,
and this may reduce the half-life of protein drugs (1) . Thus,
routing protein drugs out of the lysosomal pathway to extend

 3.1.2.3. Measurement
of Recycling Rate
Constant (k rec)

3.1.3. Trafficking Design
Goal

228 Lao and Kamei

protein half-life has been a trafficking design goal for previous
proteins where trafficking modification was pursued (2, 7) .

 For the Tf system, cellular trafficking experiments indicated
that Tf is trafficked rapidly through a cell (8, 9) . The rapid traf-
ficking of Tf aids the physiological function of Tf because it allows
iron to be delivered efficiently. However, the rapid trafficking also
hinders the efficacy of Tf as a drug carrier, since it limits the time
frame in which the drug can be delivered. For example, it has
been estimated that for Tf conjugates of the gelonin cytotoxin
that for every ten million conjugates that are recycled, only one
molecule of gelonin is actually delivered into the cell (9) .

 Therefore, our trafficking design goal for the Tf system was to
extend the time frame in which drug delivery could be achieved
by establishing a new Tf trafficking pathway, such that the time
Tf spent associated with a cell was increased. This may raise the
probability that Tf achieves its intended purpose by delivering the
drug to a cell, increasing its efficacy as a drug carrier.

 In the second step of the methodology, a mathematical model
of protein drug trafficking is used to help determine how the
trafficking design goal can be achieved. Mathematical models of
cellular trafficking have previously been used to aid analysis and
interpretation of experimental trafficking data (8, 9, 10, 11) . In
establishing these models, the principles of mass action kinetics are
applied to derive a system of ODEs that account for the binding,
internalization, recycling, and degradation steps that make up the
different elements of a trafficking pathway. Quantitative informa-
tion obtained from cellular trafficking experiments, such as those
described in Subheading 3.1.2 , can be used to parameterize the
individual steps of the trafficking pathway within the model.

 A sensitivity analysis of the model may assist in formulating
molecular design criteria for the protein drug. These design crite-
ria specify how the drug can be engineered to alter its trafficking
pathway so as to achieve the trafficking design goal.

 Each ODE in the model is written as a species balance that
describes the change in number over time of the protein drug in a
given state within the trafficking pathway. For example, the pro-
tein drug in the extracellular medium that is bound to a receptor
at the cell surface and internalized within the cell would consti-
tute three different states of the protein drug, so three separate
ODEs would be written accounting for those states. Each of the
terms in an ODE represents a specific step within the trafficking
pathway that affects the change in number of the species over
time (see Note 6). Individual trafficking steps in the model are
characterized by constants, which describe the rate at which a
trafficking step occurs.

3.2. Mathematical
Model of Protein Drug
Trafficking

3.2.1. Formulation of ODEs

 Systems Approach to Therapeutics Design 229

 For the Tf model, species balances were written for the fol-
lowing: (1) extracellular FeTf in the bulk media, (2) extracellular
iron-free Tf in the bulk media, (3) cell-surface TfR, (4) cell-sur-
face complexes of FeTf and TfR, (5) cell-surface complexes of
Tf and TfR, (6) internalized TfR, (7) internalized complexes of
FeTf and TfR, and (8) internalized complexes of Tf and TfR.
Rate constants were obtained from cellular trafficking studies
in which radiolabeled Tf ligand was used to obtain quantitative
information on individual steps of the trafficking pathway (Table 1).
The equations of the model are presented here:

Species balance for bulk extracellular FeTf

 () FeTf ,TfR bulk surfbulk cell

FeTf ,TfR ,r surf bulk A

FeTf Tfd FeTf
.

FeTf _ Tfd

k R n
k Rt V N

−⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (10)

 Species balance for bulk extracellular Tf

 () Tf ,TfR bulk surfbulk cell

Tf ,TfR ,r surf bulk A

Tf Tfd Tf
.

Tf _ Tfd

k R n
k Rt V N

−⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 (11)

 Table 1
 Model parameters

 Parameter Description Value Ref.

 k FeTf,TfR Association rate of FeTf for TfR 4×10 7 M–1min–1 (9)

 k FeTf,TfR,r Dissociation rate of FeTf from TfR 1.3 min–1 (9)

 k Tf,TfR Association rate of iron-free Tf for TfR 0 M–1min–1 (12)

 k Tf,TfR,r Dissociation rate of iron-free Tf from TfR 2.6 min–1 (8)

 k int Internalization rate 0.38 min–1 (9)

 k rec Recycling rate 0.15 min–1 (10)

 k Fe,rel Tf iron release rate 100 min–1 Est. a

 n cell Cell number 4 × 10 5 cells

 V b Bulk media volume 1 × 10 −3 L

 N A Avogadro’s number 6.02 × 10 23 mol

 a The estimation of the iron release rate value was based on the observation that iron is com-
pletely released from internalized Tf prior to it being recycled to the cell surface .

230 Lao and Kamei

 Species balance for surface TfR

()surf

FeTf ,TfR bulk surf Tf ,TfR bulk

surf FeTf ,TfR ,r surf

Tf ,TfR ,r surf int surf rec int

d Tf
FeTf Tf Tf

d
Tf FeTf _ Tf

Tf _ Tf Tf Tf .

R
k R k

t
R k R

k R k R k R

= − −

+
+ − +

 (12)

 Species balance for surface FeTf/TfR complex

()

= + −
−

+

surf
FeTf ,TfR bulk surf FeTf ,TfR ,r

surf int surf

rec int

d FeTf _ Tf
FeTf Tf

d
FeTf _ Tf FeTf _ Tf

FeTf _ Tf .

R
k R k

t
R k R

k R

 (13)

 Species balance for surface Tf/TfR complex

 ()
= + −

− +

surf
Tf ,TfR bulk surf Tf ,TfR ,r surf

int surf rec int

d Tf _ Tf
Tf Tf Tf _ Tf

d
Tf _ Tf Tf _ Tf .

R
k R k R

t
k R k R

 (14)

 Species balance for internalized TfR

()

= + −int
int surf rec int

d Tf
Tf Tf .

d
R

k R k R
t

 (15)

 Species balance for internalized FeTf/TfR complex

 ()
= + −

−

int
int surf rec

int Fe,rel int

d FeTf _ Tf
FeTf _ Tf FeTf

d
 _ Tf FeTf _ Tf .

R
k R k

t
R k R

 (16)

 Species balance for internalized Tf/TfR complex

()

= + −
+

int
int surf rec

int Fe,rel int

d Tf _ Tf
Tf _ Tf Tf

d
 _ Tf FeTf _ Tf .

R
k R k

t
R k R

 (17)

 Systems of ODEs can be readily solved using several mathemati-
cal software packages, such as MatLab, Maple, and Berkeley
Madonna. Numerical solution of the ODEs allows simulation of
the protein drug trafficking pathway and predictions of how lev-
els of the molecular species change over time.

 Since we were interested in increasing the amount of Tf associ-
ated with a cell, it was helpful to formulate the ODE solutions in a
way that allowed us to focus on FeTf_TfR int and Tf_TfR int . Together,
these two species comprise the amount of intracellular Tf in the model.
Plotting the sum of FeTf_TfR int and Tf_TfR int vs. time allowed the
evolution of internalized Tf to be visualized graphically (Fig. 2).

 A sensitivity analysis can be performed to identify molecular design
criteria by varying the parameters of the model that correspond
to the molecular properties of the protein drug. For example, to

3.2.2. Solving the System
of ODEs

3.2.3. Sensitivity Analysis

 Systems Approach to Therapeutics Design 231

simulate the effects of increasing the binding affinity of a protein
for its receptor, the association rate of the protein for its receptor
within the model can be increased to observe how this changes
the predicted levels of each molecular species. Molecular design
criteria can be identified by observing which changes in protein
molecular parameters lead to alterations of the trafficking pathway
that are consistent with achieving the systems-level design goal.

 Five different parameters were varied by several orders of
magnitude within the Tf/TfR trafficking model to assess their
impact on the level of cell-associated Tf. The five parameters
varied were as follows: (1) k FeTf,TfR , the association rate of FeTf
for TfR, (2) k FeTf,TfR,r , the dissociation rate of FeTf from TfR, (3)
 k Tf,TfR , the association rate of iron-free Tf for TfR, (4) k Tf,TfR,r , the
dissociation rate of iron-free Tf from TfR, and (5) k Fe,rel , the Tf
iron release rate.

 To compare levels of intracellular Tf for different parameter
values, it was useful to quantify intracellular Tf with a single value
by taking the area under the curve (AUC) of internalized Tf vs.
time (Fig. 3). To address the trafficking design goal of increasing
cellular association, we looked for changes in molecular parame-
ters that increased the AUC value of internalized Tf vs. time. The
results of the sensitivity analysis showed that cellular association
of Tf was predicted to increase under the following three condi-
tions: (1) the association rate of iron-free Tf for TfR is increased,
(2) the dissociation rate of iron-free Tf from TfR is decreased,
and (3) the iron release rate of Tf is decreased. These three condi-
tions constitute our molecular design criteria.

 In the third step of the methodology, the protein drug is engi-
neered according to molecular design criteria ascertained from
the mathematical model. It may be prudent to balance the selec-
tion of promising design criteria against considerations of cost
and feasibility.

3.3. Molecular
Engineering of
Protein Drug

 Fig. 2. Plot of internalized Tf vs. time, as predicted by solution of the mathematical model, for various values of the iron
release rate, k Fe,rel .

232 Lao and Kamei

 For example, when examining the three molecular design
criteria for Tf, increasing the affinity of Tf for TfR was predicted
to result in substantially greater increases in cellular association
than decreasing the iron release rate. However, increasing the
affinity of a protein for its receptor is generally considered to be
challenging. If such a criterion is pursued, one may be aided by the

 Fig. 3. Sensitivity analysis results for (A) k FeTf,TfR , (B) k FeTf,TfR,r , (C) k Tf,TfR , (D) k TfTfR,r , and (E) k Fe,rel . Cellular association, as indi-
cated by the AUC of internalized Tf vs. time, is plotted on the y -axis, and the value of the model parameter is plotted on
the x -axis. The default value of the model parameter is shown by the vertical dashed line. Note the change in scale for
(C) and (D).

 Systems Approach to Therapeutics Design 233

use of a high-resolution crystal structure of the protein/receptor
complex. These complexes can be used to locate protein residues
near the binding interface, which could potentially be mutated
to increase affinity, without disrupting key residues essential for
binding. This strategy has previously been used to identify three
residues on the Fc region of IgG close to its neonatal Fc receptor
(FcRn) binding region (7) . These residues were then randomly
mutated to identify mutations, which increased the affinity of Fc
for FcRn, leading to an extension of Fc half-life.

 Application of modeling techniques to crystal structures
has also been used in some instances to reduce the burden of
experimental screening techniques by computationally identify-
ing mutations that increase protein binding affinity for a receptor.
This approach was used to successfully engineer a tenfold increase
in the affinity of cetuximab, a therapeutic antibody used for treat-
ment of colorectal cancer, for its epidermal growth factor target
 (13) . In general, however, the requirement of a high-resolution
crystal structure of the protein/receptor complex makes the rou-
tine use of such modeling techniques prohibitive.

 Since a high-resolution crystal structure of the Tf/TfR com-
plex is not yet available, we decided instead to pursue lowering the
Tf iron release rate as our molecular design criterion. An estab-
lished methodology for lowering the Tf iron release rate by replac-
ing its synergistic carbonate anion with oxalate was used (14) .

 Unlike the more general trafficking and modeling procedures
described earlier, the oxalate replacement procedure is specific to
the Tf case study. Since this method is not applicable to other
protein systems, it is not presented here.

 Finally, in the fourth step of the methodology, in vitro cellular traf-
ficking experiments with radiolabeled protein ligands will be per-
formed to validate the new trafficking pathway. In addition, assays
are conducted to assess whether the new trafficking pathway trans-
lates into the desired improvement in therapeutic properties.

 To see if inhibiting the iron release of Tf increased its cellular
association, the amount of internalized Tf within HeLa cells was
monitored over a 2-h period by performing cellular trafficking
experiments with radiolabeled Tf.
 1. After aspirating seeding medium from the HeLa cells, add

incubation medium containing varying concentrations of
radiolabeled iron-loaded Tf to each dish.

 2. After 5, 15, 30, 60, 90, or 120 min, aspirate the incubation
medium and wash the dishes five times with ice-cold WHIPS
to remove nonspecifically bound Tf.

 3. Add ice-cold acid strip solution to each dish. Place dishes on
ice for 8 min and then wash again with an additional mL of
the acid strip solution.

3.4. Experimental
Validation of Modified
Trafficking Pathway
and Improved Drug
Properties

3.4.1. Experimental Valida-
tion of Modified Trafficking
Pathway

234 Lao and Kamei

 4. Following the removal of the specifically bound Tf on the cell
surface by the acid strip washes, add NaOH (1 mL of 1 M)
to the dishes for 30 min to solubilize the cells. After addition
of another mL of NaOH, collect the two basic washes and
measure the radioactivity with a gamma counter to determine
the amount of internalized Tf.
 Oxalate Tf was found to associate with HeLa cells an average

of 51% greater than native Tf at ligand concentrations of 0.1 and
1 nM (3) . This suggests that inhibiting Tf iron release alters the
Tf trafficking pathway so as to increase its cellular association.

 To address whether the increased cellular association of Tf
improved its efficacy as a drug carrier, Tf was conjugated to diph-
theria toxin (DT) and administered to HeLa cells in varying con-
centrations. Both native Tf and oxalate Tf conjugates were tested.
Cell survivability was assessed using the MTT assay. Conjugates
of oxalate Tf were found to be significantly more cytotoxic than
conjugates of native Tf over a 48-h period. The IC 50 value, the
concentration of conjugate at which 50% inhibition of cellular
growth was achieved, was found to be 0.06 nM for the oxalate Tf
conjugate, compared with 0.22 nM for the native Tf conjugate
 (3) . This suggests that increasing the cellular association of Tf
raises the likelihood of DT being delivered to HeLa cells in our
in vitro cytotoxicity assay.

 Like the oxalate replacement procedure, the cytotoxicity
assay protocol is specific to the Tf case study, and is not presented
here.

 1. Since iodine-125 covalently binds tyrosines in this procedure, the
presence of tyrosines at the receptor binding interface can have
some effect on the binding affinity. If possible, visual inspection
of a crystal structure can aid in identifying tyrosines at the recep-
tor binding interface. If there are tyrosines, make sure that the
mutants also preserve those residues to allow comparison.

 2. Since the WHIPS washes may leave some nonspecifically
bound ligand on the cell surface, another binding experi-
ment generally needs to be performed in the presence of
excess ligand to determine the number of remaining nonspe-
cifically bound ligand molecules. Under these conditions, the
unlabeled ligand will saturate the ligand receptors, and the
amount of bound labeled ligand will correspond to the level
of nonspecific ligand binding.

3.4.2. Assaying Improved
Drug Properties

4. Notes

 Systems Approach to Therapeutics Design 235

 3. A hemacytometer may also be used. Once you choose the
method (Coulter counter or hemacytometer), the key point is
to be consistent for all of the experiments.

 4. Tf recycles back to the cell surface in about 10 min. However,
this experiment can be performed for a longer period of time
as long as the ligand has not recycled back to the cell surface
or has been degraded and exocytosed.

 5. Other approaches for determining recycled vs. degraded lig-
and are the phosphotungstic acid assay and the trichloroacetic
acid assay. In these assays, the radioactivity associated with the
precipitate represents the recycled ligand.

 6. Occasionally, it may be helpful to add ODE terms that repre-
sent trafficking steps that do not occur in the original traffick-
ing pathway, but allow the protein drug to be simulated with
modified properties. For example, to enable the simulation of
iron-free Tf with an increased association rate for TfR, a term
describing the association of Tf for TfR was added to the spe-
cies balance of the Tf/TfR surface complex. This step does
not occur in the original Tf trafficking pathway, since iron-free
Tf does not naturally bind TfR.

 This work was supported by the Sidney Kimmel Scholar Award.

Acknowledgments

 References

 1. Lauffenburger , D. A. and Linderman , J. J.
 (1993) Receptors . Oxford University Press ,
 New York, NY .

 2 . Sarkar , C. A. , Lowenhaupt , K. , Horan , T. ,
 Boone , T. C. , Tidor , B. , and Lauffenburger ,
 D. A. (2002) Rational cytokine design for
increased lifetime and enhanced potency
using pH-activated “histidine switching” .
 Nat. Biotechnol. 20 , 908 – 913 .

 3 . Lao , B. J. , Tsai , W. L. , Mashayekhi , F. ,
 Pham , E. A. , Mason , A. B. , and Kamei ,
 D. T. (2007) Inhibition of transferrin iron
release increases in vitro drug carrier effi-
cacy . J. Control. Release 117 , 403 – 412 .

 4 . Rao , B. M. , Lauffenburger , D. A. , and Wit-
trup , K. D. (2005) Integrating cell-level
kinetic modeling into the design of engi-
neered protein therapeutics . Nat. Biotech-
nol. 23 , 191 – 194 .

 5 . Weaver , M. and Laske , D. W. (2003)
 Transferrin receptor ligand-targeted toxin

conjugate (Tf-CRM107) for therapy of
malignant gliomas . J. Neurooncol. 65 , 3 – 13 .

 6 . Hentze , M. W. , Muckenthaler , M. U. ,
and Andrews , N. C. (2004) Balancing
acts: molecular control of mammalian iron
metabolism . Cell 117 , 285 – 297 .

 7 . Hinton , P. R. , Johlfs , M. G. , Xiong , J. M. ,
 Hanestad , K. , Ong , K. C. , Bullock , C. , Kel-
ler , S. , Tang , M. T. , Tso , J. Y. , Vasquez ,
 M. , and Tsurushita , N. (2004) Engineered
human IgG antibodies with longer serum
half-lives in primates . J. Biol. Chem . 279 ,
 6213 – 6216 .

 8 . Ciechanover , A. , Schwartz , A. L. , Dautry-
Varsat , A. , and Lodish , H. F. (1983) Kinetics
of internalization and recycling of transfer-
rin and the transferrin receptor in a human
hepatoma cell line. Effect of lysosomotropic
agents . J. Biol. Chem . 258 , 9681 – 9689 .

 9 . Yazdi , P. T. and Murphy , R. M. (1994)
 Quantitative analysis of protein synthesis

236 Lao and Kamei

inhibition by transferrin-toxin conjugates .
 Cancer Res . 54 , 6387 – 6394 .

 10 . French , A. R. and Lauffenburger , D. A.
 (1997) Controlling receptor/ligand traf-
ficking: effects of cellular and molecular
properties on endosomal sorting . Ann.
Biomed. Eng . 25 , 690 – 707 .

 11 . Kamei , D. T. , Lao , B. J. , Ricci , M. S. , Desh-
pande , R. , Xu , H. , Tidor , B. , and Lauffen-
burger , D. A. (2005) Quantitative methods
for developing Fc mutants with extended
half-lives . Biotechnol. Bioeng . 92 , 748 – 760 .

 12 . Lebron , J. A. , Bennett , M. J. , Vaughn , D. E. ,
 Chirino , A. J. , Snow , P. M. , Mintier , G. A. ,

 Feder , J. N. , and Bjorkman , P. J. (1998)
 Crystal structure of the hemochromato-
sis protein HFE and characterization of its
interaction with transferrin receptor . Cell
 93 , 111 – 123 .

 13 . Lippow , S. M. , Wittrup , K. D. , and Tidor , B.
 (2007) Computational design of antibody-
affinity improvement beyond in vivo matu-
ration . Nat. Biotechnol . 25 , 1171 – 1176 .

 14 . Halbrooks , P. J. , Mason , A. B. , Adams , T. E. ,
 Briggs , S. K. , and Everse , S. J. (2004) The
oxalate effect on release of iron from human
serum transferrin explained . J. Mol. Biol .
 339 , 217 – 226 .

Chapter 9

 Rapid Creation, Monte Carlo Simulation, and Visualization
of Realistic 3D Cell Models

 Jacob Czech , Markus Dittrich , and Joel R. Stiles

 Summary

 Spatially realistic diffusion-reaction simulations supplement traditional experiments and provide testable
hypotheses for complex physiological systems. To date, however, the creation of realistic 3D cell models
has been difficult and time-consuming, typically involving hand reconstruction from electron micro-
scopic images. Here, we present a complementary approach that is much simpler and faster, because the
cell architecture (geometry) is created directly in silico using 3D modeling software like that used for
commercial film animations. We show how a freely available open source program (Blender) can be used
to create the model geometry, which then can be read by our Monte Carlo simulation and visualization
software (MCell and DReAMM, respectively). This new workflow allows rapid prototyping and develop-
ment of realistic computational models, and thus should dramatically accelerate their use by a wide variety
of computational and experimental investigators. Using two self-contained examples based on synaptic
transmission, we illustrate the creation of 3D cellular geometry with Blender, addition of molecules,
reactions, and other run-time conditions using MCell’s Model Description Language (MDL), and sub-
sequent MCell simulations and DReAMM visualizations. In the first example, we simulate calcium influx
through voltage-gated channels localized on a presynaptic bouton, with subsequent intracellular calcium
diffusion and binding to sites on synaptic vesicles. In the second example, we simulate neurotransmitter
release from synaptic vesicles as they fuse with the presynaptic membrane, subsequent transmitter diffu-
sion into the synaptic cleft, and binding to postsynaptic receptors on a dendritic spine.

 Key words: Blender , MCell , DReAMM , MDL , Cell modeling , Cell architecture , Cell geometry ,
 Stochastic , Diffusion-reaction .

 A quantitative understanding of cell and tissue function requires
detailed models through which hypotheses may be generated and
tested. As models become more complex, computer simulations
provide tests of important questions that are beyond simple intuition

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_9

237

238 Czech, Dittrich, and Stiles

and are inaccessible to current experimental methods. In the best
case, a tight coupling between models, simulations, and experi-
ments can lead to breakthroughs in understanding.

 Model development and simulation involve a number of dis-
tinct steps carried out with different software tools, similar to the
different steps, methods, and equipment used in an experimental
protocol. Realistic physiological models are particularly challeng-
ing because they encompass complex biochemistry taking place
in small complex 3D spaces, and the different software tools
required at each step can present steep learning curves. Neverthe-
less, it is increasingly necessary to develop and use such models
to understand the physiology of disease, drug effects, and pheno-
typic changes produced by genetic manipulations.

 Creation of a spatially realistic model begins with the definition
of its cellular architecture, or geometry, followed by the addition
of biochemical species and interactions within the geometry. The
methods chosen for these initial steps depend in large part on the
simulation approach to follow. For example, while some models
may represent an entire cell as a single well-mixed compartment,
we focus on stochastic diffusion and reactions within arbitrar-
ily complex intra- and extracellular spaces. Triangulated surface
meshes are used to represent cell and organelle membranes, and
thus the meshes also define different volumes of intervening solu-
tion. To build a model, one must somehow create the surfaces
and then define how many molecules of what types are present
in different spatial regions. One must also provide the diffusion
coefficient for each molecular species and define the network of
biochemical interactions and associated rate constants. Having
done so, one can investigate such problems as diffusion of neuro-
modulators and neurotransmitters through tortuous extracellular
space in brain (1– 3) , or neurotransmitter release (exocytosis) and
synaptic transmission (4– 11) . Simulations of exocytosis involve
voltage- and/or calcium-triggered release of signaling molecules
from synaptic or endocrine vesicles. The released molecules subse-
quently diffuse through some extracellular space and are detected
by receptor protein molecules on the downstream cell or cells.
Our program MCell (Monte Carlo Cell; refs. 4, 6, 7, 12) was
designed for such simulations, although it now is very general
and can be used for a wide variety of diffusion-reaction models
(e.g., refs. 13, 14) . The companion program DReAMM is used to
visualize and animate the simulation results (9, 12, 15) .

 In this chapter we present a protocol for development of an
MCell model and simulations, providing step-by-step instruc-
tions for an example based on signal transduction at synaptic
boutons. Creation of the initial 3D geometry has been a long-
standing bottleneck for all such projects, especially when synaptic
geometries are extracted (segmented) from electron microscopy
data and subsequently converted into surface meshes for use in

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 239

simulations (6, 9, 10) . Recently, however, we have developed a
complementary and much faster approach based on the use of
Blender (16) , open-source 3D modeling software (see Note 1),
as well as plug-ins that we have developed to link Blender to
MCell and DReAMM. As we illustrate here, arbitrary cell-like
geometry can be designed directly in silico using Blender, and the
resulting meshes can be exported to MCell and DReAMM for
simulation and visualization. This time-saving approach makes
detailed simulations and investigations available to virtually any
laboratory in relatively short order.

 Specifically, we show how to do the following:
 1. Create the model geometry using Blender. In Subheading

 3.1 , a synapse is created on one of several dendritic spines
(Fig. 1), similar to actual dendrite and spine ultrastructure
(Fig. 1 , inset). A synaptic cleft space separates the presynaptic
bouton from the spine head, and the bouton contains two
docked synaptic vesicles (see Fig. 4E). Particular regions of
the vesicle membrane and pre- and postsynaptic membranes
(see Fig. 4F, G) are defined for subsequent addition of calcium

 Fig. 1. Three-dimensional model of a spiny dendrite illustrates some of the structures
to be created and used in simulations in this chapter. The model dendrite was cre-
ated with Blender and visualized with DReAMM. Postsynaptic receptor regions (light
gray) are located at the ends of the spine heads. One of the spine heads forms a
synapse with a presynaptic bouton (upper left). For comparison, the inset shows
a dendrite reconstructed from serial electron micrographs of rat brain. The data for
the reconstruction were obtained as a publicly available VRML file from ref. 17 . The
VRML data were subsequently imported into DReAMM and visualized as illustrated
by the inset image.

240 Czech, Dittrich, and Stiles

binding sites, voltage-gated calcium channels (VGCCs), or
ligand-gated neurotransmitter receptors, respectively, using
MCell’s MDL (Subheadings 3.3 and 3.5). In Subheading
 3.2 , the synaptic vesicles are modified with Blender to include
an expanding fusion pore (see Fig. 4H, I), and the model is
subsequently used for MCell simulations of neurotransmitter
diffusion through the pore (Subheading 3.5).

 2. Use Blender plug-ins to export the model geometry as trian-
gulated surface meshes with region annotations for use with
MCell and DReAMM.

 3. Use MCell’s MDL to specify (Subheadings 3.3 and 3.5) the
following:
 (a) The types of molecules in the model (calcium ions, cal-

cium binding sites on proteins, neurotransmitter mol-
ecules, postsynaptic receptor proteins), their diffusion
constants, and their initial locations.

 (b) The stoichiometry, rates, and directionality of the sto-
chastic reactions that can occur during simulations (con-
formational changes of calcium channels, calcium entry
from open channels, calcium binding to protein sites on
synaptic vesicles, neurotransmitter binding to postsyn-
aptic receptors, channel opening and closing of bound
receptors).

 (c) The reaction data to be saved when the simulations are
run. This includes counts of molecules and reactions
in specific compartments as a function of time, and the
resulting text (ASCII) files can be analyzed or plotted
using common graphing software and/or scripts.

 4. Save MCell visualization data for DReAMM so that the model
can be rendered (displayed) and checked. The importance of
this step cannot be overemphasized, especially for complex
models. For efficiency, the visualization files are written in a
structured binary format that minimizes disk space and maxi-
mizes interactive speed and simplicity of use with DReAMM.

 5. Run complete MCell simulations and visualize the results
with DReAMM. In Subheading 3.3 , we simulate a voltage-
clamped presynaptic bouton in which calcium channels open
stochastically, allowing calcium ions to enter. The ions then
diffuse and bind to sites on the synaptic vesicles, simulating
the presence of calcium-binding proteins (e.g., synaptotag-
min) and some of the events leading to calcium-dependent
neurotransmitter release (exocytosis). In Subheading 3.5 , we
simulate expansion of fusion pores between the vesicles and
presynaptic membrane, with subsequent diffusion of neuro-
transmitter molecules into the synaptic cleft. Within the cleft,

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 241

neurotransmitter binds reversibly to the postsynaptic receptors.
Receptors that reach a double-bound state can undergo a
reversible conformational change to an open channel state
(ligand-dependent channel gating).

 6. Use DReAMM to animate simulation results.
 The projects illustrated in this chapter are completely self-con-
tained and can be used without reference to additional material.
Many modeling features are illustrated, although spatial and bio-
chemical details have been simplified for the sake of space and
readability. Thus, the chapter provides an efficient introduction
to development and use of spatially realistic stochastic cellular
models and simulations, and, where necessary, provides links and
citations to further discussion and examples.

 Building and simulating the models described in this chapter
requires a computer with the programs Blender, MCell, and
DReAMM installed. Like many open source programs, Blender,
MCell, and DReAMM are available in precompiled binary exe-
cutable form for a limited set of computer architectures and oper-
ating systems. This can dramatically simplify installation for users
who have access to those particular systems and do not have expe-
rience in compiling (“building”), installing, and administering
(large) programs obtained as source code. However, it is not pos-
sible to “prebuild” for all possible systems, and for this and other
reasons it may be necessary or preferable to obtain the source
code and build it “from scratch”. This is generally not a problem
for a UNIX user with experience in code development or system
administration, but it can be challenging for a novice. Part of the
difficulty is simply dealing with a command line interface (typ-
ing commands at a prompt in a window), understanding where
system files are located (in which directories or “folders”), and
understanding how directory and file access is granted or denied
to different users on a multiuser system. This is a very real issue,
especially as more and more experimental biologists are becom-
ing more and more interested in using computational models
and simulations to complement their wet lab work. Although the
basics are straightforward, entire books are dedicated to the use
and care of UNIX systems. In this chapter our focus is on build-
ing and using spatially realistic models. Hence, we assume a basic
knowledge of UNIX and a command line interface, just as an
experimental protocol must assume a basic knowledge of solu-
tions, gels, radiochemicals, etc.

2. Materials

2.1. Preliminary Issues

242 Czech, Dittrich, and Stiles

 The computer to be used can have either a 32- or 64-bit archi-
tecture (single or multiple cores), and should have some form of
a UNIX operating system that includes developer features (C/
C++ compiler, OpenMotif libraries, standard image tool librar-
ies, etc.). A fully configured Linux or similar system should work
without problem. Mac OS X is in fact a form of UNIX, so it also
works well, but it must be installed with the developer libraries
(see Note 2). The difference between a 32- or 64-bit system is
unimportant unless very large MCell simulations are to be run,
in which case a 64-bit system with a very large amount of physi-
cal memory (RAM) may be required. At the upper extreme for
large models, the simplest present solution is to run MCell on a
large shared memory architecture (hundreds of GBytes), and if
no such local computers are available one can use a shared mem-
ory computer available at the Pittsburgh Supercomputing Center
or other national facility. In practice, however, many models and
simulations (including those for this chapter) can be run quite
easily on present-day desktop computers with typical amounts of
memory (e.g., 2–8 GB).

 Efficient and high-quality visualization is critically important
to spatially realistic modeling, and so the computer should have at
least one high-resolution display (1,600 × 1,200 or higher). We
routinely use two such displays configured as one 3,200 × 1,200
workspace, driven by a professional-level OpenGL graphics card
(e.g., NVidia Quadro 3xxx or 4xxx series at present). Disk stor-
age is generally not a problem in current desktop systems, where
capacities approaching a terabyte or more are common. In prin-
ciple, many projects can also be run on a laptop, although limited
display space can be an inconvenience.

 1. Download and install Blender from http://www.blender.org.
This is the Blender development site, so the most recent ver-
sion will be available. As an alternative, you may download
all the software required for this chapter from https://www.
mcell.psc.edu/download.html, in order to obtain the spe-
cific versions that match those illustrated here. This chapter is
based on Blender version 2.45, and more recent versions may
have changes to hot key (and other) functions. In addition,
different versions of UNIX may assign different functions to
particular keys (such as the Alt key), so there may be some
inevitable differences from what is described in the following
sections.

 2. After installation, make sure that your path environment vari-
able is set so that Blender can be started from any command
line (type “blender” and hit Enter at a command line).

 3. Download the two Blender plug-ins from https://www.mcell.
psc.edu/download.html if you have not already done so. One

2.2. Computer
Hardware and
Operating System

2.3. Download and
Install Blender and
Blender Plug-Ins

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 243

plug-in will be used to generate MCell MDL files (.mdl) from
meshes created with Blender. The other can be used to gener-
ate DX files (.dx) for use with DReAMM (see Note 3). The
DX format is also the default visualization file format output
by MCell for use with DReAMM.

 4. To make the Blender plug-ins functional, create a directory and
copy or move both plug-ins into it. Start Blender and mouse
over the lower edge of the top menu bar (Fig. 2A). Left click
and pull down to uncover several button fields including one
labeled “File Paths”. Click on it and then locate the “Python”
text box (Fig. 2B), which has two buttons next to it. Click
the rightmost button, navigate to the plug-in directory you
just created, and then select it as the default script location.
Then click on the left button to make the scripts available to
Blender. If desired, hide the pull down button fields.

 5. Hit Ctrl-u to save these settings for future use.
 6. Verify that on the Blender menu bar, “File –> Export” now

shows entries for MCell (.mdl) and DReAMM (.dx).

 Fig. 2. Screen capture of Blender’s main window. By default, the Blender interface consists of three areas (A, C, and E).
At the top (A) is the “User Preferences” window, which is hidden initially. It allows the user to adjust Blender’s appear-
ance, performance, and file paths, including the location of the Python plug-ins directory (B). The “3D View” (C) is used
for manipulation and visualization of mesh objects. The “Buttons Window” (E) offers a variety of operations that can be
performed on the mesh objects. At the top left of the “Buttons Window” is a drop-down list (D) providing access to all of
the available window areas.

244 Czech, Dittrich, and Stiles

 1. Download and install MCell from https://www.mcell.psc.
edu/download.html. Throughout this chapter we assume the
use of MCell version 3, or MCell3 (12) .

 2. After installation, make sure that your path environment vari-
able is set so that MCell can be started from any command
line. To do so, enter the name of your executable for MCell
at a command line (e.g., “mcell3”; the actual name may vary
depending on your installation) and verify that MCell starts
running and prints out a number of default start-up messages
in the command window. In the absence of any command line
arguments/options (as in this case), the start-up messages will
include an error message stating that no MDL filename has
been specified. This is normal and can be ignored.

 1. To use DReAMM you must first download and install PSC_
DX, a visual programming, imaging, and data manipulation
environment on which DReAMM is built. PSC_DX is a cus-
tomized and improved version of OpenDX, or Open Data
Explorer, originally developed by IBM. Note that DReAMM
requires PSC_DX and will not run with OpenDX. Both PSC_
DX and DReAMM can be downloaded from https://www.
mcell.psc.edu/download.html. This chapter is based on PSC_
DX and DReAMM version 4.1.

 2. Compile (if necessary) and install PSC_DX.
 3. To verify the installation, enter “dx” at a command line. A

PSC_DX (Data Explorer) start-up menu and DReAMM
splash image should appear.

 4. Quit PSC_DX (click on the Quit button in the start-up
menu).

 5. Install DReAMM. Make sure that the start-up script
(“dreamm”) or a link to the start-up script is accessible in
your path.

 6. To verify the installation, enter “dreamm” at a command line.
The DReAMM start-up menus (Fig. 3), splash image, and
“DReAMM Image Window” should open. Click the Play
button on the “Sequence Control” menu (Fig. 3B) to see a
default time series in the “Image Window”. Change the pop-
up “Keyframe Mode” button (bottom of “Quick Controls”
menu, labeled 8 in Fig. 3A) from “All Interactive” to “Key-
frames” and then replay the time series to see it with animated
camera positions. To quit DReAMM, go to the “DReAMM
Image Window” menu bar and click on “File –> Quit”. When
prompted to save the project, click “No”.

2.4. Download and
Install MCell

2.5. Download and
Install DReAMM

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 245

 Fig. 3. Screen captures of start-up DReAMM controls. (A) The “Quick Controls” window organizes DReAMM’s menus into
task-based subsets that can be customized to suit user preferences. (1) Open menus to import data and select objects.
(2) Open menus to assign rendering properties to objects. (3) Open menus to make an animation using keyframes. (4)
Open a list of all menus that can be opened one-by-one. (5) Close the menus opened by (1). (6) Close the menus opened
by (2). (7) Close all previously opened menus. (8) By default, the “Keyframe Mode” is set to “All Interactive”, meaning
that the camera can move about the 3D space freely. When set to “Keyframes”, however, the camera will be locked into
positions (keyframes) that were set using “Make Animation” menus. (B) “Sequence Control” for animations. Bottom row
of buttons, left to right: Play in reverse, Play forward, Stop, Pause. Top row, left to right: Loop while either Play button is
pressed, Palindrome (play to end or beginning and then reverse direction while either Play button is pressed), Single-step
play mode, Frame number (pressing this button opens a “Frame Control” window that allows particular frames to be
played). Note that Loop, Palindrome, and Single-step may all be used in combination.

 In this section we will create a spine head by removing the upper
portion of a sphere and then closing the opening (Fig. 4A, B).
In later sections, the spine head will be copied and modified to
create additional objects.
 1. Start Blender : Enter “blender” at a command line. You will see two

view ports, a large central “3D View” and a “Buttons Window”

3. Methods

3.1. Create Pre- and
Postsynaptic Geom-
etry with Blender

3.1.1. Create a Spine Head

246 Czech, Dittrich, and Stiles

widget at the bottom (Fig. 2). By default, the start-up 3D view
shows the XY-plane parallel to the screen (see Note 4).

 2. Delete the default Blender start-up object : At start-up, Blender
creates a simple cube object. Delete this by hitting x (see Note
 5), which will bring up a dialog box prompting to “Erase
selected Object(s)”. Click to confirm.

 3. Create a sphere : Hit the spacebar. In the pop-up menu, mouse
over “Add”, then “Mesh”, and click on “UVSphere” (Fig. 4A ,
 Note 6). In the new pop-up menu titled “Add UV Sphere”,
make sure that “Segments” and “Rings” are set to “16”,
“Radius” is set to “0.25” (see Note 7), and then click “OK”.

 Fig. 4. Blender screen captures at key stages during mesh creation. A UV sphere (A , see Note 6) is cut nearly in half
and closed off to create a dendritic spine head (B). The spine head then is duplicated, rotated, and manipulated to create
a presynaptic bouton (C). Portions of the bouton and spine head are extruded to create axonal membrane and the spine
neck (D). Two small spheres are added within the bouton and serve as synaptic vesicles (E). Regions on the presynaptic
bouton and vesicle meshes are defined for voltage-gated calcium channels and calcium binding sites, respectively (F). A
region on the spine head is defined for postsynaptic receptors (G). A fusion pore is extruded from each synaptic vesicle
(H , left) and joined to the presynaptic bouton mesh (H , right). Finally, the fusion pore is scaled to the desired initial (I ,
 left) and final (I , right) diameters.

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 247

 4. Name the sphere : Under the “Link and Materials” tab in the
“Buttons Window”, click in the text box that says “OB:Sphere”
and change it so that it reads “OB:SpineHead”.

 5. Change view : Hit 1 (on the number pad) to switch to the XZ-
view (see Notes 8 and 9).

 6. Deselect the sphere and make it semitransparent : Hit a then z .
 7. Select the vertices to be removed : Hit b , which will bring up a

pair of cross-hairs used for selecting vertices. Clicking and
dragging will create a rectangular area that follows the cross-
hairs. Any vertices within this rectangle will be selected.
Click and drag over all the vertices above (but not including)
the equator of the sphere (the XY -plane in this view).

 8. Remove the faces that make up the top of the sphere : Hit x
and click on “Faces” in the “Erase” menu. The “3D View”
should now show only the remaining lower portion of the
sphere.

 9. Close the opening : As shown in Fig. 4B , the desired result
includes a set of new adjoining faces that will meet at a cen-
tral vertex and close the opening (see Note 10). Begin by
selecting the topmost vertices. Hit b and select the vertices
by clicking and dragging the selector rectangle over the top
edge. Next, hit e to extrude and click “Only Edges” in the
“Extrude” pop-up menu. Hit 0 as the distance to extrude
and hit Enter to confirm. Hit s to scale the extrusion, next
hitting 0 to obtain the desired new radius, and then hit Enter .
In the “Buttons Window” under “Mesh Tools”, hit “Rem
Double”. This will remove all but one of the duplicated ver-
tices and reconnect the triangles. Blender should inform you
that 15 vertices have been removed, and the object should
now be closed by a flat top.

 10. Subdivide the triangles that close the top : At this point we
need to create a set of concentric rings to be used in sev-
eral subsequent operations (defining a region and creating
an invagination). Hit b and once again select the topmost
vertices, which now will also include the new central vertex.
Next hit 7 (on the number pad) to change back to the XY -
view (overhead view of the spine head). Hit k and, in the
pop-up “Loop/Cut Menu”, click “Knife (Multicut)”. In the
“Number of Cuts:” pop-up menu, click the right arrow until
it reads “8” and then click “OK”. In a clockwise motion,
click and drag the knife-shaped cursor over all of the spoke-
like edges radiating from the center point. All of the edges
(spokes) need to be crossed; it does not matter where or in
which order. After crossing all the edges, hit Enter. Blender
will subdivide each edge into eight segments of equal length
and create new coplanar faces arranged in concentric rings
(Fig. 4B).

248 Czech, Dittrich, and Stiles

 11. Save your current mesh object : Hit F2 and save the mesh (see
 Note 11).

 In this section we will duplicate the existing spine head and morph
the copy into an invaginated presynaptic bouton.
 1. Reset the view : Hit 1 (on the number pad) to switch again to

the XZ -view. If you are continuing from the previous section
and some vertices are currently selected, hit a once to deselect
everything. Then hit a (again) to select all the vertices.

 2. Duplicate the spine head and rotate the copy : Hit Shift-d to
duplicate the existing spine head. After it is duplicated, Blender
will automatically select only the new portion, which at this
point is still considered part of the original object. Hit r , then
type 180 , and hit Enter to rotate the new portion by 180°
around the Y -axis (the current view axis). Hit p and click on
“Selected” in the “Separate” menu to make the new rotated
portion a separate object.

 3. Select and name the new object : Hit Tab to switch to “Object
Mode” and right click on the new object so that it is high-
lighted in pink (see Note 12). In the “Link and Materials”
tab in the “Buttons Window”, name the object by clicking in
the text box containing the string “OB:SpineHead.001” and
changing it to “OB:PresynapticBouton”.

 4. Shift and scale the bouton : Hit g to grab the object, z to con-
strain the shift (move) operation to the Z -axis, then type 0.15 ,
and hit Enter to confirm. This will move the bouton 0.15
units along the positive Z -axis. Hit s to scale the bouton, type
 1.2 , and hit Enter to confirm. This will increase the size of the
bouton by 20%.

 5. Create an invagination in the bouton : Hit Tab again to switch
to “Edit Mode”. Hit a to deselect everything. Select the lower-
most vertices of the bouton by hitting b and then clicking and
dragging around them. Next, hit Ctrl-Minus (on the number
pad) to perform a “Select Less” operation. In this case the
outermost ring of vertices will be deselected. Hit e to extrude,
click “Region” in the “Extrude” menu, z to constrain it to the
 Z -axis, type 0.075 , and hit Enter . This will move the remain-
ing selected vertices 0.075 units in the positive Z direction,
producing an invagination into which the postsynaptic spine
head will fit (Fig. 4C).

 6. Save the current mesh objects : Hit F2 to save the current meshes
(see Note 11).

 We now add cylindrical extensions to the rounded ends of both
objects, to create a length of axonal membrane for the presynap-
tic bouton and a dendritic spine for the spine head.

3.1.2. Create a Presynaptic
Bouton

3.1.3. Add Axonal and
Dendritic Extensions

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 249

 1. Confirm that you are in “Edit Mode” : If you are continu-
ing from the preceding step, you should already be in “Edit
Mode”. If necessary, hit Tab to switch from “Object Mode”
to “Edit Mode”.

 2. Confirm the view : The operations to be performed in this step
are most safely accomplished using a “side view”, so if neces-
sary hit 1 (on the number pad) for the XZ -view.

 3. Create a cylindrical axon segment on the presynaptic bouton :
If necessary, hit a to deselect all objects, then zoom in (see
 Note 8) on the upper pole of the presynaptic bouton until
the top vertex is clearly visible. Select the vertex by right click-
ing on it. Now perform two “Select More” operations by hit-
ting Ctrl-Plus (on the number pad) twice, until two concentric
rings of vertices are highlighted. Hit x and click “Faces” on
the “Erase” menu. This will remove the mesh faces selected at
the pole of the presynaptic bouton, leaving an opening. Hit b
and then select the vertices that line the opening by clicking
and dragging around them. Next hit e, click “Only Edges”
on the “Extrude” menu, then hit z , type 3.0 , and hit Enter. A
cylindrical axon segment should now extend from the top of
the bouton (Fig. 4D).

 4. Select the spine head : Hit Tab to go into “Object Mode”. Right
click on the spine head (bottom) mesh to select it. Hit Tab to
go back into “Edit Mode”.

 5. Create a cylindrical spine on the spine head : As in earlier step 2 ,
zoom in and select the bottommost vertex (at the pole) by right
clicking on it. Hit Ctrl-Plus (on the number pad) two times. Hit
 x and click “Faces” on the “Erase” menu. Hit b and then click
and drag around the vertices that line the hole in the bottom of
the mesh. Hit e , click “Only Edges” on the “Extrude” menu, hit
 z , type −2.0 , and hit Enter. A cylindrical spine should now extend
from the bottom of the spine head (Fig. 4D).

 6. Save the current mesh objects : Hit F2 to save the current meshes
(see Note 11).

 We will now create two small spheres to represent synaptic vesicles
inside the presynaptic bouton. We will also define a region on each
vesicle to contain calcium binding sites (Fig. 4E, F). In Blender,
we define regions simply by assigning each one a uniquely named
material. If desired, the regions can then be visualized by giving
them separate colors. The regions assigned with Blender will be
accessible automatically with MCell and DReAMM.
 1. Create the first synaptic vesicle : New objects always appear at the

position of the 3D cursor. Make sure that the cursor is now posi-
tioned at the origin by hitting Shift-c . If you are continuing from
the previous section, hit Tab to enter “Object Mode”. Hit the

3.1.4. Add Synaptic
Vesicles with Regions for
Calcium Binding Sites

250 Czech, Dittrich, and Stiles

 spacebar, mouse over “Add”, then “Mesh”, and click on
“UVSphere”. In the “Add UV Sphere” menu, change “Seg-
ments” to “12”, “Rings” to “8”, “Radius” to “0.02”, and then
click “OK”. This creates a small sphere centered at the origin.

 2. Rotate the vesicle into a more convenient orientation : Hit r,
then x , type 90 , and hit Enter to rotate the sphere 90° around
the X -axis .

 3. Define the region for calcium binding sites : Under “Link and
Materials”, click “New” (the rightmost option) to assign
material properties to the whole vesicle. Default settings and
a default name will be used automatically. Next hit a to dese-
lect everything and then right click on the bottommost vertex
of the vesicle to select only that vertex. Hit Ctrl-Plus (on the
number pad) two times to select two additional concentric
rings of vertices. Again click “New” under “Links and Materi-
als” to create a second material. The words “2 Mat 2” appear
in a box directly above. Click in the gray square to the left of
these words, and a color selector will appear. The color selec-
tor includes a horizontal color bar and a larger saturation-
value gradient box. Click in the upper right-hand corner of
the gradient box so that a reddish shade is selected. Now click
“Assign” to apply this red material to the selected faces.

 4. Name the new region : Hit F5 to change to the “Shading” sec-
tion of the “Buttons Window”, and, under “Links and Pipe-
line” in the text box titled “Link to Object”, change the field
that reads “MA:Material.002” (see Note 13) to “MA:CaBS_
Reg” for the calcium binding sites region. Hit F9 to return to
the “Editing” section of the “Buttons Window”.

 5. Move the vesicle : Hit Tab to change into “Object Mode”. Hit g to
grab the entire vesicle , then x , type −0.108 , and hit Enter to move
the vesicle − 0.108 units along the X -axis. Hit g, then z, type 0.105 ,
and hit Enter to move it 0.105 units along the Z -axis.

 6. Duplicate the vesicle and move the copy : Hit Shift-d to duplicate
the vesicle. Hit g , then x , type 0.216 , and hit Enter to move the
copy 0.216 units along the X -axis away from the original.

 7. Rotate the vesicles into their final positions : We want each vesicle
situated above a single quadrangular face (quad) of the presyn-
aptic mesh, so that the two quads can be defined as a region for
VGCCs (see Subheading 3.1.5 later). Thus, we now rotate the
vesicles around the Z -axis. With the vesicle copy still selected,
hold Shift and right click on the other vesicle to select it. Hit r ,
then z , type 11.25 , and hit Enter to confirm.

 8. Name the two vesicles : Select the left vesicle by right clicking
on it. To name it, look under “Link and Materials”, click
in the text box that reads “OB:Sphere”, and change it to
“OB:Vesicle1”. To name the vesicle on the right, right click

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 251

on it and change the text box from “OB:Sphere.001” (see
 Note 13) to “OB:Vesicle2”.

 9. Save the current mesh objects : Hit F2 to save the current meshes
(see Note 11).

 We now define a presynaptic membrane region in which VGCCs
will be located. This region will include two noncontiguous areas
that underlie the synaptic vesicles. To expedite this operation,
we will temporarily “clip” the existing meshes, i.e., make por-
tions of them invisible. This will make it easier to see the par-
ticular remaining mesh faces that we want to include in the new
regions.
 1. Clip the existing mesh objects : Select the mesh for the presy-

naptic bouton by right clicking on it, and then hit Tab to
change into “Edit Mode”. Hit Alt-b to bring up cross-hairs
for defining a clipping box. To define the box, click and drag
a rectangle around both vesicles and the vertices on the presy-
naptic membrane directly beneath them. The rectangle will
project through the plane of the screen to create a clipping
box. Everything outside of the box will be invisible until Alt-b
is hit again.

 2. Change the view : Hit 7 (on the number pad) to switch to the
 XY -view (overhead). You should now be looking down on
the synaptic vesicles above the presynaptic membrane. Hit
 Ctrl-Tab and select “Faces” in the “Select Mode” box that
appears. Hit z to make the mesh opaque, so that subsequent
color changes for regions will be easily visible.

 3. Define the region for VGCCs : Click “New” under “Link and
Materials” to assign a default material to the entire object.
Then right click on the face directly below one of the vesicles
(Fig. 4f ; the face will extend beyond the vesicle’s diameter).
While holding Shift , right click on the corresponding face
under the other vesicle (as noted earlier, the faces in a region
do not need to be contiguous). Again, click “New” under
“Link and Materials”. Click in the gray box beside the words
“2 Mat 2”. Click in the green area of the horizontal color bar
that appears, and then click near the upper right hand cor-
ner of the saturation-value gradient box above it. Now click
“Assign”, and the faces under the vesicles will change to a
green color.

 4. Name the region : Hit Tab to change into “Object Mode”. Hit
 F5 to change to the “Shading” section of the “Buttons Window”
and, under “Links and Pipeline” in the text box titled “Link to
Object”, change the field that reads “MA:Material.003” (see
 Note 13) to “MA:VGCC_Reg”. Hit F9 to return to the “Edit-
ing” section of the “Buttons Window”.

 5. Cancel the clipping box : Hit Alt-b.

3.1.5. Define Region for
VGCCs

252 Czech, Dittrich, and Stiles

 6. Save the current mesh objects : Hit F2 to save the current meshes
(see Note 11).

 Similar to Subheading 3.1.5 , we now define the region on the
spine head (postsynaptic) membrane that will hold the ligand-
gated neurotransmitter receptors (Fig. 4G).
 1. Reset view : Hit 1 (on the number pad) to switch back to the

 XZ -view. If you are continuing from the previous section, the
presynaptic bouton is still selected. Hit h to hide it.

 2. Define the postsynaptic receptor region : Right click on the spine
head mesh to select it and then hit Tab to switch to “Edit
Mode”. Then click “New” under “Link and Materials” to
apply a default material to the entire mesh. Select the top row
of faces by hitting b and then clicking and dragging a rectangle
around them. Then hit Ctrl-Minus (on the number pad) three
times to perform three “Select Less” operations, and thus
deselect the three outermost rings of vertices. Click “New”
under “Link and Materials”. Click the gray color selector box
and choose a blue shade. Click “Assign” to apply this material
to the selected faces.

 3. Name the region : Hit Tab to change into “Object Mode”. Hit F5
to change to the “Shading” section of the “Buttons Window”
and, under “Links and Pipeline” in the text box titled “Link
to Object”, change the field that reads “MA:Material.004”
(see Note 13) to “MA:Receptor_Reg”. Hit F9 to return to
the “Editing” section of the “Buttons Window”.

 4. Save the current mesh objects : Hit F2 to save the current meshes
(see Note 11).

 In this section we create a dendritic shaft from a cylinder and then
join it to the existing dendritic spine mesh. We then create repli-
cated spines at different positions along the dendrite, and outline
ways to change the dimensions of the spines to make a biologi-
cally realistic model similar to that shown in Fig. 1 . Note that
the presynaptic bouton mesh remains hidden throughout these
operations since it will not be replicated. Thus, for the sake of
subsequent illustrative simulations, we will end up with a single
synapse onto one spine head, although the model dendrite will
include multiple spines similar to those illustrated in Fig. 1 .
 1. Create the dendritic shaft: Hit 1 (on the number pad) for the

 XZ -view. Hit Tab to go into “Object Mode”. Hit Shift-c to
center the cursor at the origin. Hit the spacebar , mouse over
“Add”, then “Mesh”, and click on “Cylinder”. In the “Add
Cylinder” menu that appears, set “Vertices” to “16”, “Radius”
to “1.00”, “Depth” to “1.00”, make sure that “Cap Ends” is
deselected, and then click “OK”. Hit r , type 11.25 , and hit
 Enter . This final rotation step around the axis of the cylinder

3.1.6. Define a Region for
Postsynaptic Receptors

3.1.7. Add Multiple Spines
to a Dendritic Shaft

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 253

will align one of the cylinder faces with the base of the spine
object.

 2. Assign material properties to the dendritic shaft : In step 8 later,
the shaft will be joined to the dendritic spines, but we want
the shaft to be a separate mesh region rather than an exten-
sion of the spine region. Thus, we need to apply new material
properties to the shaft. Simply click “New” under “Link and
Materials” to apply a new set of default material properties.

 3. Subdivide the faces along the length of the shaft : For subsequent
joining of spines to the shaft, it is preferable to subdivide the
cylinder faces along their length. Hit 7 (on the number pad)
for the XY -view. Click “Beauty” under “Mesh Tools”. Hit w
and, in the “Specials” menu, select “Subdivide Multi”. In the
“Number of Cuts” menu, select “2” and hit “OK”. Each of
the faces that made up the sides of the cylinder should now
have been subdivided into three faces. Hit 1 (on the number
pad) to change back to the XZ -view.

 4. Move the shaft to the end of the dendritic spine : Hit Tab to go
into “Object Mode”. Hit g , then z , type −3.0 , and hit Enter to
confirm.

 5. Create multiple spines : Hit Shift-s and click “Cursor −> Selec-
tion” in the “Snap” pop-up menu. Right click on the “Spine-
Head” object to select it (from the current view the cylinder
may seem to have disappeared, but it is still present). Hit Tab
to go into “Edit Mode”. Hit a and verify that the entire object
is selected. Under “Mesh Tools” in the “Buttons Window”,
set “Degr” to “270.00”, “Steps” to “3”, and “Turns” to “1”.
Directly above these text boxes, click “Spin Dup”. This will
create three copies of the original spine head and place them
at 90° increments around the cursor, which lies on the axis of
the cylinder.

 6. Join the spines to the shaft : Hit Tab to go into “Object Mode”. All
of the spines will be selected automatically following the preced-
ing step. Hold Shift and right click on the shaft (cylinder) object
to add it to the selected set of objects. Hit w and click “Union” in
the “Boolean Tools” pop-up menu. This will perform a Boolean
operation and merge the spine objects with the shaft object to
create a new object (see Note 14). However, at this stage the
original objects are still present and are still selected. Instead of
deleting them, move them to another layer in case any changes
are necessary later. This is done by hitting m (move), followed
by 2 (not on the number pad), and clicking “OK”. The original
objects have now been moved to layer 2.

 7. Name the object created by the union operation : Right click
on the new merged object to select it. To name it, look
under “Link and Materials”, click in the text box that reads
“OB:Tube.001”, and change it to “OB:Dendrite”.

254 Czech, Dittrich, and Stiles

 8. Replicate, extend, and merge the entire object : Hit Ctrl-a
and select “Apply scale and rotation” (see Note 15). Under
the “Modifiers” tab in the “Buttons Window”, click “Add
Modifier” and select “Array”. Change “Count” to “3”.
Change the “Relative Offset” of “ X ” to “0.000” and “ Y ”
to “1.000”. Click the “Merge” button. This operation will
replicate the object twice (for a total count of 3), move the
replicates along the Y -axis to the end of the previous piece,
and then merge all of the pieces together. To see the result,
change back to the XY -view [hit 7 (on the number pad)] and
note how the shaft extends along the Y -axis.

 9. Generate a preliminary rotation of the spines : Hit 1 (on the
number pad) to change back to the XZ -view. Hit the space-
bar , mouse over “Add”, and select “Empty”. This will create
and select an empty object to which we will add a rotational
transformation. First, hit Alt-r and click “Clear Rotation” to
negate any preexisting rotations applied because the object
was created using a certain view (XZ -view in this case). Next,
hit r , type 45.0 , and hit Enter to rotate the empty object 45°
around the current view axis. Now, right click on the den-
dritic shaft to select it. In the “Modifiers” tab, click “Object
Offset” and then type “Empty” in the text box below. This
will add the rotation of the “Empty” object to the dendritic
shaft segments created in the preceding step. The amount of
rotation is the product of the segment index and the speci-
fied 45°. The segment indices are (0, 1, 2), and so the first
segment is not rotated, the second is rotated by 45°, and the
third is rotated by 90° (and thus is realigned with the first
segment).

 10. Finalize the rotation of the spines (array extensions) : At this
point we can view the preliminary rotation of the array exten-
sions, but the rotation has not yet been finalized. Until it is
finalized, we cannot make changes to the individual faces
and vertices when in “Edit Mode”. To finalize the rotation,
click “Apply” in the “Array” modifier.

 11. Apply optional changes to the spine dimensions : At this stage,
each of the spine necks can be lengthened or shortened,
and the spine head dimensions can be modified as well. For
example, to lengthen a particular spine, hit Tab to go into
“Edit Mode”. Hit b and drag the select marquee around
the vertices of the spine head. Then, along the bottom of
the “3D View” pane, change the drop-down “Orientation”
button from “Global” to “Normal”. Hit g , then z twice (see
 Note 16), and then type in a positive value to lengthen the
spine or a negative value to shorten it. Hit Enter to apply
the change. In a similar fashion, individual spine heads can
be scaled by selecting them, hitting s , and then entering a

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 255

value between 0 and 1 (shrink) or greater than 1 (expand).
Finally, similar operations could be used to shrink or expand
the diameter of the spine neck, or move the presynaptic bou-
ton together with the postsynaptic spine head.

 Sharp angles between mesh faces can cause inaccuracies and/or
instabilities for many computational algorithms (e.g., comput-
ing a gradient on the mesh), and hence it is often desirable or
necessary to smooth or otherwise “optimize” the mesh. In effect
this amounts to low-pass filtering of the mesh to remove sud-
den (high-frequency) changes in shape (curvature). Smoothing
is considerably less important for MCell simulations, because
diffusing molecules in MCell move as discrete particles between
meshes (volume molecules in solution) or on meshes (surface
molecules in membranes), and the mesh per se is not used for
gradient or other calculations. Nevertheless, here we illustrate
smoothing in Blender to achieve a more “biological” appearance
of the geometry (compare the objects in Fig. 4 to the smoothed
version in Fig. 1).
 1. Smooth the new mesh object that includes the dendrite and spines :

If you are continuing from the previous section, hit Tab and
make sure you are in “Edit Mode”. If necessary, hit a to select
the entire new object that includes the dendritic shaft and all
of the spines (the presynaptic bouton is still hidden). In the
“Buttons Window”, under “Mesh Tools”, click “Smooth” five
times. This will iteratively soften sharp edges between faces by
moving edge vertices, but will not change the total number of
vertices and faces.

 2. Unhide and select the presynaptic bouton mesh : Hit Tab to go
into “Object Mode”. Hit Alt-h to make the “PresynapticBou-
ton” reappear. Right click on the “PresynapticBouton” to
select it.

 3. Smooth the presynaptic bouton mesh : Hit Tab again to go into
“Edit Mode”. If necessary, hit a to select all of the presynaptic
bouton mesh and, under “Mesh Tools”, click “Smooth” five
times. Hit Tab to go back into “Object Mode”.

 4. Save the current mesh objects : Hit F2 to save the current meshes
(see Note 11).

 To complete this section we export the current mesh objects in
MDL format for use in MCell simulations of presynaptic calcium
influx and binding (Subheading 3.3). Export of MDL files uti-
lizes the MDL plug-in for Blender that was installed in Subhead-
ing 2.3 .
 1. Click “File –> Export MCell (.mdl)”. In the top text box that

appears, navigate to the desired directory (folder) in which to

3.1.8. Smooth the Meshes

3.1.9. Export MDL Files for
MCell Simulations

256 Czech, Dittrich, and Stiles

store the new files (you can create a new directory first if neces-
sary). In the text box for the filename enter “Synapse.mdl”.

 2. Click “Export MDL” and click “OK”. This will create five
new MDL files in your specified directory. “Synapse.mdl” is
the main file and will be read when the MCell simulation is
started. It contains MDL statements that specify initial values
for some important simulation parameters (see Note 17). It
also includes statements for default visualization output for
use with DReAMM (Subheading 3.4), and lists the remain-
ing four files that also must be read (included) when the
simulation is initialized. These remaining files are “Synapse_
PresynapticBouton.mdl”, “Synapse_Dendrite.mdl”, “Syn-
apse_Vesicle1.mdl”, and “Synapse_Vesicle2.mdl”, and they
all contain mesh geometry and region information (see Note
 18). Note that the names of the files correspond to the names
of the mesh objects defined in the preceding sections.

 In Subheading 3.5 we will illustrate MCell simulations of neu-
rotransmitter release and binding to postsynaptic receptors.
The neurotransmitter molecules will diffuse through expanding
fusion pores that connect the synaptic vesicles to the presynaptic
membrane, so here we show how Blender can be used to create
and scale the expanding pore structures. In brief, we create the
pores with their initial and final dimensions (radius) and then
morph between those limits to generate a set of intermediate
pore structures. In a more realistic diffusion simulation project
there might be several hundred intermediate structures, but in
this simple example we will use only ten configurations including
the initial and final. Each configuration will be written to a set
of MDL files separate from those exported in the preceding sec-
tion, and then in Subheading 3.5 MCell will be used to read the
succession of new mesh files using a feature called checkpointing
(see Note 19).
 1. Join the meshes of both vesicles : Hit 1 (on the number pad) for the

 XZ -view. Pan and zoom in on the presynaptic bouton so that the
vesicles are clearly visible. Hit z to make the faces transparent.
Now the vesicles should be visible inside the presynaptic bouton.
Right click on the left vesicle to select it, and then, while holding
 Shift , right click on the other vesicle to select it as well. Next hit
 Ctrl-j and click “Join Selected Meshes” when prompted by the
“OK?” dialog box. Hit Tab to go into “Edit Mode”.

 2. Remove the bottom faces of each vesicle : By removing the bot-
tommost faces of each vesicle, we will create holes that can be
extruded to create cylindrical pores, similar to the way that the
axon and spine neck extensions were extruded in Subhead-
ing 3.1.3 . Hit Ctrl-Tab and click “Vertices” in the “Select
Mode” menu. Hit a to deselect everything. Right click on the

3.2. Adding an
Expanding Synaptic
Vesicle Fusion Pore to
the Model

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 257

bottommost vertex of the left vesicle and, while holding Shift,
right click the bottommost vertex of the right vesicle (use
zoom and pan if necessary). Hit Ctrl-Plus (on the number pad)
once to select one ring of vertices. Hit x and click “Faces” in
the “Erase” menu.

 3. Extrude the pores : Hit b and then click and drag the select mar-
quee around the vertices remaining at the bottom of the left
vesicle. Then hit b again and repeat for the right vesicle. Hit e ,
click “Only Edges”, then hit z , type −0.03 , and hit Enter . You
should now see the extruded pores passing through the presy-
naptic bouton (Fig. 4H , left). The diameter of these tempo-
rary pores is approximately 0.015 units (see Note 20).

 4. Merge the fusion pores with the presynaptic membrane : Hit Tab
to go into “Object Mode”. The vesicles should already be
selected, so, while holding Shift , right click on the surround-
ing presynaptic bouton mesh. Now hit w and click “Differ-
ence” from the “Boolean Tools” menu. The vesicles, pores,
and presynaptic bouton membrane should now form a con-
tinuous mesh (see Note 14 and Fig. 4H , right).

 5. Save the original meshes : The original objects are still present
after performing the Boolean difference operation in the pre-
ceding step. Rather than delete them, move them to another
layer for later use if any changes are required. Hit m , followed
by 2 (not the number pad), and then click “OK”.

 6. Name the object created by the difference operation : Right click on the
new object to select it. To name it, look under “Link and Materi-
als”, click in the text box that reads “OB:PresynapticBouton.001”,
and change it to “OB:PresynapticBouton”.

 7. Scale the pores to their desired initial diameter : The desired
initial diameter for the pores is about 13.3% of the current
diameter (compare Fig. 4I , left, with Fig. 4H). In the subse-
quent MCell simulation, this initial diameter will correspond
to about 2 nm. Hit Tab to enter “Edit Mode”. Hit Ctrl-Tab
and click “Faces”, so that we can now select faces rather than
vertices as in preceding sections. Hit b and then click and drag
the rectangular select marquee over the middle of a pore, but
do not include the upper and lower vertices of the pore. This
will select only the faces of the pore. Hit 7 (on the number pad)
to change to the XY -view (overhead). Hit s and then Shift-z
to simultaneously scale along the X - and Y -axes. Type 0.133
and hit Enter. Hit 1 (on the number pad) to change back to the
 XZ -view. Hit a to deselect. Repeat the selecting and scaling
steps for the second pore.

 8. Take a snapshot of the initial pore configurations : This snap-
shot subsequently will be used in step 9 later when we morph
the pores between their initial and final configurations. Hit

258 Czech, Dittrich, and Stiles

 Tab to enter “Object Mode”. Select the presynaptic mesh by
right clicking on it. On the “Shapes” panel in the “Buttons
Window”, click “Add Shape Key”. We have now defined a
“Basis Key” that corresponds to the initial pore configura-
tion. All subsequently defined “Shape Keys” will be relative
to the “Basis Key”.

 9. Take another snapshot to be modified for the final pore configu-
ration : Click “Add Shape Key” again. Now we will rescale
the pore dimensions to their final diameter (Fig. 4I , right;
about 10 nm in the subsequent MCell simulation). Hit Tab
to enter “Edit Mode”. Hit b and then click and drag the
rectangular select marquee over the middle of a pore as in
earlier step 6 . Hit 7 (on the number pad) to change to the
 XY -view (overhead). Hit s , then Shift-z , type 5.0 , and hit
 Enter. Hit 1 (on the number pad) to change back to the XZ -
view. Repeat for the second pore. At this point the first snap-
shot contains the initial pore configuration, and the second
snapshot contains the final pore configuration.

 10. Interpolate between the snapshots : Hit Tab to enter “Object
Mode”. Click on the icon in the upper left-hand corner of
the “Buttons Window” (Fig. 2D) and select the “Action
Editor” from the drop-down list. Click on the arrow beside
the word “Sliders” near the bottom of the window, and slid-
ers for the list of available “Shape Keys” will appear. In this
simple case, only “Key 1” is present. Now we must map the
final pore configuration (Key 1) to the endpoint of a timeline,
and the “Basis Key” to the beginning of the timeline. Iden-
tify the vertical green line to the right of the “Shape Key”
slider. Click on the line, drag it to the right, and then release
it at the point marked 10 (requesting ten snapshots). Now
move the slider next to “Key 1” from “0.00” to “1.00”, and
a diamond-shaped marker will appear at position 10 on the
timeline. Next drag the green line back to 1 and then drag
the slider from “1.00” back to “0.00”. A diamond marker
will now appear at position 1 on the timeline. Hit Shift-Alt-a
to see an animation of the interpolated pore configurations.
Hit Esc to stop playback.

 11. Save the current mesh objects : Hit F2 to save the current
meshes (see Note 11).

 12. Save the interpolated mesh snapshots as MDL files : We will now
export MDL files for use with MCell in Subheading 3.5 .
As in earlier Subheading 3.1.9 , click “File –> Export –>
MCell (.mdl)”. Navigate to the desired directory (folder) in
which to store the new files (use a different directory from that
used in Subheading 3.1.9). In the text box for the filename
enter “VesicleFusion.mdl”. Click “Export MDL”, then “Ena-
ble Anim.”, and “Iterate Script”. Also change “Stop” to “10”.
Once these changes have been made, click “OK” (see Note 21).

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 259

 13. Save the current mesh objects and quit Blender : Hit F2 to save
the current meshes (see Note 11) and quit Blender by click-
ing on the X in the upper right-hand corner of the window.

 In Subheading 3.1 we used Blender to create a set of pre- and
postsynaptic meshes and then exported the meshes as MDL files
for use with MCell. As outlined in Subheading 3.1.9 , five files
were created: the main file “Synapse.mdl” and the four geome-
try files “Synapse_PresynapticBouton.mdl”, “Synapse_Dendrite.
mdl”, “Synapse_Vesicle1.mdl”, and “Synapse_Vesicle2.mdl”. In
Blender the meshes were composed of quadrangular faces (Fig.
 4), and the absolute spatial dimensions were arbitrary. In MCell,
however, the spatial units will be interpreted as microns. In addi-
tion, MCell’s collision detection algorithms require triangular
faces, so each quadrilateral face in Blender was automatically
split into two triangles when the meshes were exported. We will
now supplement the exported MDL files in order to populate
the meshes with molecules, define reactions between molecules,
and provide commands that control how the MCell simulations
will be run. For convenience we will use separate MDL files for
many of these distinct operations. The final simulations then will
be controlled from the main file that reads or “includes” all the
subordinate files in the proper order when the simulation is ini-
tialized.

 We first create a new MDL file to describe the molecules included
in the model. It will specify whether they exist in solution (a “vol-
ume” molecule) or on a surface (a “surface” molecule), and their
diffusion coefficients.
 1. At a command line, change into the directory where you

exported the MDL files in Subheading 3.1.9 .
 2. Create a new file called “Molecules.mdl” (see Note 22).
 3. Define the molecules: Enter the following block of text (see

 Notes 23 and 24):
DEFINE_MOLECULES {

Ca {DIFFUSION_CONSTANT_3D = 1E-6}

VGCC_C {DIFFUSION_CONSTANT_2D = 0}

VGCC_O {DIFFUSION_CONSTANT_2D = 0}

CaBS {DIFFUSION_CONSTANT_2D = 0}

CaBS_Ca {DIFFUSION_CONSTANT_2D = 0}

}
 This simple model includes only diffusing calcium ions,

VGCCs, and calcium binding sites that might, for example, be
based on synaptotagmin molecules located on the synaptic vesi-
cles. In MDL statements like those above, the names of the

3.3. MCell
Simulations of
Presynaptic Calcium
Influx and Binding

3.3.1. Define Molecules

260 Czech, Dittrich, and Stiles

molecules are specified by the user and thus are usually chosen
to be easily recognizable. The only (obvious) restriction is that a
user-specified name may not be an exact match of an MDL key-
word. In this example, the calcium ions are simply named “Ca”,
and since they are to be diffusing volume molecules they are given
a nonzero 3D diffusion coefficient (cm 2 /sec). We require both
a closed and open state for the VGCCs, named “VGCC_C” and
“VGCC_O”, respectively. The channels will be stationary surface
molecules and so are given a 2D diffusion coefficient with a value
of 0. Finally, we require unbound and bound states for the cal-
cium binding sites, named “CaBS” and “CaBS_Ca”, respectively.
Similar to the channels, the binding sites will be considered part
of static surface molecules, and hence are given a 2D diffusion
coefficient with a value of 0.
 4. Save the file and quit.

 The only molecules that are to be present when the simulation
begins are the closed VGCCs (“VGCC_C”) and the unbound
calcium binding sites (“CaBS”). The remaining molecules or
states will be generated by reactions during the simulation. We
add ten “VGCC_C” molecules to the presynaptic mesh region
“VGCC_Reg” that was defined in Subheading 3.1.5 (Fig. 4F).
Similarly, we add ten “CaBS” molecules to the “CaBS_Reg”
region defined on the synaptic vesicles in Subheading 3.1.4 .
The actual locations of the molecules within these regions will
be randomized by MCell when the simulation is initialized (see
 Note 25).
 1. Create a new file called “RegionModifications.mdl” (see Note

 22).
 2. Define the numbers and locations of molecules present at sim-

ulation start-up (see Note 26):
MODIFY_SURFACE_REGIONS {

PresynapticBouton[VGCC_Reg] {

MOLECULE_NUMBER { VGCC_C, = 10 }

}

Vesicle1[CaBS_Reg] {

MOLECULE_NUMBER { CaBS’ = 10 }

}

Vesicle2[CaBS_Reg] {

MOLECULE_NUMBER { CaBS’ = 10 }

}

}
 These MDL statements modify (add molecules to) the preexist-

ing mesh regions defined automatically when the “Synapse_Presyn-

3.3.2. Add Molecules to
Mesh Regions

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 261

apticBouton.mdl”, “Synapse_Vesicle1.mdl”, and “Synapse_Vesicle2.
mdl” files were exported from Blender. The comma or apostrophe
that follows the molecule’s name specifies how the molecule is ori-
ented when it is added to the surface (a surface molecule may have
a reactive domain, e.g., a binding site, on the front and/or back of
the surface; see Note 17).
 3. Save the file and quit.

 1. Create a new file called “Reactions.mdl” (see Note 22).
 2. Define the reactions: Enter the following block of text:

DEFINE_REACTIONS {

VGCC_C’ –> VGCC_O’ [5E5]

VGCC_O’ -> VGCC_C’ [500]

VGCC_O’ -> VGCC_O’ + Ca’ [1E3]

Ca’ + CaBS’ -> CaBS_Ca’ [1E7]

CaBS_Ca’ -> Ca’ + CaBS’ [500]

}
 These MDL statements specify the stoichiometry, rates, and

directionality for the reactions in the simulation. In the first line,
closed VGCCs are able to undergo a conformational change
to the open state with a first-order mass action rate constant of
5E5 s−1. The reverse transition occurs in the second line, albeit
at a much slower rate. A channel in the open state is also able to
generate diffusing calcium ions in the presynaptic bouton (third
line). Hence, in any given simulation time step, an open channel
may close, generate one or more calcium ions, or simply remain
open, all based on relative probabilities. This method for gener-
ating diffusing calcium ions from open channels is far more effi-
cient than explicitly simulating separate pools of extracellular and
intracellular calcium ions that pass through the open channel. In
the fourth line, calcium ions bind to the calcium binding sites
with a bimolecular mass action rate constant of 1E7M–1s–1. The last
line specifies calcium unbinding with a first-order rate constant
of 500 s–1.

 In all of these reactions, the apostrophes again specify the direc-
tionality of the reactions with respect to the orientation of the surface
molecules. This is why calcium ions produced by an open channel
enter the presynaptic bouton rather than the synaptic cleft space (see
earlier Subheading 3.3.2 , step 2 and Note 17).
 3. Save the file and quit.

 MCell is able to count and save many different types of events
during a simulation. In this simple example, we will just count the
number of molecules present during each time step throughout
the entire simulation space (world). The results for each molecule

3.3.3. Add Reactions

3.3.4. Specify Reaction
Data Output

262 Czech, Dittrich, and Stiles

will be written to a separate ASCII file containing two columns.
The first gives the simulation time in seconds, and the second
gives the counted quantity.
 1. Create a new file called “ReactionData.mdl” (see Note 22).
 2. Specify the desired reaction data output : Enter the following

block of text:
REACTION_DATA_OUTPUT {

{COUNT[VGCC_C, WORLD]} => “./reaction_data/VGCC_C.dat”

{COUNT[VGCC_O, WORLD]} => “./reaction_data/VGCC_O.dat”

{COUNT[CaBS, WORLD]} => “./reaction_data/CaBS.dat”

{COUNT[CaBS_Ca, WORLD]} => “./reaction_data/CaBS_Ca.dat”

{COUNT[Ca, WORLD]} => “./reaction_data/Ca.dat”

}
 In this case, each file (.dat suffix) will be created automati-

cally in a subdirectory called “reaction_data”.
 3. Save the file and quit.

 During a simulation, diffusing molecules follow random walk
steps that must be traced to detect possible collisions with sur-
faces and other molecules. This becomes very time-consuming
unless each molecule looks only in its local environment first, and
continues into adjoining space only if necessary. To define the
local environments, the simulation world is partitioned into sub-
volumes. In effect, the partitions are transparent planes along the
 X -, Y -, and Z -axes, and the subvolumes are the cuboidal spaces
created between the partitions.
 1. Create a file called “Partitions.mdl” (see Note 22).
 2. Specify the locations of partitions along each axis : Enter the fol-

lowing block of text:
PARTITION_X = [[-1.25 TO 1.25 STEP 0.1]]

PARTITION_Y = [[-1.25 TO 1.25 STEP 0.1]]

PARTITION_Z = [[0 TO 1 STEP 0.1]]
 3. Save the file and quit.

 We now add all the pieces together by referencing (“including”)
the newly created MDL files in the main simulation file “Synapse.
mdl”. Thus, when the simulation is started using the main file, all
of the subordinate MDL files will be read in the proper order.
 1. Open the main file “Synapse.mdl” in a text editor (see Note

 22).
 2. Reference the subordinate MDL files using INCLUDE state-

ments : Before the first preexisting INCLUDE statement add
the following text:

3.3.5. Add Spatial
Partitions to Speed
Computation

3.3.6. Add the Include Files
and Set the Number of
Iterations

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 263

INCLUDE_FILE = “Partitions.mdl”

INCLUDE_FILE = “Molecules.mdl”

INCLUDE_FILE = “Reactions.mdl”

 Now, after the last preexisting INCLUDE statement add:

INCLUDE_FILE = “RegionModifications.mdl”
INCLUDE_FILE = “ReactionData.mdl”

 3. Change the iteration number : By default, the simulation is set to
run for only one iteration with a default time step of one micro-
second. This will generate visualization output for the start-up
conditions, and thus would allow verification of initial mesh
and molecule placement using DReAMM (see Subheading 3.4
later). This is an extremely useful step for large models that take a
long time to simulate. In this case, however, we will increase the
number of iterations so that we can see the appearance of diffus-
ing calcium ions and occupation of calcium binding sites at later
times. Change the first line of the file from:

 iterations = 1
to
iterations = 5000

 4. Save the file and quit.

 Assuming that you have installed MCell with the name “mcell3”,
run the simulation simply by entering:

 mcell3 Synapse.mdl

 at the command line in the directory where you created the MDL
files. MCell will start and display initialization messages, display
updates as iterations complete, and then display a variety of run-
time summary statistics when the simulation is finished.

 It is crucial to check any MCell model visually using DReAMM to
verify that all components (location of molecules, reactions, geom-
etry, etc.) have been set up properly (see Note 27). Here, we outline
the essential steps for the model created in the preceding section.

 1. Start DReAMM : Enter “dreamm” at a command line.
The “DReAMM Image Window”, “Quick Controls”, and
“Sequence Control” should all appear. In principle you can
start DReAMM from within any directory and then navigate
to the visualization files output by MCell. To simplify this
example, however, start DReAMM from the same directory in
which you ran the MCell simulation in Subheading 3.3 .

 2. Import visualization data : Click the “Import & Select” but-
ton near the top of the “Quick Controls” window (labeled

3.3.7. Run the Simulation

3.4. Visualize MCell
Results with DReAMM
(Part 1)

3.4.1. Import the MCell
Visualization Data and
Select Mesh and Molecule
Objects

264 Czech, Dittrich, and Stiles

 1 in Fig. 3a). Two menus (windows) should open. In the
“Import & Select Objects” menu, click the ellipsis (“…”) in
the “Viz Data File” text box. Navigate to the “Synapse_viz_
data” directory that was created by MCell and select the file
named “Synapse.dx”. Click “OK”. DReAMM will automati-
cally read the visualization files referenced by “Synapse.dx”,
display the names of available objects, and import the data for
the first time step. By default, however, DReAMM will not
display any data until it is selected.

 3. Select all meshes to be displayed : The lower left-hand side of the
“Imported Objects” menu will now display the names of the
meshes we created previously in Blender and used in MCell:
“World.Dendrite”, “World.PresynapticBouton”, etc. These
objects thus are available to be rendered (displayed) and for
other operations. In the lower center section locate the field
named “Choose Operation”, click on “Add All”, and then
click the “Apply Operation” button to select all of the meshes.
All of the object names should now appear in the “Current
Objects” list to the right, and all of the mesh objects now
will be displayed in the “DReAMM Image Window” using
DReAMM’s default mesh colors and “Software Rendering
Mode” (see Note 28).

 4. Select all volume molecules : Click “Volume Molecules” in the
central “List” field of the “Import and Select” menu, and the
“Imported Objects” list will change to show the volume molecules
in the model. In this case only “Ca” is present. Hit the “Apply
Operation” button, and “Ca” will appear in the list of “Current
Objects”. However, no calcium ions are yet visible in the “Image
Window” because no calcium ions are present at the beginning of
the simulation, and we are currently viewing the first time step.

 5. Select all surface molecules : Click “Surface Molecules” under
“List” and the “Imported Objects” list will change again,
this time showing all surface molecules in the model (calcium
channels and binding sites). Click “Apply Operation”, and all
the surface molecule names will appear in the list of “Cur-
rent Objects”. At this point the surface molecules present
at the beginning of the simulation are being rendered using
DReAMM’s default molecule rendering properties (white pix-
els). This may be difficult to see if there are few molecules or
they are sparsely distributed but is the least expensive display
option. In the following section we will customize the display
properties so that the molecules can be seen easily.

 6. Center the view : Select the “DReAMM Image Window” and
hit Ctrl-f to center the view of the displayed objects. To see
the synapse from a side view, hit Ctrl-v to bring up the “View
Control” menu and then select “Bottom” under “Set View”
(see Note 29).

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 265

 7. Close menus : Click the “Close” button to the right of the
“Import & Select” field on the “Quick Controls” menu
(labeled 5 in Fig. 3A).

 1. Open the rendering properties menus : Click “Set Rendering
Prop”. under “Quick Controls” (labeled 2 in Fig. 3A). Four
separate menus should appear.

 2. Turn on the preview window : In the “Rendering Properties”
menu, click on the “Enable Preview” button in the center and
the “Rendering Preview” window will appear. It displays the
current rendering properties that can be applied to selected
objects, including color (separate front and back colors for
mesh objects), lighting, and shading (see Note 30).

 3. Make the presynaptic bouton semitransparent : By default, the
“Rendering Properties” menu will display the names of the
imported mesh objects, and the first will be highlighted. Click
on “World.PresynapticBouton” to select it, and then, if neces-
sary, click on any others that remain highlighted to deselect
them. In the lower left-hand corner, change “Opacity” from
“1.0” to “0.3” (see Note 31) and then click on the “Once”
button next to “Apply Operation” in the center of the menu.
In the “DReAMM Image Window”, the mesh for the “Pre-
synapticBouton” will now be semitransparent, revealing the
vesicles within it. Furthermore, the change in opacity is also
reflected in the “Rendering Preview” window.

 4. Visualize the mesh regions using a colormap : In order to distin-
guish different mesh regions in DReAMM, we use a colormap
to render and display the object. When a region is defined
in Blender, each mesh face within the region is automatically
assigned a unique numerical metadata tag (value). The tag
values begin with 0 for the first region, and are incremented
thereafter. Similarly, in MCell’s MDL, triangles that belong to
a particular region can be assigned a numerical VIZ_VALUE.
Meshes exported from Blender to MCell automatically inherit
region VIZ_VALUEs from the metadata tags assigned by
Blender. DReAMM subsequently uses the VIZ_VALUEs
and colormaps to visualize regions. The default colormap vis-
ible in the “Colormap Editor” menu uses a stair-step pattern
ranging from purple to red for tag values within the indicated
numerical limits. We will now change the upper limit so that
the default colormap will work for our mesh regions. To do
so, click in the upper box that displays a numerical value, type
“1.4”, and then hit Enter (see Note 32).

 5. Apply the colormap to the synaptic vesicles : In the “Render-
ing Properties” menu, select “World.Vesicle1”, then “World.
Vesicle2”, and finally deselect “World.PresynapticBouton”.
Change “Use Color and Opacity Map” from “No” to “Yes”

3.4.2. Visualize the
Calcium Binding Site
Regions

266 Czech, Dittrich, and Stiles

and “Color Dependence” from “Vertices” to “Elements” (see
 Note 33). Then click “Apply Operation Once”. The bottom
of the vesicles, i.e., the region “CaBS_Reg”, should now be yel-
low because it was assigned a VIZ_VALUE of 1. The remainder
of each vesicle is purple because it has a VIZ_VALUE of 0.
You may need to zoom in to see this clearly (see Note 29).

 By default, the visualization data for each simulation time step
(frame) has been saved, and DReAMM will automatically read
and display the selected data for each frame in sequence. Dur-
ing playback calcium ions will appear and diffuse, and calcium
binding sites will become occupied. For maximum speed they
will all be rendered as white pixels under default conditions, so
in the later step we will change the rendering properties for each
molecule so that they may be distinguished clearly. We will also
change the color of the postsynaptic mesh (dendrite and spines).
 1. Play the time series data : Simply press the Play button on the

“Sequence Control” menu (right arrowhead, Fig. 3B) to
begin playback of the MCell simulation time series. No visible
changes will be evident until several hundred frames have been
displayed, so skip ahead if desired by clicking on the “Sequence
Control” button that displays the frame number. Then use the
pop-up “Frame Control” menu to select a subset of the avail-
able frames, and/or change the interval between the displayed
frames.

 2. Reset the opacity : In the “Rendering Properties” menu, change
“Opacity” back to “1.0”. This change will be visible in the
“Rendering Preview” window but will not affect any objects
until we assign properties to them.

 3. Choose a color from the Color Library : In the “Color Library”
or “Rendering Properties” menu, toggle the “Source” selec-
tor from “Rendering Properties” to “Color Library”. This
will change the source of the colors displayed in the “Render-
ing Preview” window from the color fields of the “Rendering
Properties” menu to the color selected in the “Color Library”
menu. In the “Display List Filter” text box of the “Color
Library” menu, change the search string from “*” to “*yel-
low*” and hit Enter (see Note 34). Select “lightyellow3” from
the list and hit the “Load” button. The RGB (Red, Green,
Blue) values for “lightyellow3” are now listed in the “Front
Color” and “Back Color” (half intensity) fields of the “Ren-
dering Properties” menu, and the corresponding hue is also
visible in the “Colormap Editor”.

 4. Assign the new color to the dendrite : In the “Rendering Prop-
erties” menu select “World.Dendrite”, deselect “World.Vesi-
cle1” and “World.Vesicle2”, and then click “Apply Operation
Once”. The dendrite mesh, which includes the spines and
spine heads, will now be rendered with “lightyellow3”.

3.4.3. Highlight Different
Molecules and Visualize
the MCell Time Series

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 267

 5. Assign a yellow spherical glyph to the calcium ions : In the “Ren-
dering Properties” menu, click on “Molecules” in the upper
middle section by the word “List”. The list of object names
will switch to all of the molecules (volume and surface) in
the model. In the lower right-hand corner change “Glyph”
from “pixel” to “sphere (simple)” and both “Height” and
“Radius” to “0.0025”. At the lower left manually change
“(Front) Color” to yellow by entering RGB values of 1, 1,
and 0, respectively (“Back Color” is ignored for glyphs). Make
sure that only “Ca” is highlighted in the list of object names.
Assign the yellow glyph properties to calcium ions by clicking
“Apply Operation (Once)”.

 6. Assign a black arrow glyph to the unbound calcium binding
sites : Surface molecules have an XYZ location that lies on a
surface mesh element, and they also have an orientation with
respect to the plane of the mesh element. Thus, to visualize
surface molecules we will use a directional (asymmetric) glyph
(see Note 35). First, in the “Rendering Properties” menu,
select “CaBS” and deselect any other highlighted molecules.
Change the glyph to “arrow (simple)”. Change the “Height”
to “0.01” and the “Radius” to “0.0025”. To make the arrow
glyphs black, change all of the “(Front) Color” RGB values to
0. Click “Apply Operation Once”. Outward pointing arrows
should now be visible at the position of the CaBS molecules
within the CaBS_Reg of each synaptic vesicle (Fig. 5A). The
precise number will depend on the time step that you are
viewing. At the beginning of the simulation (frame 1) there
are ten unbound calcium binding sites. Later, the number will
change as calcium ions bind and unbind.

 7. Assign a cyan arrow glyph to the bound calcium binding sites :
In the “Rendering Properties” menu, select “CaBS_Ca” and
deselect “CaBS”. Change the front RGB values to 0, 1, and 1,
respectively. Click “Apply Operation Once”. The bound cal-
cium binding sites will now be visible as cyan, outward point-
ing arrows. As outlined in the preceding step, the number will
depend on the time step that you are viewing (Fig. 5B).

 8. Assign a red arrow glyph to the closed VGCCs : In the “Ren-
dering Properties” menu, select “VGCC_C” and deselect
“CaBS_Ca”. Change the front RGB values to 1, 0, 0, respec-
tively. Click “Apply Operation Once”. The VGCCs (in the
presynaptic membrane beneath the synaptic vesicles) that
currently are closed will now appear as red arrows pointing
toward the interior of the presynaptic space (Fig. 5A).

 9. Assign a green arrow glyph to the open VGCCs : Similar to the
preceding step, select “VGCC_O” and deselect “VGCC_C”.
Change the front RGB values to 0, 1, 0, respectively, and click
“Apply Operation Once”. The VGCCs that currently are open
will now appear as green arrows (Fig. 5B).

 Fig. 5 . Screen captures from simulations as visualized with DReAMM. (Note that addition of colors to objects is described
in the text, whereas this image has been converted to grayscale and is described here accordingly). (A) At the beginning
of the first simulation (Subheading 3.3.7), the bottom of the synaptic vesicle is populated with unbound calcium
binding sites (black downward pointing arrows). Closed voltage-gated calcium channels (black upward point-
ing arrows) are located directly underneath the vesicle on the presynaptic membrane. (B) Later, calcium channels open
(white upward pointing arrows) and release calcium ions (white spheres) into the presynaptic bouton. Some
calcium ions then bind to available sites on the vesicle (white downward pointing arrows). (C) At the beginning of
the second simulation (Subheading 3.5.7), neurotransmitter molecules (white spheres) fill the synaptic vesicles,
and then diffuse out as the simulation proceeds and the fusion pore expands (D). For clarity, the postsynaptic
receptors are not shown in C and D even though they are present in the simulation. (E) All of the postsynaptic recep-
tors are in the unbound state (black arrows) at the start of the second simulation (presynaptic bouton not shown).
(F) Later, a mixture of single-bound, double-bound, closed, and open receptors is present as indicated by different colors.

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 269

 10. Play the time series data : Press the Stop button (square) on
the “Sequence Control” menu (Fig. 3B) and then press the
Play button. This will restart the time series from the first
frame (of the selected interval, if you are using the “Frame
Control” settings). Use the Pause (parallel lines), Single-step
(double lines and arrowheads), Reverse (left arrowhead),
Loop, and Palindrome (loop forward and backward) but-
tons to modify playback.

 All DReAMM settings such as choice of rendered objects, ren-
dering properties (including colormaps), etc., can be saved to a
file for subsequent reuse.
 1. Save settings : In the “Read/Write Settings” menu, click on

the ellipsis (“…”) button next to the “Write File” text box. In
the pop-up menu, navigate to the directory where you would
like to save the file, enter the name “SynapseCustom.dx”,
and then click “OK”. Click the “Write Once” button in the
“Read/Write Settings” menu to save the file (see Note 36).

 2. Quit DReAMM : Quit DReAMM by clicking the X in the
upper right-hand corner of the “DReAMM Image Window”.
When prompted, “Do you want to save the project file”, click
“No”.

 We now adapt the MCell model of Subheading 3.3 to include
the expanding fusion pores (Fig. 4I) created with Blender in
 Subheading 3.2 . We will add neurotransmitter molecules that
originate within the vesicles and diffuse out through the expand-
ing pores. We will also add postsynaptic receptors in the form of
ligand-gated ion channels. As mentioned previously (Subhead-
ing 3.2 and Note 19), MCell simulation of the expanding pores
will use a feature called checkpointing. In brief, we will run a
series of MCell simulations, saving the locations and states of all
molecules after each run in the series. The first run will use the
initial pore configuration and will proceed for a certain number
of iterations, allowing neurotransmitter molecules to begin dif-
fusing. The second run will use the next pore configuration but
will use the molecule locations and states from the previous run
as initial conditions. This pattern then will continue for all ten
of the expanding pore configurations. In principle many other
parameters can also change between checkpoint runs, and there
are a variety of ways to automate setup of the files. Here, we use
a simple example for the sake of illustration.

3.4.4. Save DReAMM
Settings for the Simulation
Objects

3.5. MCell Simulations
of Fusion Pore
Expansion and
Neurotransmitter
Release

Fig. 5. (Continued) (G) The complete synapse is shown at a late time point, with the presynaptic bouton semitransparent
and the spine head opaque. Neurotransmitter molecules can be seen diffusing within the synaptic cleft and escaping
into the surrounding volume. (H) Image clipping is used to provide a better view of the vesicles, synaptic cleft, diffusing
neurotransmitter molecules, and postsynaptic receptors .

270 Czech, Dittrich, and Stiles

 As in Subheading 3.3 , we first create a new MDL file to
describe the molecules included in the model. Before starting,
make sure that you are in the directory created in Subheading
 3.2 when the MDL files for the expanding pore were exported
from Blender.
 1. Using a text editor, create a new file called “Molecules.mdl”

(see Note 22).
 2. Define the molecules : Enter the following block of text (see

 Notes 17 and 24):
DEFINE_MOLECULES {

nt {DIFFUSION_CONSTANT_3D = 1E-6}

nt_R_0B {DIFFUSION_CONSTANT_2D = 0}

nt_R_1Ba {DIFFUSION_CONSTANT_2D = 0}

nt_R_1Bb {DIFFUSION_CONSTANT_2D = 0}

nt_R_2B_C {DIFFUSION_CONSTANT_2D = 0}

nt_R_2B_O {DIFFUSION_CONSTANT_2D = 0}

}
 In these MDL statements, we define a diffusing volume mol-

ecule (“nt”, neurotransmitter) and five different states of a sta-
tionary neurotransmitter receptor (stationary surface molecules).
The receptor represents a ligand-gated ion channel with two inde-
pendent binding sites. “nt_R_0B” is the receptor in its unbound
state; “nt_R_1Ba” and “nt_R_1Bb” are the two single-bound
states; “nt_R_2B_C” is the double-bound, closed channel state,
and “nt_R_2B_O” is the double-bound, open channel state.
 3. Save the file and quit.

 We next add unbound receptors to the postsynaptic receptor
region defined in Subheading 3.1.6 (Fig. 4G). The actual loca-
tions of the molecules within the region will be randomized by
MCell when the first simulation of the checkpoint sequence is
initialized. Recall that this region extends to all of the spine heads
and hence we add a total of 2,400 receptors distributed randomly
across 12 spine heads.
 1. Create a new file called “RegionModifications.mdl” (see Note

 22).
 2. Define the numbers and locations of molecules present at sim-

ulation start-up:
MODIFY_SURFACE_REGIONS {

Dendrite[Receptor_Reg] {

MOLECULE_NUMBER { nt_R_0B’ = 2400}

}

}

 3. Save the file and quit.

3.5.1. Define Molecules

3.5.2. Add Molecules to
Mesh Regions

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 271

 1. Create a new file called “Reactions.mdl” (see Note 22).
 2. Define the reactions : Enter the following block of text:
DEFINE_REACTIONS {

nt’ + nt_R_0B’ -> nt_R_1Ba’ [1E7]

nt_R_1Ba’ -> nt’ + nt_R_0B’ [1E4]

nt’ + nt_R_0B’ -> nt_R_1Bb’ [1E7]

nt_R_1Bb’ -> nt’ + nt_R_0B’ [1E4]

nt’ + nt_R_1Ba’ -> nt_R_2B_C’ [1E7]

nt_R_2B_C’ -> nt’ + nt_R_1Ba’ [1E4]

nt’ + nt_R_1Bb’ -> nt_R_2B_C’ [1E7]

nt_R_2B_C’ -> nt’ + nt_R_1Bb’ [1E4]

nt_R_2B_C’ -> nt_R_2B_O’ [1E4]

nt_R_2B_O’ -> nt_R_2B_C’ [1.5E3]

}
 In the first two lines, a neurotransmitter molecule binds

reversibly to the first binding site on the unbound receptor. In the
next two lines, a neurotransmitter molecule binds to the second
binding site on the unbound receptor. Next, a neurotransmitter
molecule binds reversibly to the second site when the first site is
already occupied, generating the double-bound closed channel
state. Similarly, the double-bound closed channel state can also
be generated when a neurotransmitter molecule binds to the first
site when the second is already occupied. Finally (last two lines),
the double-bound receptor can change conformations revers-
ibly between the closed and open channel states. As outlined in
 Subheading 3.3 , the apostrophes specify the directionality of the
reactions with respect to the orientation of the surface molecules.
In this case the neurotransmitter molecules are able to bind to
receptor molecules from within the synaptic cleft space.
 3. Save the file and quit.

 1. Create a new file called “ReactionData.mdl” (see Note 22).
 2. Specify the desired reaction data output : Enter the following

block of text:

3.5.3. Add Reactions

3.5.4. Specify Reaction
Data Output

REACTION_DATA_OUTPUT {

{COUNT[nt_R_0B, WORLD]} => “./reaction_data/nt_R_0B.dat”

{COUNT[nt_R_1Ba, WORLD]} => “./reaction_data/nt_R_1Ba.dat”

{COUNT[nt_R_1Bb, WORLD]} => “./reaction_data/nt_R_1Bb.dat”

{COUNT[nt_R_2B_C, WORLD]} => “./reaction_data/nt_R_2B_C.dat”

{COUNT[nt_R_2B_O, WORLD]} => “./reaction_data/nt_R_2B_O.dat”

{COUNT[nt, WORLD]} => “./reaction_data/nt.dat”

}

272 Czech, Dittrich, and Stiles

 Each file (.dat suffix) will be created automatically in a subdi-
rectory called “reaction_data”.
 3. Save the file and quit.

 MCell’s MDL supports several different ways to release molecules
at different times and locations during simulations. In this case,
the neurotransmitter molecules will originate inside each of the
synaptic vesicles, and then will diffuse out through the expanding
pore into the synaptic cleft. To create the initial distributions of
molecules within the synaptic vesicles, we will use a simple method
(once for each vesicle) that places a specified number of volume
molecules at random locations within spherical bounds of speci-
fied diameter. By default, this will occur when the simulation is
initialized, so the molecules will begin diffusing immediately. Each
vesicle will initially contain 3,000 neurotransmitter molecules.
 1. Add the neurotransmitter release sites : Use a text editor to

modify the first of the main MDL files for the expanding
fusion pore, “VesicleFusion_1.mdl” (see Subheading 3.5.6
later). Add the following text at the end of the INSTANTI-
ATE block (before its closing curly brace; see Note 37):

first_release_site SPHERICAL_RELEASE_SITE {

LOCATION = [-0.106, 0.021, 0.105]

MOLECULE = nt

NUMBER_TO_RELEASE = 3000

SITE_DIAMETER = 0.032

}

second_release_site SPHERICAL_RELEASE_SITE {

LOCATION = [0.106, -0.021, 0.105]

MOLECULE = nt

NUMBER_TO_RELEASE = 3000

SITE_DIAMETER = 0.032

}

 2. Save the file and quit.

 1. Reuse the “Partitions.mdl” file : Copy the “Partitions.mdl” file
from Subheading 3.4 to the current directory for the expand-
ing pore MDL model.

 2. Add INCLUDE statements to the main MDL files for the check-
point sequence : When the pore expansion series was exported
from Blender, a set of main and subordinate (included) MDL
files was created. These files are numbered in sequence, e.g.,
the main files are named “VesicleFusion_1.mdl”, “VesicleFu-
sion_2.mdl”, etc. As in Subheading 3.3.6 , we now need to

3.5.5. Add Initial
Distributions of
Neurotransmitter
Molecules

3.5.6. Final MDL File Setup

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 273

add the remaining (newly created) INCLUDE file references
to each of the ten main MDL files for the expanding pore.
This can either be done by hand for each of the files, or all at
once by entering the following two commands in succession
at the command line:

sed -e “9aINCLUDE_FILE = \”Partitions.mdl\”\nIN-
CLUDE_FILE = \”Molecules.mdl\”\nINCLUDE_FILE
= \”Reactions.mdl\”\n” -i VesicleFusion_[1-9]*.mdl

sed -e “16aINCLUDE_FILE = \”RegionModifications.
mdl\”\nINCLUDE_FILE = \”ReactionData.mdl\”\n” -i
VesicleFusion_[1-9]*.mdl

 Highly accurate simulation of neurotransmitter diffusion
through the pore would require many iterations and a very
fine time step so that the average random walk step length
would be much smaller than the pore radius at all times (4, 5) .
In this simple example, however, each of the ten main MDL
files is set to run for only one iteration with a relatively long
time step (one microsecond). This will allow quick visualiza-
tion of the pore expansion, but to see the transmitter escape
and bind to receptors, we will need to run the final checkpoint
segment for many more iterations.
 1. Increase the number of iterations for the final run of the check-

point sequence : Using a text editor, open the last of the main
MDL files, “VesicleFusion_10.mdl”. Change the first line
from:
iterations = 10

to
iterations = 500
 Then change the line:
CHECKPOINT_ITERATIONS = 1
to
CHECKPOINT_ITERATIONS = 491

 2. Save the file and quit.
 3. Run the simulation : When the MDL files were exported from

Blender, a separate “script” file was also created to run the ten
MCell simulations in succession (rather than starting each by
hand). The script file (“VesicleFusion.py”) is written in a high-
level command language called Python. Run the Python script
by entering:

 ./VesicleFusion.py

 at the command line. You will see MCell’s default run-time
 messages as the checkpoint runs execute in sequence, and the
reaction and visualization files will be created.

3.5.7. Run the Expanding
Pore Simulation

274 Czech, Dittrich, and Stiles

 We now use DReAMM to visualize the results of the expanding
pore simulations. We will reuse the settings file created previously
in Subheading 3.4.4 , and will also apply some additional cus-
tomizations and animation settings.
 1. Start DReAMM : Enter “dreamm” at the command line.
 2. Import visualization data : Click “Import & Select” on

the “Quick Controls” menu (labeled 1 in Fig. 3A). In the
“Import & Select Objects” menu, click the ellipsis (“…”)
by the “Viz Data File” text box. Navigate to the “VesicleFu-
sion_viz_data” directory and select the file “VesicleFusion.
dx”. Click “OK”.

 3. Import the customization settings file : In the “Read/Write
Settings” menu, click the ellipsis (“…”) by “Read File” and
then navigate to and select the file “SynapseCustom.dx” that
was created in Subheading 3.4.4 . Click “OK”. The “Den-
drite” and “PresynapticBouton” meshes will appear with the
rendering properties defined previously (see Note 38).

 4. Adjust the view : Hit Ctrl-f to center the view. Now open the
“View Control” menu (Ctrl-v from the “DReAMM Image
Window”) and then switch to a left view by setting “Set
View” to “Left”.

 5. Select all volume molecules : In the “Import & Select Objects”
menu, change “Add Selected” to “Add All”. Next, click on
“Volume Molecules” and click “Apply Operation Once”.

 6. Select all surface molecules : Click on “Surface Molecules”
and click “Apply Operation Once”.

 7. Close menus : Click the “Close” button by “Import & Select”
in the “Quick Controls” menu (labeled 5 in Fig. 3A).

 8. Apply previously defined volume molecule properties : Click
the “Set Rendering Prop”. button in the “Quick Controls”
menu (labeled 2 in Fig. 3A). In the “Rendering Properties”
menu, click “Molecules” next to “List” (top center), then
select “Ca”, and click “Load from selected object”. All of
the rendering properties previously associated with “Ca” are
now loaded in the “Properties” fields and in the “Colormap
Editor” menu. To apply the same properties to the neuro-
transmitter molecules, select “nt” and deselect “Ca”. Hit
“Apply Operation Once”, and all the “nt” pixels will change
into yellow spheres (Fig. 5C).

 9. Apply previously defined surface molecule properties : As in the
preceding step, load the previously defined “VGCC_C” prop-
erties and apply them to “nt_R_0B”. Then, load the proper-
ties for “VGCC_O” and apply them to “nt_R_2B_O”. The
unbound receptors will now appear as red arrows, and the
double-bound open channel receptors will appear as green
arrows.

3.6. Visualize MCell
Results with DReAMM
(Part 2)

3.6.1. Import the MCell
Visualization Data and
Import the Settings File

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 275

 10. Assign rendering properties for the remaining receptor states :
Manually change “(Front) Color” to yellow by entering
RGB values of 1, 1, and 0, respectively. Make sure that only
“nt_R_1Ba” is highlighted in the list of object names. Click
“Apply Operation (Once)”. Now enter RGB values of 0,
0, 1 for blue, select only “nt_R_1Bb”, and click “Apply
Operation Once”. Finally, enter RGB values of 0, 1, 1 for
cyan, select only “nt_R_2B_C”, and click “Apply Opera-
tion Once”. The single-bound receptors now will be yellow
or blue arrows, and the double-bound closed receptors will
be cyan arrows. All surface molecules should now appear as
colored arrows similar to their appearance in Subheading
 3.4.3 (Fig. 5C–F). If desired, try using the “receptor_1” or
“receptor_2” glyphs for a more realistic appearance.

 11. Close menus : Hit the “Close” button by “Set Rendering
Prop”. in the “Quick Controls” menu (labeled 6 in Fig.
 3A).

 To see the expanding pore more clearly, we will use a clipping
box (see Note 39) and visualize only the meshes and molecules in
and around the synaptic cleft.
 1. Set the default view : Hit Ctrl-f .
 2. Select the “Left” view : Hit Ctrl-v to bring up the “View Con-

trol” menu and then select “Left” under “Set View”.
 3. Align the clipping box : Click on “Open Menu List” in the

“Quick Controls” window (labeled 4 in Fig. 3A). This will
open the “Menu List”, which allows you to open individual
DReAMM menus. Scroll down and click on “Image Clip-
ping” to open the corresponding menu, and then click the
button labeled “Align Clipping Box with Current View”.
This will orient the clipping box to the current viewing
direction, so that the box’s front and back faces are parallel
to the screen and the left, right, top, and bottom limits are
parallel to the corresponding screen edges.

 4. Set the clipping distance : We now need to set the depth at
which the clipping box begins; that is, the distance from
the current camera location (look-from point) to the near-
est point on the front face of the box. This is most easily
done by “picking” a point on an object, and DReAMM will
then calculate the distance to a plane that cuts through the
picked point. In the “View Control” menu, select “Pick”
under “Mode” and then choose “Clipping Distance” under
“Pick(s)”. Next, in the “DReAMM Image Window”, click
on the head of the presynaptic bouton. Note that the dis-
tance from the camera to the picked point now appears in
the “Picked” field of “Near Distance” in the “Image Clip-
ping” menu.

3.6.2. Use Image Clipping

276 Czech, Dittrich, and Stiles

 5. Show the clipping box : In the “Image Clipping” menu, click on
the “Show Clipping Box” button. A yellow semitransparent
box will appear and, due to its large default size, will fill
the “DReAMM Image Window”. With the image window
active, hit Ctrl-z for “Zoom” mode (see Note 29) and then
right click and drag to zoom out. If necessary, zoom in (left
click and drag) or out again to see the entire clipping box in
the image window.

 6. Adjust the clipping box size : By default, the clipping box
dimensions are 20 × 20 × 0.1 microns (width × height ×
thickness). Shrink the box’s width and height by modifying
the “Left”, “Right”, “Upper”, and “Lower” limits in the
“Image Clipping” menu. Continue until the box encloses
only the synaptic vesicles and cleft, and then hide the box by
clicking again on the “Show Clipping Box” button.

 7. Apply image clipping : Click the “Apply Image Clipping”
button. Only a small slice through the synaptic region will
remain visible.

 8. Pan/zoom to reorient and magnify the view : With the image
window active, hit Ctrl-g for “Pan/Zoom” mode (see Note
 29). Center the mouse pointer on the visible structures, and
then left click and drag to enclose the objects within the
marquee. When you release the mouse button, the view will
be reoriented and magnified simultaneously.

 9. Rotate the view : Hit Ctrl-r for “Rotate” mode. Point near
the 3 o’clock position in the image window, and then right
click and drag in a counterclockwise direction. The clipped
objects will follow the pointer by rotating in the plane of
the screen (a constrained rotation around the current view
direction). Continue to the 12 o’clock position so that the
synaptic cleft will be approximately horizontal. Next, point at
the objects and left click and drag to perform a free rotation
around the current look-to point. Drag primarily to the left
or right to obtain an oblique view of the clipped objects.

 10. Adjust the clipping box thickness and fine-tune the dimensions :
In the “Image Clipping” menu, increase the thickness of the
clipping box. A setting of about 0.35 microns should include
both synaptic vesicles and most of the cleft space. With some
minor adjustments to the box’s dimensions, you can obtain a
view similar to that shown in Fig. 5H . You may also find that
you have to fine-tune the “Near Distance” for the box. This can
be done by entering a value in the “Specify” field (start with
a value very close to the indicated “Picked” value that was
obtained in step 4) and then clicking on the “Specify” button.

 11. Play the time sequence : Click the Play button on the “Sequence
Control” to watch the pore open and the neurotransmitter

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 277

escape to bind to receptors. If necessary, use the Frame
Controls to skip ahead in time (see Subheading 3.4.3 , step
10).

 DReAMM includes many features to create sophisticated ani-
mations using keyframes (see Note 40). In this final section, we
briefly introduce some of the possibilities by illustrating how to
rotate the camera around the clipped objects.
 1. Temporarily turn off image clipping : Again click the “Apply Image

Clipping” button in the “Image Clipping” menu. By turning off
image clipping temporarily, we will speed up and better illustrate
the operations required to animate the camera.

 2. Open the “Make Animation” menus : Click the “Make Anima-
tion” button on the “Quick Controls” menu (labeled 3 in
 Fig. 3A).

 3. Activate the “DReAMM Keyframe Editing Image Window” :
In the “Edit Keyframes” menu, click the “Show Camera Posi-
tions” and “Show Spline/Rotation Points” buttons. This will
open a new image window that shows the model objects as
well as glyphs representing the current camera and keyframe
camera locations. Note that this new image window is fully
interactive and operates with the same hot keys used in the
main “DReAMM Image Window”. With the new window
active, hit Ctrl-f to center the view. Now hit Ctrl-r and rotate
the view to see the model objects as well as the camera glyphs.
The current camera location for the “DReAMM Image Win-
dow” view is shown by the common base of two orthogo-
nal (perpendicular) arrows colored red and blue (look and
up directions, respectively). By default, one keyframe cam-
era location is also present, as indicated by orthogonal gold
(look) and green (up) needle glyphs (line segments) with the
numeral “1” alongside.

 4. Define the current view from the “DReAMM Image Window”
as the starting point for the animation : In the “Edit Key-
frames” menu, click “Start New List” to begin a new list of
keyframe data. The current camera location and view from
the “DReAMM Image Window” will overwrite the existing
default keyframe information. This will be indicated visually in
the “Keyframe Editing Image Window” as the first keyframe
camera glyph (labeled “1”) becomes coincident with the cur-
rent camera position glyph.

 5. Set up the rotation keyframes : One of the most commonly
desired animations is a simple rotation of the camera around
some selected model objects. DReAMM allows you to do this
operation in only a few simple steps. First, in the “Edit Key-
frames” menu, click on the drop-down list that currently says
“Add to End” and change it to “Compute Rotation Points”.

3.6.3. Animate the
Visualization

278 Czech, Dittrich, and Stiles

Now click the “Apply Edit: Once” button. A set of magenta
needle glyphs will appear in the “Keyframe Editing Image Win-
dow”, showing potential camera locations and directions for
the rotation. By default, a complete rotation is generated with
1° per step. Next, change the “Compute Rotation Points”
drop-down setting to “Add Rotation to Range”. Click the
“Apply Edit: Once” button again. This finalizes the keyframe
camera positions as indicated by the appearance of numbered
keyframe camera glyphs.

 6. Close menus : Click the “Close All” button in the “Quick
Controls” menu (labeled 7 in Fig. 3A).

 7. Play the animation : In the lower right-hand corner of the
“Quick Controls” menu, change “Keyframe Mode” from
“All Interactive” to “Keyframes” (labeled 8 in Fig. 3A).
Click the Play button on “Sequence Control” (Fig. 3A) and
watch the pore open and molecules diffuse while the cam-
era rotates around the objects. If you leave the “Keyframe
Editing Image Window” active, you will simultaneously see
the current camera glyph moving from keyframe-to-keyframe
around the model objects. To speed up animation playback,
disable the “Keyframe Editing Image Window” by reopen-
ing the “Edit Keyframes” menu and clicking once again on
the “Show Camera Positions” and “Show Spline/Rotation
Points” buttons.

 8. Turn on image clipping : Reopen the “Image Clipping” menu
and click the “Apply Image Clipping” button again to see the
animation of the clipped model objects. You can turn image
clipping on and off during playback of the animation.

 9. Save your DReAMM settings : As in Subheading 3.4.4 , step
1 , save your current DReAMM settings so that you can reload
them and replay the animation at a later time.

 1. There is presently a distinction between “modeling” software
(e.g., Blender) and computer-aided design (CAD) software.
Both allow the user to design 3D structures interactively, but
“modeling” programs are specialized for animation and mor-
phing of “smoother” or, in the present context, more “bio-
logical” shapes. CAD software, on the other hand, is oriented
toward the design of objects for architectural or mechanical
engineering, and may be integrated with computer-aided
manufacturing (CAM) software and machinery.

4. Notes

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 279

 2. Developer libraries typically are not installed by default with
Mac OS X. The same problem can arise with some Linux dis-
tributions such as Ubuntu, Debian, or others.

 3. The DX file format (.dx) was originally created by IBM for
its commercial DataExplorer software, a large visual program-
ming and visualization environment. Eventually DataExplorer
(DX) was released as open source code (OpenDX), which we
have now improved and expanded into PSC_DX for use with
DReAMM and large-scale MCell models. We continue to use
the native DX file format because it is very general and efficient
for use with hierarchical assemblies of arbitrary mesh objects,
each of which may be associated with multiple datasets of arbi-
trary type, and also annotated with a variety of metadata tags.
Although we do not explicitly illustrate export of .dx files from
Blender in this chapter, it is easily done using the supplied
plug-in. Direct export from Blender to DReAMM can be very
useful for rendering and creation of sophisticated animations,
as well as specialized mesh editing operations. DReAMM can
also export MDL files for use with MCell.

 4. In Blender, the X -, Y -, and Z -axes are red, green, and blue,
respectively, and the cardinal views (XZ -, YZ -, or XY -plane)
can be accessed using number keys on the number pad (1 , 3 ,
or 7 , respectively). While in a cardinal view, a visual key for
the axes is present in the lower left corner of the “3D view”
window. For example, if you hit 1 (on the number pad) for
the XZ -view, you will see a horizontal red line labeled X and
a vertical blue line labeled Z, indicating that the XZ -plane lies
in the plane of the screen. The Y -axis is perpendicular to the
screen in this view.

 5. Most Blender hot keys work only when the cursor is located
inside the “3D View” window.

 6. A UV sphere is composed of quadrangular faces between lines
of longitude and latitude, similar to a globe. Icosahedral
spheres (composed of hexagons and pentagons; triangulated by
Blender) are another option, but UV spheres are easier to use
for the region definition and extrusion operations in this chapter.

 7. Spatial units are arbitrary in Blender, but, once objects are
exported to MDL files for use with MCell, dimensions will be
interpreted as microns.

 8. Although the cardinal views are sufficient for the operations in
this chapter, it is often helpful to rotate around an object for
a better view. To rotate around the currently selected object,
click and drag using the middle mouse button. Certain opera-
tions may also require zooming and panning. Scroll up with
the middle mouse button to zoom in, and scroll down to

280 Czech, Dittrich, and Stiles

zoom out. To pan, hold Shift and one of the following keys
on the number pad: 8 (up), 2 (down), 4 (left), or 6 (right).

 9. If you accidentally hit one of the number keys on the main key-
board instead of the number pad, you will move to a different
layer and your current view will disappear. If this occurs, simply
hit 1 on the main keyboard to return to layer 1.

 10. To make the faces and central vertex, we first replicate the
original topmost vertices using an extrude operation. Ordi-
narily this would be used to create a cylindrical extension,
and in a later operation we extrude vertices in that fashion to
create the spine shaft. In this case, however, we will extrude
using a length of 0, so the new vertices will be exactly coinci-
dent with the original vertices. Then we will scale the radius
of the extrusion to a value of 0, and this will move all of the
new vertices to the desired central point in the plane of the
opening. Finally, we will remove all of the unnecessary dupli-
cate vertices, leaving all of the new triangles connected to a
single central point.

 11. It is useful to save periodic snapshots of all Blender files
(.blend) using distinct names. This allows you to start over
from a previous snapshot if something unexpected occurs.

 12. “Object Mode” is used for operations on entire objects
(e.g., selecting, moving, scaling), while “Edit Mode” is used
for operations on selected faces or vertices.

 13. The numerical suffix for the material name may differ (e.g.,
if a .blend file is reloaded). If this occurs, just ensure that you
change the material name for the correct object.

 14. There is an error (a bug) that sometimes appears when using
Blender’s Boolean operations. Under some conditions, the
mesh vertices are reconnected incorrectly, leaving undesired
faces and/or holes. This should not occur if the steps of the
chapter are followed precisely. If the problem does occur,
however, it can be fixed by deleting any extra faces and/or
making the vertices around a hole into one or more faces as
necessary.

 15. Blender uses both “Global” and “Local” axes. There is only
one set of “Global” axes, but each object has its own unique
“Local” axes, which may or may not coincide with the “Glo-
bal” axes. By using “Apply scale and rotation” in this step,
the “Local” axes become coincident with the “Global”
axes. This ensures that the objects will be aligned with the
“Empty” object created in Subheading 3.1.7 , step 9 .

 16. Each surface mesh element (face) has a front and back. The
direction perpendicular (normal) to a face defines the face’s
normal vector. Vertices shared by more than one face have
an associated normal vector defined as the average of the face
normals. When objects are scaled (shrunken or enlarged),

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 281

each vertex is moved along its normal (inward or outward,
respectively), and so the faces become smaller or larger. On
the other hand, when a group of faces is moved rather than
scaled, all of the vertices are moved along parallel vectors. In
the particular case of this step, we want a spine head to move
“out” or “in” along the axis of the spine neck. To do so, we
can move the head along a vector defined by the average of
its face normals. Since each spine head is radially symmetric
around the spine axis, the average of the face normals will be
the spine axis itself.

 17. A full introduction to the MDL syntax is beyond the scope
of these stand-alone examples. Please consult the MCell
Reference Guide for additional information (http://www.
mcell.psc.edu).

 18. Every surface mesh object is composed of individual poly-
gons. To describe any mesh in a general but compact way, all
of the vertices (x , y , z coordinates) are listed first (see VER-
TEX_LIST in later example), and then the triangular faces
are listed next (ELEMENT_CONNECTIONS). Each face
is described by an array of index numbers that refer to the
vertex list (a triple of vertex indices). For example, a face that
connects the first three vertices could be listed as [0,1,2]
(zero-based indices are used; the order in which the vertices
are listed, together with the right hand rule, determines the
front and back sides of the face). Thereafter, mesh regions
can be named and defined using arrays of index numbers
that refer to the list of faces. Thus, [0,1,2,3,4] would define
a region composed of the first five faces. In an MDL file for
one or more mesh objects, each object is defined by a POL-
YGON_LIST with a user-specified name, and that includes
vertices, triangular connections, and regions (if any). For
example:

my_mesh_name POLYGON_LIST {

VERTEX_LIST {

(list of all x,y,z coordinates)

}

ELEMENT_CONNECTIONS {

(list of all triangular faces, each defined by
three vertex index numbers)

}

DEFINE_SURFACE_REGIONS {

my_first_region_name {

ELEMENT_LIST = [list of face index numbers]

}

my_second_region_name {

282 Czech, Dittrich, and Stiles

(…)

}

(…)

}

}

 19. Checkpointing is a general term in large-scale computing
and simply means that a running process (e.g., simulation)
is stopped temporarily so that it can be restarted later. At
the checkpoint, the current state of the process is written to
a file that is subsequently read when computation resumes.
With MCell, the checkpoint file includes the locations and
states of all molecules, as well as other run-time parameters.
When the simulation is restarted after a checkpoint, a com-
plete set of input MDL files is read in addition to the check-
point data. Thus, any new changes made in the MDL files
(e.g., mesh geometry) are incorporated into the continuing
simulation. In the example of this chapter, ten different sets
of MDL files are used over a checkpointing sequence, and
the radius of the fusion pore increases in each step. All of the
diffusing neurotransmitter molecules are contained within
the expanding pore or the synaptic cleft space later, and so
diffusion from the vesicle through the pore can be simulated
without concern that molecules escape from the changing
pore geometry.

 20. To check dimensions, click the “Edge Lengths” button in
the “Buttons Window” under “Mesh Tools 1”. This panel
is on the far right of the “Buttons Window”, and, depend-
ing on window size and resolution, you may have to scroll
over to see it. If this is the case, scroll “up” using the middle
mouse button while the cursor is over the “Buttons Win-
dow”. Select “Edge Lengths”, and values will appear for
all highlighted edges (to three decimal places). Additional
measurement capabilities are available through other online
plug-ins for Blender.

 21. This step may take some time to complete, depending on
the speed of your computer. Also, you may find that Blender
runs slowly after this step. This is due to a caching problem
that can be eliminated simply by reopening the final saved
.blend file and continuing.

 22. MDL files are plain text files and can be edited using any
available text editing program. Popular choices on Unix-
like operating systems include vim, emacs, pico, or nano. In
addition, the Writer program within OpenOffice (similar to
MS Word within MS Office) can be used as long as the files
are saved in plain text format.

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 283

 23. A “block” denotes a set of MDL commands enclosed in
curly braces, and some blocks may be nested (blocks within
blocks).

 24. As in other cell modeling languages, a “molecule name” in
MCell’s MDL is quite general and may actually correspond
to a functional state, such as an open or closed conformation
of a molecule that includes a transmembrane ion channel.
The relationships between molecules and states are defined
in subsequent reaction statements.

 25. Molecules can be added to surface regions on meshes in sev-
eral ways. In one approach the molecules are added directly
by hand-editing a DEFINE_SURFACE_REGIONS block
within a POLYGON_LIST (see Note 18). This can be quick
and easy for small meshes, but hand-editing large mesh files
is generally undesirable. Thus, in this chapter we illustrate use
of the MODIFY_SURFACE_REGIONS command. In addi-
tion to other functions, MODIFY_SURFACE_REGIONS
allows addition of molecules to mesh regions defined pre-
viously in other (included) MDL files. To add molecules,
one specifies the name of the mesh region to be modified,
the name of the molecules to be added, the number to be
added, and the molecules’ orientations with respect to the
front and back of the surface.

 26. In this example molecules are added to surface regions at the
beginning of the simulation. It is also possible for molecules
to appear and disappear during a simulation as reaction steps
occur, and additional molecules may also be “released” in
closed volumes and on surface regions at specified times dur-
ing running simulations. When a molecule is produced by a
reaction, its initial location depends on the location of the
reactant(s), and may also reflect user-specified directionality
with respect to a surface.

 27. It is important to do visual checks often, especially before
running long simulations with large models. Visual checks
are typically done by running a short number of iterations
for rapid visualization with DReAMM.

 28. By default, DReAMM will use rendering properties that
minimize the time and memory required to display images.
It will also use “Software Rendering”, which means that the
calculations required to generate the images are performed
on the computer’s CPU, rather than the graphics proces-
sor on the video card. DReAMM can also use “Hardware
Rendering”, which does take advantage of graphics hard-
ware and under many conditions will be much faster. How-
ever, as models increase in size and complexity, rendering in
Hardware may become slower than in Software, or may not

284 Czech, Dittrich, and Stiles

be possible at all if insufficient memory is available on the
video card. You can switch back and forth between Software
and Hardware rendering by clicking “Options -> Rendering
Options…” on the “DReAMM Image Window” menu bar,
and then clicking on the “Software” or “Hardware” but-
ton under “Rendering Mode” in the pop-up “Rendering…”
menu. Either Software or Hardware rendering may be used
throughout the examples of this chapter, except when Soft-
ware rendering must be used with “Image Clipping” (Sub-
heading 3.6.2 and Note 39).

 29. With DReAMM, hot keys function only if both “Num Lock”
and “Caps Lock” are off on the keyboard. Most DReAMM
hot keys select different viewing modes and require that the
“DReAMM Image Window” is selected. A sequence of view
changes can be undone and redone using Ctrl-u and Ctrl-
d , respectively, and a default view of centered objects can
be obtained with Ctrl-f . Commonly used viewing modes
include the following:
 • “Rotate” (Ctrl-r) – left click and drag for free rotation around

the current look-to point, or right click and drag for con-
strained rotation around the current look direction.

 • “Navigate” (Ctrl-n) – left click, hold, and move the
pointer toward an object to move the camera toward
the object; middle click, hold, and move the pointer
to pivot the camera (change the look-to point without
changing the look-from point), or right click, hold,
and move the pointer to move the camera away from
objects. While in “Navigate” mode, the “View Control”
menu includes sliders for forward or backward speed of
motion and relative pivot speed, and also a selector but-
ton that allows the camera to look in different directions
while traveling forward or backward (e.g., looking 45°
to the right while traveling forward). For best results,
use “Navigate” mode while using Hardware rendering.

 • “Zoom” (Ctrl-z) – left click and drag to zoom in on a
region outlined by a centered marquee, or right click
and drag to zoom out by fitting the current display into
a centered marquee.

 • “Pan/Zoom” (Ctrl-g) – similar to “Zoom” mode except
that you reorient the view and zoom simultaneously, by
first pointing to the object of interest and then clicking
and dragging a marquee around it.

 30. Custom rendering properties are used to visualize particu-
lar molecules, region boundaries, and molecules obscured
by meshes. Here, we illustrate the use of custom rendering
properties to visualize the proper location and orientations

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 285

of the synaptic vesicles and their calcium binding sites, the
VGCCs, and calcium ions.

 31. Values can be changed by clicking the up/down arrows or
by directly entering the desired value into the field and hit-
ting Enter .

 32. In a “real” model, use of a colormap ensures that all regions
were designed properly. Any errors must be fixed and the
modified model should be rerun and retested until all regions
are verified visually.

 33. To see a sharp transition between mesh elements with differ-
ent colors, change the “Color Dependence” selector from
“Vertices” to “Elements”. If “Vertices” is used instead, color
changes between mesh elements are blended to give the
mesh a smooth appearance.

 34. You must hit Enter after typing in a DReAMM text box
before the changes will be recognized.

 35. A directional glyph like an arrow is often a good choice when
checking the orientation of surface molecules.

 36. DReAMM settings files contain the list of currently selected
objects, all keyframe data, and all assigned rendering prop-
erties, including colormaps. They can be reloaded later for
the same or different visualization data, allowing reuse and
exchange of settings. You can also choose to reload particu-
lar portions of a settings file. For example, you may wish
to load rendering properties previously assigned to another
model, but not the selected objects or keyframe information
from the other model.

 37. The locations (X , Y , Z coordinates) for each release site can
be obtained with Blender or DReAMM, and are approxi-
mately centered within each vesicle. With Blender, you can
display a median value for a selected set of vertices by hitting
 n and then clicking “Global” in the “Transform Properties”
pop-up menu. With DReAMM, you can use the “Probes”
menu to activate 3D cursors that can be moved around in
space, with a display of their positions.

 38. The settings file created previously includes rendering pro-
perties assigned for meshes and molecules. Since the meshes
in the new model share the same names as the meshes in the
previous model, the rendering properties are applied imme-
diately. On the other hand, the molecules in the new model
do not have the same names as the molecules in the previous
model. Thus, at this point the new molecules are still rendered
using default properties (pixels). In subsequent Subheading
 3.6.1 , steps 8 and 9 , the previously defined rendering prop-
erties will be reassigned (copied) to the new molecules.

286 Czech, Dittrich, and Stiles

 39. DReAMM includes two different types of clipping opera-
tions accessed through separate menus. “Data Clipping”
allows you to specify separate X -, Y -, and/or Z -limits for
different objects (“Meshes”, “Wireframes”, “Boundaries”,
“Volume Molecules”, or “Surface Molecules”). Molecules
with positions that lie within the limits are included for ren-
dering, as are mesh elements (triangles) with included cent-
ers of mass. Thus, when using “Data Clipping” the amount
of data to be rendered is reduced. If only a portion of a
very large model is visualized, rendering speed can increase
enormously. However, meshes clipped in this manner may
have a jagged edge because complete triangles are removed.
“Data Clipping” works when using either Software or Hard-
ware rendering. In contrast, “Image Clipping” allows you
to specify an arbitrarily oriented clipping box anywhere in
space, and all objects contained within the box are shown
with smooth cut edges. This increases rather than decreases
the amount of computation, and with current versions of
DReAMM this must be done with software rendering. For
large datasets, “Data Clipping” and “Image Clipping” can
be used in combination.

 40. DReAMM animations are designed using interpolated key-
frames. Each keyframe includes information about the cam-
era position and view, lighting, depth cueing, and stereo
visualization settings. In general, keyframes can be added
and removed in a variety of ways, and all of the keyframe
data parameters can be interpolated using a spline function
over the entire keyframe sequence or a specified portion
thereof. For additional information, see the DReAMM ani-
mation tutorials in (15) .

 The authors thank Aji Janis and Gary Blumenthal for careful
reading and testing of the examples in this chapter. This work
was supported by NIH R01 GM068630 (JRS), P41 RR06009
(JRS), and F32 GM083473 (MD).

Acknowledgments

 References

 1 . Tao , L. and Nicholson , C. (2004) Maximum
geometrical hindrance to diffusion in brain
extracellular space surrounding uniformly spaced
convex cells . J. Theor. Biol. 229 , 59 – 68 .

 2 . Hrabe , J. , Hrabetova , S. , and Segeth , K.
 (2004) A model of effective diffusion and tor-
tuosity in the extracellular space of the brain .
 Biophys. J. 87 , 1606 – 1617 .

 Rapid Creation, Monte Carlo Simulation, and Visualization of Realistic 3D Cell Models 287

 3 . Tao , A. , Tao , L. , and Nicholson , C. (2005)
 Cell cavities increase tortuosity in brain extra-
cellular space . J. Theor. Biol. 234 , 525 – 536 .

 4 . Stiles , J. R. , Van Helden , D. , Bartol , T. M. ,
 Jr. , Salpeter , E. E. , and Salpeter , M. M. (1996)
 Miniature endplate current rise times <100 μ s
from improved dual recordings can be mod-
eled with passive acetylcholine diffusion from
a synaptic vesicle . Proc. Natl. Acad. Sci. USA
 93 , 5747 – 5752 .

 5. Stiles , J. R. , Bartol , T. M. , Jr. , Salpeter , E.
E. , and Salpeter , M. M. (1998) Monte Carlo
simulation of neurotransmitter release using
MCell, a general simulator of cellular physi-
ological processes , in Computational Neu-
roscience (Bower , J. M. , ed.), Plenum , New
York, NY , pp. 279 – 284 .

 6. Stiles , J. R. , Bartol , T. M. , Salpeter , M. M. , Sal-
peter , E. E. , and Sejnowski , T. J. (2001) Synap-
tic variability: new insights from reconstructions
and Monte Carlo simulations with MCell , in
 Synapses (Cowan , W. M. , Stevens , C. F. , and
 Sudhof , T. C. , eds.), Johns Hopkins University
Press , Baltimore, MD , pp. 681 – 731 .

 7. Stiles , J. R. and Bartol , T. M. (2001) Monte
Carlo methods for simulating realistic synap-
tic microphysiology using MCell , in Compu-
tational Neuroscience: Realistic Modeling for
Experimentalists (De Schutter , E. , ed.), CRC
Press , Boca Raton, FL , pp. 87 – 127 .

 8 . Pawlu , C. , DiAntonio , A. , and Heckmann , M.
 (2004) Postfusional control of quantal current
shape . Neuron 43 , 607 – 618 .

 9. Stiles , J. R. , Ford , W. C. , Pattillo , J. M. ,
 Deerinck , T. E. , Ellisman , M. H. , Bartol ,
 T. M. , and Sejnowski , T. J. (2004) Spa-
tially realistic computational physiology:
past, present, and future , in Parallel Com-
puting: Software Technology, Algorithms,

Architectures & Applications (Joubert , G.
R. , Nagel , W. E. , Peters , F. J. , and Wal-
ter , W. V. , eds.), Elsevier , Amsterdam , pp.
 685 – 694 .

 10 . Coggan , J. S. , Bartol , T. M. , Esquenazi , E. ,
 Stiles , J. R. , Lamont , S. , Martone , M. E. ,
 Berg , D. K. , Ellisman , M. H. , and Sejnowski ,
 T. J. (2005) Evidence for ectopic neurotrans-
mission at a neuronal synapse . Science 309 ,
 446 – 451 .

 11 . He , L. , Wu , X. S. , Mohan , R. , and Wu , L. G.
 (2006) Two modes of fusion pore opening
revealed by cell-attached recordings at a syn-
apse . Nature 444 , 102 – 105 .

12. Kerr, R.A., Bartol, T.M., Kaminsky, B., Dit-
trich, M., Chang, J.J.C, Baden, S.B., Sejnowski,
T.J., and Stiles, J.R. Fast Monte Carlo simula-
tion methods for biological reaction-diffusion
systems in solution and on surfaces. SIAM J.
Sci. Comput. 30, 3126–3149.

 13 . Kerr , R. A. , Levine , H. , Sejnowski , T. J. ,
and Rappel , W. J. (2006) Division accuracy
in a stochastic model of Min oscillations in
Escherichia coli . Proc. Natl. Acad. Sci. USA
 103 , 347 – 352 .

 14 . Koh , X. , Srinivasan , B. , Ching , H. S. , and
 Levchenko , A. (2006) A 3D Monte Carlo
analysis of the role of dyadic space geometry
in spark generation . Biophys. J. 90 , 1999 –
 2014 .

 15. www.mcell.psc.edu and pages therein.
 16. www.blender.org.
 17. Synapse Web, Kristen M. Harris, PI, http://

synapse-web.org/. The publicly available
VRML file that contains the data for the
reconstruction can be downloaded from
www.synapse-web.org/anatomy/Ca1pyrmd/
radiatum/index.stm.

Chapter 10

 A Cell Architecture Modeling System Based on Quantitative
Ultrastructural Characteristics

 Július Parulek , Miloš Šrámek, Michal Červeňanský , Marta Novotová,
and Ivan Zahradník

 Summary

 The architecture of living cells is difficult to describe and communicate; therefore, realistic computer
models may help their understanding. 3D models should correspond both to qualitative and quantitative
experimental data and therefore should include specific authoring tools such as appropriate visualization
and stereological measures. For this purpose we have developed a problem solving environment for stereology-
based modeling (PSE-SBM), which is an automated system for quantitative modeling of cell architecture.
The PSE-SBM meets the requirement to produce models that correspond in stereological and morphologic
terms to real cells and their organelles. Instead of using standard interactive graphing tools, our approach
relies on functional modeling. We have built a system of implicit functions and set operations, organized in
a hierarchical tree structure, which describes individual cell organelles and their 3D relations. Natural vari-
ability of size, shape, and position of organelles is achieved by random variation of the specific parameters
within given limits. The resulting model is materialized by evaluation of these functions and is adjusted for
a given set of specific parameters defined by the user. These principles are explained in detail, and modeling
of segments of a muscle cell is used as an example to demonstrate the potential of the PSE-SBM for com-
munication of architectural concepts and testing of structural hypotheses.

 Key words: Implicit modeling , Cell architecture , Muscle cell , Stereology , 3D structure , Visualization ,
 Automatic model generation , XML .

 The structure and the function of muscle cells are related in
many intricate ways that are difficult to understand, describe, and
communicate to others. Within this scope, computer modeling
might be very instrumental for synthesis and verification of recent

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_10

289

290 Parulek et al.

knowledge, as well as for testing specific hypothesis. Here, we
describe a novel modeling approach aimed to capture the cell
architecture, that is, the manner how the muscle cells are con-
structed of their organelles (1– 3) . We employed the methods of
geometrical modeling implemented with the use of recent com-
puter hardware and computer graphics tools to provide biologists
and biophysicists with an environment for virtual cell modeling
 (4– 7) . This approach has numerous potential applications. In this
work we present an example of modeling striated muscle cells to
demonstrate its principles and the potential of geometrical mod-
eling for representation of 3D volume models.

 Our effort is aimed at creation, verification, and visualiza-
tion of complex models of muscle cells. A typical cell consists of
hundreds or even thousands of various organelles. Thus, creation
of such model organelle-by-organelle, using the traditional inter-
active techniques, would require unacceptably long time and,
moreover, would not ensure the typical stochastic properties.
Therefore, in our approach, the cell model is created in an auto-
mated process that allows simultaneous generation of numerous
variants of models based on the same specification but differing
in their random representations.

 We call this automated geometry modeling system the prob-
lem solving environment for stereology-based modeling (PSE-SBM).
The PSE-SBM meets the essential requirement, namely, to pro-
duce models that correspond in quantitative terms to volume and
surface densities (VSD) of cell organelles known from stereologi-
cal and morphological analysis of electron-microscopic images
of real cells. It is obvious that such goals cannot be reached
by conventional graphic modeling tools, as they require either
interactive graphical input (e.g., Blender (8) , Truespace (9) ,
etc) or sophisticated techniques for capturing 3D volume data,
like electron or confocal microscopy – all techniques being very
demanding for manpower, time, and costs. In fact, our approach,
dissimilar to interactive graphics tools, resembles functional mod-
eling in a sense that it shares three features – usage of mathemati-
cal functions, adjustment of their parameters according to a set
of input parameters, and visualization of the generated models
in a user-defined way. We define a system of functions and set
operations that describe each individual cell organelle and spatial
relations among them. The resulting model, defined by the user
through a set of specific parameters, is then just a combination of
these functions. The functions employed here for modeling are
known as implicit functions (10, 11) and their evaluation defines
the outer surfaces of each organelle.

 Implicit surfaces (implicits) are a convenient geometric modeling
tool for image synthesis and computer-aided geometric design.
The set of techniques, known today as implicit modeling, was

1.1. Implicit Modeling

 A Cell Architecture Modeling System Based on Quantitative 291

used for the first time by Blinn (12) . Currently, there are several
types of implicit modeling systems that are oriented toward spe-
cific classes of objects. The first class stands for skeleton-based
models. A simplest skeleton is a point or a set of isolated points.
Implicit surfaces, built up on skeletal points, are known as blobs
 (12) , soft objects (13) , and metaballs (14) . Techniques presented
by point skeletons were later extended by lines, curves, and
polygons and generalized to convolution surfaces (15, 16) . The
modeling systems implementing the approach based on convolu-
tion surfaces are often limited by the choice of skeletal elements
according to technical difficulties in evaluating convolution inte-
grals. Nevertheless, convolution surfaces are widely used in geo-
metrical modeling of organic structures mainly due to their ability
to represent smooth shapes (17– 19) .

 The second class is represented by implicit surfaces defined by
analytical functions. These include algebraic (e.g., plane, quadrics)
and nonalgebraic functions (e.g., superquadrics) (20) . Later, Pasko
et al. generalized the representation of implicits by combination of
all the aforementioned approaches into a single framework named
functional representation (or F-rep) of the geometric object (21) .

 To modify either the functional value or the coordinates of
any given implicit surface function (implicit function), several
unary modifiers (10, 11, 21, 22) can be applied. Furthermore,
complex objects can be created via constructive solid geometry by
Boolean set-theoretic operations. The basic set-theoretic opera-
tions can be defined using the min and max operators, which are
not differentiable. Therefore, several analytical expressions that
approximate these operators were proposed (21, 23, 24) .

 Implicit surfaces are particularly well suited for construction
of blends. A blend is a surface that forms a smooth transition
between intersecting surfaces. The blends can be classified into
global and local. In general, global blends include linear, hyper-
bolic, and superelliptic ones (11) . Local blends limit the domain
in which the blending operation is performed by definition of
an extra displacement function, which is added to the given set-
theoretic operation (25, 26) .

 Implicit surfaces are suitable for approximation of real world
data. Muraki used the Blobby model to fit volumetric data (27) .
Reconstruction of surface models using the methods based on
thin plate splines (28) and radial basis interpolants (29) from
unparallel slices was explored in several works (30– 32) .

 Geometric modeling of 3D biological structures enables biolo-
gists to grasp and understand complex features of biological
objects by coupling them with specific biophysical processes and
by means of suitable visualization methods (33) .

 Prusinkiewicz (34) presented characteristics useful for
describing biological models from a computer scientist’s point

1.1.1. Modeling Environ-
ments for Biological
Structures

292 Parulek et al.

of view. Here, the models were classified into two groups:
structure-oriented and space-oriented models. The structure-
oriented models typically describe where each component of the
structure is located, while the space-oriented models describe
what is located at each point of space. Further, the structure
and the space that embeds such models may be continuous or
discrete. Models may have different topology (nonbranching
filaments, a branching structure, a network, a 2D surface, a
3D solid object). In the case of time-evolving structures, the
model may occupy constant space or may expand over time.
The time-dependent neighborhood relationships between
individual modules may be fixed or variable. Communication
between the modules may have the form of lineage (informa-
tion transfer from a parent to its offspring) or of interaction
between coexisting modules.

 Implicit surfaces support a free-form modeling methodol-
ogy, which is an advantage in modeling of biological structures.
Several modeling environments for implicits have been devel-
oped (35– 37) . These represent the most promising branches in
the field of implicits and their utilization in modeling of biologi-
cal structures. Additionally, some support for implicits is avail-
able also in the well-known VTK toolkit (38) , including objects
of the quadric subclass, CSG implicits, and several other primi-
tive classes.

 General progress in computing power and speed has acceler-
ated the existing polygonization algorithms (39, 40) , which now
allow users to visualize their results nearly in real time. High-
quality rendering of implicit surfaces is provided by POV-Ray –
the Persistence of Vision Raytracer (41) . It reads in a text file with
a description of the scene (object specifications, lighting, and a
camera) and generates an image by a rendering technique based
on ray tracing.

 Cell architecture, i.e., the internal organization of cell organelles
or structures that perform specific functions, is inferred mostly
from electron microscopic images that provide resolution neces-
sary to see all organelles and their relations (2) . Electron micro-
graphs, obtained by an electron beam passing through a very
thin (40–100 nm) slice of a tissue sample, depict only a minute
volume of the tissue. A morphological concept of spatial cell
organization emerges after inspection of numerous samples. As
individual images are not representative for the whole tissue,
quantification of cell structures is performed on many images
by the methods of morphometry and stereology. Morphological
description involves typical features, such as shapes, positions,
and variability of cell components. Morphometric description
reflects the average sizes and distances of cell structures as seen
in their images. Stereological description provides VSD of cell

1.2. Study of Cell
Architecture

 A Cell Architecture Modeling System Based on Quantitative 293

components relative to a unit of cell volume. The design of the
architecture of a specific cell is then expressed using this set of
complex characteristics (2) .

 In the concept described in this work, cell modeling starts with
definition of a model, written down in a file using the model
description language (MDL, Subheading 3.1). Such a file is
then wrapped by job cell configuration (jcc, Subheading 3.2)
syntax, in which specifications for processing of the input MDL
file by the cell generator tool and specification of the contents
of output files are provided. After issuing a cell generator com-
mand with an input jcc file, a set of cell models is produced; this
takes approximately seconds. Cell models can be then verified
(stereological quantification) to reveal dissimilarities between the
expected and estimated stereological values. Finally, the user can
adjust the initial configuration and rerun cell generation so that
plausible stereological values are obtained (Subheading 3.3.2).
Another important criterion of model quality is the appearance
or fidelity of the model (Subheading 3.3.1). Visual inspection,
an analog of morphological analysis, can reveal possible structural
inconsistencies. Although the PSE-SBM allows direct visualiza-
tion of created cell models, it is useful to convert models to their
boundary or volumetric representations and take the advantage
of interactive rendering techniques. Direct rendering of implicit
surface models by a ray-tracing technique produces images for
presentation purposes. The diagram in Fig. 1 summarizes all
components of the modeling environment.

1.3. Method Overview

 Fig. 1. The iterative modeling procedure: User’s specification – an interactive specification of a PSE-SBM job, MDL file
– a set of geometrical and statistic parameters in XML format that cover organelle descriptors, JCC file – wraps the MDL
configuration describing the output to be produced, Cell generator – reads input JCC and MDL files and generates the
cell model represented by means of XISL-based implicit functions, Implicit model – each organelle is represented by an
individual implicit function, Quantification – estimation of VSDs, Rendering – images obtained by direct ray tracing of
the implicit cell models, Converter – reads an input implicit cell model and converts it to either boundary or volumetric
representation .

294 Parulek et al.

 The methodology of implicit modeling is not the main topic of
this paper. However, to gain a better insight, we introduce here
the PSE-SBM system together with an introduction to cell and
organelle modeling techniques. Further, we present a computing
method for estimation of VSD of organelles.

 According to our goal aimed on stereology-based implicit mod-
eling, we have developed XISL – a scripting language – and tools
for representation of implicit surfaces (42) . The XISL suite is
intended to assist developers in construction of implicit models
of arbitrary cell or tissue type. Here, implicit models are speci-
fied in declarative text files by means of the extensible markup
language (XML), where each implicit function class (a primi-
tive, an operation, etc.) is defined by its appropriate tag(s). This
ensures clear and self-explanatory notation of complex implicit
objects (Fig. 2).

 The XISL implicits are defined by means of the functional
representation (21) . In functional representation an object is
defined by the inequality f (x 1 , … , x n) ≥ = 0. In the three-dimen-
sional case, an object defined by such inequality is usually called an
implicit solid and an object defined by the equation f (x 1 , … , x n) = 0

2. Materials

2.1. Xisl

 Fig. 2. Demonstration of the XISL language (script) that defines the implicit “pawn” object and its rendition .

 A Cell Architecture Modeling System Based on Quantitative 295

 is called an implicit surface. The function f can be defined analyti-
cally, by means of a function evaluation algorithm, or by tabulated
values and an appropriate interpolation procedure. The impor-
tant property of implicit solids is unambiguous point-object clas-
sification. If X = (x 1 , … , x n) is a point in E n , then it is classified
as follows: for f (X) > 0 it is inside the object, for f (X)= 0 it lies
on the boundary of the object, and for f (X)< 0 it is outside of
the object.

 The general definition of XISL objects allows implementa-
tion of various forms of implicits. Each implicit function is repre-
sented via an n -ary hierarchical tree, the leafs of which stand for
arbitrary implicit primitives and the inner nodes stand for unary,
set-theoretic, blending, and interpolation operations.

 Several modeling systems based on implicits were developed
 (35, 37) ; nevertheless, XISL is a compact, extensible, and operat-
ing system-independent package.

 The PSE-SBM modeling system allows users to define cell mod-
els by means of a high-level XML-based MDL. MDL specifica-
tion defines organelles by their probability of occurrence and by
the mean values of quantitative descriptors such as size and shape,
including their variation.

 An MDL specification, which defines the cell in a language
understandable by the general user, has to be transformed to the
low-level scene XISL description. This transformation has to be
developed specifically for each type of a 3D scene, that is, for
each cell type. In the following, we present application of this
approach to striated muscle cells, which represent very complex
and highly organized structures.

 The initial step in cell modeling involves creation of the central
skeleton of the cell, which in the case of muscle cells is represented
by a system of parallel cross-sectional graphs (c-graphs) distrib-
uted along the longitudinal axis with perturbations specified in the
MDL configuration. The longitudinal axis is defined by the orien-
tation of myofibrils. The transversal cell direction is perpendicular
to the longitudinal cell axis. An important modeling feature is
that each organelle has a preferred orientation along one of these
two directions. The c-graphs are used to create the myofibrillar
system by means of the F-rep of polygons (43) and interpolation.
Other organelle types (i.e., mitochondria, t-tubules, sarcoplasmic
reticulum, and terminal cisterns) are defined by their own skel-
etons derived from the c-graphs. Specification of skeletons reflects
the observed properties of real cells and their organelles and is
specified by appropriate morphological rules in the MDL configu-
ration. This concept is illustrated in Fig. 3 .

 The power of implicits resides in their ability to provide
organic-like shapes easily. Cellular structures are mostly rounded
objects without sharp edges and other details. Modeling of such

2.2. Cell Modeling

296 Parulek et al.

shapes can be achieved by combination of round primitives and
proper operations applied on them. For instance, a special class of
blend operations is suitable for creating smooth transitions between
input round primitives such as algebraic primitives and skeleton-
based primitives. In addition, implicit surfaces also directly support
point to object classification, object-to-object collision detection,
and object deformation, which are useful features in modeling of
multiorganelle cells. An important computational requirement is
rapid transmission of large models over the network. Therefore, it
is crucial to have model representation with low demands on stor-
age capacity. Thankfully, a noticeable feature of implicits is their
compressibility. In contrary to other methods, such as boundary
representation where an object is represented by a mesh, for the
implicit representation it is sufficient to store a function as a set
of symbolic terms that represent the function evaluation process
(see Fig. 2). For example, the size of a compressed file containing
about thousand of XISL-defined cell organelles did not exceed 1
MB, while a polygonal representation of such model at an appro-
priate resolution reached several tens of MBs.

 Skeletal muscle cells of mammals are populated with various types
of organelles, e.g., myofibrils, mitochondria, sarcoplasmic reticu-
lum, terminal cisterns, sarcolemma, t-tubules, etc., which differ in
size, shape, and topology. Therefore, in their modeling, different
approaches should be employed.

 Myofibrils, the contractile fibrils, are thin and long cylindrical
objects, segmented into Z, I, and A bands that give rise to the
striated pattern of muscle cells when viewed under a microscope.

2.3. Organelle
Representation

 Fig. 3. An example demonstrating eight consecutive sarcomeres of a muscle cell. A sarcomere is indicated by number
7 on the left. For better clarity, the sarcolemma is hidden and, also, the bottom part of the myofibrillar system is clipped
off by a transversal plane (middle). The complex system of underlying skeletons is made visible by clipping by a longitu-
dinal plane (right). The myofibrillar system (1) is defined by means of the c-graphs (2). The remaining organelles include
mitochondria (3), sarcoplasmic reticulum (4), t-tubules (5), and sarcolemma (6) .

 A Cell Architecture Modeling System Based on Quantitative 297

Muscle cells contain many myofibrils that occupy more than
50% of their volume. Myofibrils are organized in parallel bundles
spanning the whole length of the cell. In cross sections, myofi-
brils have rounded polygonal shape of about 1 μ m in diameter.
In the model, they are defined by means of cross-sectional graphs
(c-graphs) in a system of parallel transversal modeling planes. The
resultant formula of a myofibril is then obtained by interpolation
between the neighboring c-graphs along the longitudinal axis.
Myofibrils vary only slightly along their longitudinal axis and thus
their contours in cross section remain nearly unchanged. At the I
bands, the myofibril is slightly thinner than at the A bands. With
respect to this, it is sufficient to define a single (initial) c-graph
representing the basic myofibrillar topology across the cell. When
required, this initial c-graph can be obtained from the c-graph
database using a special syntax in the MDL configuration. The
initial c-graph is then distributed along the longitudinal axis with
slight perturbations as depicted in Fig. 4 .

 The thickening/thinning at the A/I band boundaries is speci-
fied by means of a user-defined factor. Longitudinal distribution of
c-graphs is derived from the known sarcomere length (the distance
between two neighboring Z bands), the number of modeled sar-
comeres, and the relative length of each band within a sarcomere.

 Mitochondria are closed, membrane-bound, elliptically shaped
organelles of irregular smooth forms and variable sizes. To capture
their varying elliptical shape, we developed a new method based
on implicit sweep objects. The basic components of sweep objects
are 2D sweep templates and 3D sweep trajectories. Several works
addressed the problem of creation of generalized sweep objects
 (43– 45) . In general, to create a sweep object, a transformation is
created that maps a 2D template point c to a 3D position p . The

 Fig. 4. Modeling of myofibrils. Left : an example of c-graph distribution on two sarcomeres (1 – a single sarcomere).
Dashed vertical lines at the top represent the distribution of the c-graphs. Right : myofibrils and the corresponding
c-graphs within three sarcomeres; for better clarity, the myofibrils located in the middle of the cell are hidden .

298 Parulek et al.

transformation maps the center of the 2D template to the point
that lies on the trajectory. To preserve the cross-sectional elliptical
shape of mitochondria, the 2D template is defined as an implicit
ellipse with variable dimensions. To represent a 3D trajectory, we
adopted the uniform quadratic B-splines.

 Transversal tubules (t-tubules) form a planar network around
and between myofibrils. In practice, t-tubules can be represented
by a network of connected tubes with slightly varying diameter
that pass randomly between the myofibrils. In fast skeletal mus-
cles they run typically near the I/A band boundaries. T-tubules
are positioned by means of line segments derived from a set of
edge line segments of the c-graphs.

 Sarcoplasmic reticulum (SR) is a rich but delicate membra-
nous structure consisting of two compartments. The terminal
cisterns of the SR are juxtaposed to the longitudinal sides of
t-tubules. The network of longitudinal SR grows between the
neighboring terminal cisterns along the myofibrils. It is repre-
sented by a system of tiny randomly interconnected and longi-
tudinally oriented tubules, creating a typical mesh (see Fig. 3).
Sarcoplasmic reticulum is modeled in two steps. The first step is
building of the system of longitudinal tubules, which is achieved
by extended interpolation (46) between sets of circular implicit
shapes. The terminal cisterns, forming a smooth junction to the
system of longitudinal tubules, are modeled in the second step.
The resultant sarcoplasmic reticulum is obtained by union opera-
tion on these two components.

 Sarcolemma is a membrane envelope tightly surrounding the
muscle cell, which defines the cell volume. It is represented in a
similar way as the myofibrils except that the polygonal skeleton is
created automatically from the peripheral edges of all c-graphs.

 Figure 5 demonstrates all aforementioned organelles, except
for the sarcolemma, which is hidden in order to see the cell interior.

 Fig. 5. An example of the model of two sarcomeres. 1 – A-band SR, 2 – I-band SR,
3 – t-tubules following the I/A band interface, 4 – A-band mitochondrion, 5 – I-band
mitochondrion .

 A Cell Architecture Modeling System Based on Quantitative 299

 Our ambition was to build models that fulfill both geometric
and stereological characteristics of a real cell. This is in con-
trast to traditional approaches, which care solely for the visual
appearance and ignore the quantitative characteristics. There-
fore, computation of volume and surface area of all objects in
the model (the volume and surface densities) is required for
evaluation of the model fidelity and for eventual estimation of
corrections of input parameters in the MDL file. For this pur-
pose we have developed and implemented a new Monte Carlo-
based method for numeric evaluation of volumes and surfaces
of all organelles over the whole volume of the model (3) . The
same tools can be used for simulation of stereological experi-
ments and testing its feasibility.

 For purposes of platform heterogeneity and further PSE-SBM
parallelization, our tools are based on command line invocations.
Here, we demonstrate the Windows versions of these tools, which
are deployed within PSE-SBM. The basic set of tools includes the
following:

 • cell_model_generator (cellJob), which reads an input
MDL configuration wrapped by high-level XML syntax and
generates cell (XISL) models, executable scripts (*.bat), and
the POV-ray files aimed at model visualization.

 • cell_converter (cell2diff), which provides for conver-
sion of implicit (XISL) cell representation into boundary or
volumetric representation; nevertheless, it can be also used
in a window GUI mode as an interactive model preview tool
using the boundary representation.

 • volume_surface_estimator (xislVSl2xml), which is requi-
red for scripts generated by the cell_model_generator ,
estimating VSDs.
 Besides these tools, the user can download and install exter-

nal (third-party) software required for model visualization. The
detailed instructions of software acquisition can be found in (47) .

 Let us assume that the user wants to build a model of a muscle cell
with four sarcomeres, each of 1,770 nm in length. The length and
number of sarcomeres determine the longitudinal model dimen-
sion. The transversal dimension is derived from the number and
diameter of myofibrils that should be included in the model. We
have prepared a c-graph database containing c-graphs of 4–22
myofibrils. Thus, a user can choose the initial topology of myofi-
brils from this database or create its own c-graph using an external

2.4. Computation of
Stereological Densities

2.5. Software Tools

3. Methods

3.1. MDL Specification

300 Parulek et al.

graphical tool and store it in the proper format. Each sarcomere
segment should start and end at the Z band. Next, the longitudi-
nal size of each myofibrillar band has to be specified. Individual
bands are represented by colored zones within each sarcomere.
Let these dimensions be 700 nm for A bands, 2 × 500 nm for
each I band at both sides of the A band, and 70 nm for Z bands;
the sum of these lengths is 1,770 nm, as requested. As observed
in real cell images, a myofibril cross-sectional size varies along
the longitudinal axis; therefore, the user has to define the scaling
parameters that are applied to the corresponding c-graphs of each
myofibril. The aforementioned specification can be writen in the
MDL form as follows:

 < MDLconf name =”modelA”>
 < data length =”1770” sarcNum =”4” iBandFract =

”0.56” aBandFract =”0.40” zBandFract =”0.04”/>
 < cgraph file =”../mp/mp22/mp_22_4.txt”

 aBandMod =”50” iBandMod =”70” zBandMod =”70”
 alterMin =”5” alterMax =”10” iBandScale-
Min =”2.95” iBandScaleMax =”3.02” aBandScale-
Min =”3.07” aBandScaleMax =”3.14”/>

 </ MDLconf >
 The < data …/> tag specifies the size of a single sarcomere

(length), number of sarcomeres (sarcNum), and relative lengths
of the I band, A band, and Z band in fractions of sarcomere
length (iBandFract, aBandFract, and zBandFract).

 The second tag < cgraph …/> specifies the input c-graph,
where file represents the input c-graph file name with path (con-
taining 22 myofibrils in this example); aBandMod , iBandMod ,
and z BandMod define appropriate distances between neigh-
boring myofibrils for each myofibrillar zone. To use random
c-graph distortion, one can specify the alterMin and alterMax
attributes, which randomly shift c-graph points within limits
of these values. The attributes iBandScaleMin , iBandScale-
Max , aBandScaleMin , and aBandScaleMax represent the inter-
val from which the scaling values are selected, which are then
applied to each c-graph.

 The use of only these two tags would result in generation of
only the myofibrils. A more complex tag specification is needed
to describe other cell organelles, mainly due to their high vari-
ability and stochastic character. For example, the user wishes to
add organelles with the following properties:

 • Mitochondria, which are located at the I and A bands with a
diameter (short axis) of 30–50 nm at the I band and 40–60
nm at the A band. Further, it is required that the mitochon-
dria occur more frequently at the I band than at the A band.

 • Sarcoplasmic reticulum, positioned both at the I and A bands,
with the following geometric parameters: longitudinal SR

 A Cell Architecture Modeling System Based on Quantitative 301

tubules of 15–20 nm in radius and the neighboring SR tubules
seeded at intervals of 40 nm. The occurrence probability of SR
is 100% at myofibrils unless there is not enough space.

 • T-tubules running at the border of the I and A bands, where
the tubule radii are in the range of 20–40 nm, and they
should cover 60% of the segments of the c-graphs.

 • The distance between the sarcolemma and the c-graph outer
edges is 150 nm.
 These attributes are clearly comprehensible to general users;

however, within the MDL configurations a user has to specify
also the basic geometrical parameters such as skeleton sizes or
the sizes of blending areas. Besides, the cell_model_generator tool
involves a set of hidden parameters regarding implicit modeling,
which cannot be adjusted by an unacquainted user. These inner
parameters have been tuned by the developer specifically for
modeling of striated muscle cells.

 Now, by having the organelle parameters specified, the user
appends the corresponding tags to the MDL configuration file
 “modelA” . The resultant MDL configuration is as follows:

 < MDLconf name =”modelA”>
 < data length =”1770” sarcNum =”4” iBandFract =”

0.59” aBandFract =”0.40” zLineFract =”0.01”/>
 < cgraph file =”../mp/mp22/mp_22_4.txt”

 aBandMod =”50” iBandMod =”70” zBandMod =”70”
 alterMin =”5” alterMax =”10” iBandScale-
Min =”2.95” iBandScaleMax =”3.02” aBandScale-
Min =”3.07” aBandScaleMax = ”3.14”/>

 < sarc offset =”150”/>
 < mitch_IBandT0 prob =”0.4” minLength =”100”

 maxLength =”200” minSize =”40” maxSize =”80”
 longVar = ”30”/>

 < mitch_ABandT0 prob =”0.1” minLength =”150”
 maxLength =”250” minSize =”60” maxSize =”100”
 longVar =”100”/>

 < t_tubule_hIA prob =”0.6” minSize =”16” max-
Size =”20”/>

 < srA space =”110” spaceEps =”40” minSize =”15”
 maxSize =”20” blendSize=”1” blendImpact =”0”/>

 < srI space =”110” spaceEps =”40” minSize =”15”
 maxSize =”20” blendSize =”1” blendImpact =”0”/>

 < /MDLconf >
 Here, the < sarc ../> tag specifies the sarcolemma with the

offset attribute specifying the basic distance between the c-graph
and the control polygon of sarcolemma.

 The < mitch_I(A)BandT0 …/> tag defines the occurrence
of the I(A) band mitochondria with attributes prob specifying the
probability of occurrence used in creation of the skeleton, min-

302 Parulek et al.

Length and maxLength specifying the allowed sizes of the
longitudinal elliptic shape, minSize and maxSize defining
the permitted transversal elliptic shape thicknesses, and longVar
corresponding to maximal allowed longitudinal deviation within
the skeleton location.

 The < t_tubule_hIA …/> tag defines the occurrence of
t-tubules that are created at the I/A band interfaces; the prob
attribute represents the probability of occurrence of the t-tubule
within the c-graph, and the minSize and maxSize specify the
allowed interval of t-tubule radii.

 The < srA, srI, …/> tags define the sarcoplasmic reticu-
lum. Here, the attributes describe the basic SR elements – seeds,
their spacing (space), spacing variation (spaceEps), permitted
dimensions (minSize , maxSize), and the amount of blend-
ing material (blendSize , blendImpact) that smoothly joins
the longitudinal SR tubes with terminal cisterns.

 Importantly, all dimensions (size, length, etc.) are given in
nm, and the relative ratios and probabilities are given in fractions.
The aforementioned MDL configuration was stored in a text file
mdl.mcc for further use.

 Now, to be able to use the MDL configuration file by the cell
generator tool, the configurations in the file have to be wrapped
by the XML syntax. Here, the user can specify additional require-
ments starting with the cellJob tag, which, e.g., enables to
specify the number of models to be generated per single configu-
ration, the number of custom lookups per single model, and the
precision of volume and surface area computations. The follow-
ing example illustrates usage of the cellJob tag:

 < cellJob name = ” cellX0” scriptType=”1” npV
=”1000” npS=’100000’>

 < povray zoomFactor = ” 1.2” camRotX= ” 60” cam-
RotY= ” 150” camRotZ =”20” suffix =”y150a”>

 < clip id =”SARC” type = ” 0” v1 = ” 0.4” v2 = ” 0.4”
 v3 = ” 0.5” v4 = ” 1” v5 = ” 0” v6 =”0”/>

 < povray >
 < povray zoomFactor = ” 0.9” camRotX = ” 60” cam-

RotY = ” 150” camRotZ =”0” suffix =”y150b”/>
 < conf file =”mdl.mcc” prefix =”X0”

 conf =”modelA” count =”80”/>
 < /cellJob >
 The attributes in the individual tags are as follows:
 The < cellJob …> tag is the topmost element. The name

attribute identifies the name (cellX0) of the job; the script-
Type attribute defines the type (1 – for Grids, 2 – for Linux, and 3
– for Windows) of the output scripts that perform VSD estimation
for each generated cell model. The npV and npS attributes repre-
sent the precision of VSD estimation, i.e., the number of counting
points per each organelle, used in the numerical integration.

3.2. Starting the Model
Generation

 A Cell Architecture Modeling System Based on Quantitative 303

 The < povray …> tag defines POV-ray visualization files (41)
for each generated model; e.g., a single tag instance corresponds
to a single output POV-ray file. The zoomFactor, camRotX,
camRotY , and camRotZ represent the basic camera settings
used for visualization of the model. The suffix attribute defines
the string appended to the resultant POV-ray file name.

 The < clip …> tag is an optional tag, which specifies the
organelle classes that are intended to be clipped off in the output
POV-ray files. The type attribute defines the applied clipping
primitive (0 – cube or 1 – plane) specified in 3D space by a set of
parameters v1 , … , v6 .

 The < conf …> tag is required by the MDL configuration.
The file attribute specifies the file, from which the MDL con-
figuration, labeled by the conf attribute, will be processed. The
output cell (XISL) files will be prefixed by the prefix attribute.
The count attribute defines the number of models requested to
be generated by this MDL configuration.

 By storing this syntax in the file cellFile.jcc, the pro-
cedure of the cell model generation (cellJob) can be executed
by the command line statement “cellJob cellFile.jcc
jobX0.” For instance, by executing the model generator on the
presented input script, the output files will include 80 cell (XISL)
models, 160 POV-ray files (two per each model), and 80 script files
that will compute VSDs. Typically, all models and associated files
are created by a desktop PC in few seconds. The user can attach
additional MDL configurations using the < conf …/> tag.

 The first aspect that corresponds to the model fidelity is derived
from model visualization. The main purpose of visualization is to
allow users to ascertain the fidelity of the model, i.e., the archi-
tecture of the cell, the topology, appearance, shape and size of
organelles, the proportions among them, etc. In other words, the
plausibility of the cell structure (i.e., correct understanding and
MDL implementation) can be assessed.

 Because of the stochastic nature of model generation and/or
due to wrong implicit surface behavior, some errors in the model
may arise. The SR or mitochondria may be generated with breaks
or penetrating each other in some cases. We solved this by design-
ing the underlying skeletons in a way that minimized collisions of
organelles. In the case of SR, the underlying skeleton is pushed to
the nearest myofibril and the mitochondrial skeleton is shifted in
the opposite direction. Nevertheless, a problem may still arise when
the input MDL parameters produce too narrow intermyofibrillar
free spaces and thus preclude translation of underlying skeletons.

 To provide for optimal inspection of the model, either to eval-
uate its fidelity or to reveal its failures, or for impressive model pres-
entations, we equipped the PSE-SBM system with several model
visualization tools, namely, the high-quality ray-tracing technique

3.3. Model Inspection
and Verification

3.3.1. Visual Inspection

304 Parulek et al.

for representation of implicits, the interactive polygonal model
preview for boundary inspection, and the interactive volumetric
rendering technique for volumetric representation. The basic rep-
resentation is the implicit one, in which the models are initially
generated. To convert the implicit cell model to boundary or
volumetric representation, one can use the cell_converter
software tool, which takes as an input a special file specifying the
XISL cell model and the procedure for model sampling.

 In implicit representation, each object is represented by an
implicit function that unequivocally separates the interior and the
exterior of the object. It is still a challenge to render such objects
directly utilizing only the enumeration of implicit functions. Direct
rendering of implicit surfaces can be achieved by means of the
ray-tracing technique, which is computationally demanding and
unsuitable for interactive applications. Nevertheless, the XISL
package enables users to render implicit surfaces employing the
ray-tracing method by means of the generated POV-ray files, which
can be edited according to custom demands in a POV-ray editor.
Technically, the list of XISL implicits, written down in POV-ray
file, is wrapped by a special syntax. The POV-ray tool is suitable for
rendering of final high-quality images (see Figs. 3 and 5).

 Objects defined by implicit functions are usually approxi-
mated by boundary models that can be interactively rendered
(Fig. 6). In boundary representation, objects are defined by a
set of triangles that approximate the implicit surface. The cell_
converter tool includes adaptive reduction of the number of
triangles to maximize performance while maintaining the surface

 Fig. 6 . An interactive preview of a cell model using model triangulation. The user can
adjust the number of visible triangles in order to obtain faster rendering (LOD level of
detail). In each LOD, the result can be stored in the ply format, which can be subse-
quently used as an input of other graphical applications .

 A Cell Architecture Modeling System Based on Quantitative 305

fidelity. Such triangular meshes can be stored in the ply format
 (48) , which is well supported by standard 3D graphic editors.

 The model can be also represented as a 3D sampled volume,
where each 3D point represents a scalar value. This is a practi-
cal format for spatiotemporal simulations of various kinds. The
 cell_converter tool allows creation of such discretely sampled
3D volume data. The user should specify intensities to be assigned
to each organelle class, resolution, and dimensions of the volume.
Here, we employ the f3d format (49) capable of storing 3D Car-
tesian, regular and rectilinear data, and supporting different kinds
of voxel types. Moreover, a set of tools is available for manipula-
tion and rendering of such data. The volumetric cell models can
be inspected by means of f3dviewer and f3dvr tools. The f3dvr
tool is a sophisticated application for interactive rendering of 3D
volume data. It provides for several rendering techniques cover-
ing calculation of lighting models or suppression of homogene-
ous regions in the data set. The data are displayed in the form of
artificially created slices generated in parallel through the volume
and subsequently blended together. Furthermore, the application
allows distinguishing between objects defined by distinct scalar
values (intensities), by means of the so-called transfer functions.
The transfer functions allow defining color and transparency of
objects, and emphasizing or suppressing selected objects. However,
it is not always easy to classify the structures only by their inten-
sities. To enhance the classification, multidimensional transfer
functions have been developed that additionally utilize gradient
magnitude, curvature, or other attributes of input intensities.

 In the case of cell models we benefit from the fact that they
are created in silico and, therefore, the individual organelle types
can be assigned nonoverlapping intensities (Fig. 7). With respect
to this fact, we have developed a rendering technique (iso mode),
which combines nearest-neighbor filtering and trilinear filtering
with utilization of one-dimensional transfer functions. A transfer
function editor window enables users to draw curves represent-
ing transfer functions that specify the resultant red, green, blue,
and opaque rendering ingredients (Fig. 8). The convenient trans-
fer functions can be saved for later use. Some transfer functions
have been pregenerated for fast rendering of individual organelle
classes and their combinations.

 Models generated by the PSE-SBM system can include hundreds
to thousands of organelles. The important criteria that assess the
model credibility are the VSD characteristics. For computation of
VSDs, evaluation scripts, pregenerated in the cell model genera-
tion step, have to be run. As an example, distributions of volume
densities and surface densities computed from 80 models are pre-
sented in Figs. 9 and 10 . This computation is an excessively time-
consuming process depending on the amount of created organelles

3.3.2. Model Inspection
from the Stereological
Point of View

 Fig. 8 . The transfer function editor window. Left – on the x axis are intensities and on the y axis are color and opaque
values. The color and opaqueness is defined for each intensity. The highest value (255) corresponds to total opaqueness
and the lowest (0) value corresponds to total transparency. Here, a user wants to display t-tubules, defined in the inten-
sity interval <60, 110>, and mitochondria, defined in the intensity interval <120, 160>, and sets the rest values (i.e.,
intensity ranges <0, 59>, <111, 119>, and <161, 255>) to 0 and the t-tubule and mitochondrion intensities to visually
suitable values, e.g., 255. In practice, it is also convenient to adjust the curves defining the colors of colored models .

 Fig. 7. The interactive presentation of the model by the f3dvr tool that enables to inspect the organelles of interests
in a 3D volumetric representation .

 A Cell Architecture Modeling System Based on Quantitative 307

and the required precision. In this example, each VSD estimation
took approximately 20 min per model for npV = 1,000 and npS
= 100,000.

 It may happen that the user is not satisfied with the resulting
VSDs, that is, with the created models. There are several possi-
bilities how to change the MDL configurations in order to obtain
the required VSDs. For instance, let us assume that the volume
density of mitochondria in the generated models is too low. To
increase their volume density, i.e., their relative volume, the user
can choose from the following possibilities:
 1. Make the input c-graph thinner by setting the attributes

 iBandScaleMin and iBandScaleMax in the < cgraph …/>
tag to lower values, which results in reduction of the global
cell dimensions. However, this adjustment also raises VSDs of
the other organelles.

 2. Increase the probability (the prob attribute in the < mitch_I
(A)BandT0 …/> tag) of mitochondria occurrence. Note
that too big a probability may generate mitochondria very fre-
quently, and thus make their occurrence unrealistic.

 Fig. 9 The distribution of volume densities obtained from 80 models generated from the same MDL configuration. Each
graph represents histogram of volume densities per organelle class: (a) myofibrils, (b) mitochondria, (c) t-tubules, (d)
sarcoplasmic reticulum .

308 Parulek et al.

 3. Increase one or both of the mitochondrion dimensions (length,
size). Nevertheless, for too large values, the cell generator
may not find suitable skeletons of the proper length, which
will result in a small number of large mitochondria.
 Therefore, the recommended way to solve this problem is to

adjust a combination of all three parameters. Nevertheless, a user
can produce several new MDL configurations as an input, where
each of them corresponds to one of the possible mitochondrion
adjustments. Such MDL configurations, wrapped by the jcc syn-
tax, are then repetitively processed by the cell generator. It is rec-
ommended to label models created from multiple configurations
differently for easy recognition by means of the prefix attribute in
the < conf …> tag.

 Stereology is traditionally used to quantify geometric properties
of cell organelles on the basis of 2D images prepared by electron
microscopy (50) . However, such stereological experiments might
involve errors of different origin that are difficult to assess. Now,
with credible synthetic models at hand, testing of stereological

 Fig. 10 . The distribution of surface densities obtained from 80 models generated from the same MDL configuration. Each
graph represents histogram of surface densities per organelle class: (a) myofibrils, (b) mitochondria, (c) t-tubules, (d)
sarcoplasmic reticulum .

 A Cell Architecture Modeling System Based on Quantitative 309

hypotheses in silico is possible. Randomly or specifically oriented
sets of sections through the model can be produced by the PSE-
SBM system and used for stereological analysis by exactly the same
method as in the case of real cells. We applied this approach to
assessment of the error of volume and surface density estimation
in fast skeletal muscle cells performed by students of biology. It
was found that the major source of errors resided in problematic
assignment of specific loci to a single organelle, as in relatively
thick sections it was often hard to distinguish between them.

 Computation of the VSDs is a very time-consuming process
requiring up to several hours on a single desktop computer.
Therefore, we took the advantage of the grid environment (7)
that, in addition to the large computational power, offers addi-
tional benefits. The task can be specified interactively via a web
interface that is also used as a portal to the grid environment.
The web interface and the GUI portal (Fig. 11) help to transfer/
translate requests to the PSE-SBM. Moreover, through the web
portal, the user can observe the state of running jobs and see the
intermediate results (models) in the form of rendered images and
evaluated stereological parameters. The crucial task is to retrieve
the models of interest even if the system contains hundreds of
computed models. Here, we make use of a specialized grid service,

3.4. Grid Version

 Fig. 11. A screenshot demonstrating the PSE-SBM portal GUI that enables to prepare, submit, and verify models. File
a0_st_data.txt contains the evaluated VSDs for each organelle class (the bent arrow); file a0.xml includes
XISL definition of the organelles (left arrow), and file a0_2048_p4.bmp is one of rendered images per the a0 model
(right arrow). The remaining files, visible in the list on the left side, were generated automatically .

310 Parulek et al.

which is capable of registering cell models, their estimated VSDs,
and additional parameters in the system. A user then enters a
query containing descriptive data of interests and executes it
against the system. Plausible models can be then directly down-
loaded to the user’s local machine. The web interface provides
users with download and all presented tools for sophisticated
model utilization (polygonization, exporting to other formats,
interactive rendering, etc.).

 The modeling approach we presented here was stimulated by the
need to verify the results of stereological measurements on muscle
tissue, to develop a kind of “golden standard” that would be
helpful for quantitative morphology. The final result promises
more general and wider use worth of further exploration. Here,
we summarize the most tempting and promising uses:
 For biologists

 • To test biological hypotheses: Is the architecture well under-
stood? Can it provide for the observed images and the stud-
ied function? Are the stereological and morphometric data
reliably measured by the selected method?

 • Comparative analysis of cells and tissues in phylogeny and
ontogeny, in health and disease, in stressed or relaxed state, etc .

 • To assist research and teaching in biology as a tool for reporting
and presenting complex results in a concise form.

 • Presenting not only typical but also average and specific
structures and architectures of the studied cells and tissues.

 • Easy generation of numerous variants and views of studied
objects.

 For informaticians, theoreticians, and biophysicists
 • Developing and testing new approaches for modeling and

visualization of complex 3D scenes
 • Extension by functional models related to real cell structures
 • Development of principles for modeling of structures

growing and adapting in time and space
 The list is long and ambitious. We hope that it is also inspiring.

 This work was made possible due to the support of APVT
51-31104, APVV-20-056105, and VEGA 2/6079/26. The
authors are thankful to M. Ciglan for collaboration on grid
application, and to A. Zahradníková for comments on the
manuscript.

3.5. Model Applications

Acknowledgments

 A Cell Architecture Modeling System Based on Quantitative 311

 References

 1. Zahradník , I. , Parulek , J. , and Sramek , P. (2004)
 Geometrical modelling of the ultrastructure of
muscle cells . Physiol Res 53 , 44P .

 2. Novotová, M., Pavlovičová, M., Veksler, V.I.,
Ventura-Clapier, R., Zahradník, I. (2006)
Ultrastructural remodeling of fast skeletal
muscle fibers induced by invalidation of crea-
tine kinase. Am J Physiol Cell Physiol. 291,
C1279–1285 .

 3. Parulek, J. (2007) Problem solving environ-
ment for stereology based implicit modeling
of muscle cells. Ph.D. thesis, Faculty of Math-
ematics, Physics and Informatics, Comenius
University, Bratislava, Slovak Republic.

 4 . Parulek , J. , Šrámek , M. , and Zahradník , I.
 (2004) Geometrical modelling of muscle cells
based on functional representation of poly-
gons . J WSCG 12 , 121 – 124 .

 5. Parulek , J. , Zahradník , I. , and Šrámek , M.
 (2004) A modelling tool for construction of
3d structure of muscle cells, in Analysis of Bio-
medical Signals and Images . Proceedings of the
17th Biennial International EURASIP Con-
ference BIOSIGNAL 2004 (Jan , J. , Kozump-
lik , J. , and Provazník , I. , eds.), Vutium Press ,
 Brno , pp. 267 – 269 .

 6 . Parulek , J. , Zahradník , I. , Novotová , M. , and
 Šrámek , M. (2006) Geometric modeling of
muscle cells . G.I.T. Imaging Microsc 8 , 58 – 59 .

 7. Parulek , J. , Ciglán , M. , Šimo , B. , Šrámek , M. ,
 Hluchý , L. , and Zahradník , I. (2007) Grid
problem solving environment for stereology
based modeling , in OTM Confederated Interna-
tional Conferences, Part II (Meersman , R. , Tari ,
 Z. , eds.), Springer , Berlin , pp. 1417 – 1434 .

 8. Blender, http://www.blender.org,accessed on
Decenber 14, 2007.

 9. Truespace, http://www.caligari.com/, accessed
on December 14, 2007.

 10. Blo omenthal , J. , Bajaj , Ch. , Blinn , J. , Cani-
Gascuel , M.-P. , Rockwood , A. , Wyvill , B. , and
 Wyvill , G. (1997) Introduction to Implicit Sur-
faces . Morgan Kaufman , San Francisco, CA .

 11. Velho , L. , Figueiredo , L. H. , and Gomes , J. A.
 (1998) Implicit Objects in Computer Graphics .
 Springer , New York .

 12 . Blinn , J. (1982) A generalization of alge-
braic surface drawing . ACM Trans Graph 1 ,
 235 – 256 .

 13 . Wyvill , G. , Mcpheeters , C. , and Wyvill , B.
 (1986) Data structure for soft objects . Vis
Comput 2 , 227 – 234 .

 14. Nishimura , H. , Hirai , M. , Kavai , T. , Kawata ,
 T. , Shirakawa , I. , and Omura , K. (1985)
 Object modeling by distribution function and

a method of image generation . Trans IECE
Jpn J68-D , 718 – 725 .

 15. Bloomenthal , J. and Wyvill , B. (1990) Inter-
active techniques for implicit modeling, in
 SI3D’90: Proceedings of the 1990 Symposium
on Interactive 3D graphics , ACM , New York ,
pp. 109 – 116 .

 16. Bloomenthal , J. and Shoemaker , S. (1991)
 Convolution surfaces, in SIGGRAPH’91:
Proceedings of the 18th Annual Conference
on Computer Graphics and Interactive Tech-
niques , ACM , New York , pp. 251 – 256 .

 17. Czanner , S. , Durikovic , R. , and Inoue , H.
 (2001) Growth simulation of human embryo
brain, in SCCG’01: Proceedings of the 17th
Spring conference on Computer graphics , IEEE
Computer Society , Washington, DC , p. 139 .

 18. Durikovic , R. and Czanner , S. (2002) Implicit
surfaces for dynamic growth of digestive sys-
tem, in SMI’02: Proceedings of the Shape Mod-
eling International 2002 , IEEE Computer
Society , Washington, DC , p. 111 .

 19. Oeltze , S. and Preim , B. (2004) Visualization of
anatomic tree structures with convolution sur-
faces , in Joint EUROGRAPHICS–IEEE TCVG
Symposium on Visualization (Deussen , O. ,
 Hansen , C. , Keim , D. A. , and Saupe , D. ,
eds.) , The Eurographics Association , Aire-la-
Ville, Switzerland , pp. 311 – 320 .

 20 . Barr , A. (1981) Superquadrics and angle-pre-
serving transformations . IEEE Comput Graph
Appl 1 , 11 – 23 .

 21 . Pasko , A. A. , Adzhiev , V. , Sourin , A. , and
 Savchenko , V. V. (1995) Function representa-
tion in geometric modeling: concepts, imple-
mentation and applications . Vis Comput 11 ,
 429 – 446 .

 22. Wyvill , B. and van Overveld , K. (1997)
 Warping as a modelling tool for csg/implicit
models, in Proceedings of the International
Conference on Shape Modeling and Applica-
tions, 1997 , IEEE Computer Society , Aizu,
Japan , pp. 205 – 214 .

 23 . Ricci , A. (1972) A constructive geometry for
computer graphics . Comput J 16 , 157 – 160 .

 24 . Shapiro , V. (2007) Semi-analytic geometry with
R-functions . Acta Numerica 16 , 239 – 303 .

 25. Pasko , A. A. and Savchenko , V. V. (1994)
 Blending operations for the functionally
based constructive geometry, in Set-theoretic
Solid Modeling: Techniques and Applications,
CSG 94 Conference Proceedings , Information
Geometers , Winchester, UK , pp. 151 – 161 .

 26 . Dekkers , D. , van Overveld , K. , and Golsteijn , R.
 (2004) Combining CSG modeling with soft

312 Parulek et al.

blending using Lipschitz-based implicit surfaces .
 Vis Comput 20 , 380 – 391 .

 27. Muraki , S . (1991) Volumetric shape descrip-
tion of range data using blobby model, in SIG-
GRAPH’91: Proceedings of the18th Annual
Conference on Computer Graphics and Interac-
tive Techniques , ACM , New York , pp. 227 – 235 .

 28. Duchon , J. (1977) Splines minimizing rota-
tion-invariant seminorms in Sobolev spaces ,
in Lecture Notes in Mathematics, Vol. 571
(Schempp , W. and Zeller , K. , eds.) , Springer ,
 Berlin , pp. 85 – 100 .

 29 . Floater , M. S. and Iske , A. (1996) Multistep
scattered data interpolation using compactly
supported radial basis functions . J Comput
Appl Math 73 , 65 – 78 .

 30 . Savchenko , V. V. , Pasko , A. A. , Okunev , O. G. ,
and Kunii , T. L. (1995) Function represen-
tation of solids reconstructed from scattered
surface points and contours . Comput Graph
Forum 14 , 181 – 188 .

 31 . Turk , G. and O’Brien , J. F. (2002) Modelling
with implicit surfaces that interpolate . ACM
Trans Graph 21 , 855 – 873 .

 32. Carr , J. C. , Beatson , R. K. , Cherrie , J. B. ,
 Mitchell , T. J. , Fright , W. R. , McCallum , B. C. ,
and Evans , T. R. (2001) Reconstruction and
representation of 3d objects with radial basis
functions, in SIGGRAPH’01: Proceedings
of the 28th Annual Conference on Computer
Graphics and Interactive Techniques , ACM ,
 New York , pp. 67 – 76 .

 33 . Crampin , E. J. , Halstead , M. , Hunter , P. ,
 Nielsen , P. , Noble , D. , Smith , N. , and Tawhai ,
 M. (2004) Computational physiology and the
physiome project . Exp Physiol 89 , 1 – 26 .

 34. Prusinkiewicz, P. (1993) Modeling and visu-
alisation of biological structures, in Proceed-
ings of Graphics Interface’93, Toronto, ON,
pp. 128–137.

 35 . Wyvill , B. , Guy , A. , and Galin , E. (1999) Extend-
ing the csg tree (warping, blending and boolean
operations in an implicit surface modeling sys-
tem) . Comput Graph Forum 18 , 149 – 158 .

 36. Witkin , A. P. and Heckbert , P. S. (1994)
 Using particles to sample and control implicit
surfaces, in SIGGRAPH’94: Proceedings of the
21st Annual Conference on Computer Graphics
and Interactive Techniques , ACM , New York ,
pp. 269 – 277 .

 37. Adzhiev, V., Cartwright, R., Fausett, E.,
Ossipov, A., Pasko, A., and Savchenko, V.
(1999) Hyperfun project: A framework for
collaborative multidimensional f-rep mod-
eling, in Proceedings of the Implicit Surfaces
’99 EUROGRAPHICS/ACM SIGGRAPH
Workshop, New York, pp. 59–69.

 38. Schroeder , W. J. , Martin , K. M. , and Lorensen , W. E.
 (1996) The design and implementation of an
object-oriented toolkit for 3D graphics and
visualization, in VIS’96: Proceedings of the Sev-
enth conference on Visualization’96 , IEEE Com-
puter Society , Los Alamitos, CA , pp. 93 – 100 .

 39 . Lorensen , W. E. and Cline , H. E. (1987)
 Marching cubes: a high resolution 3D surface
construction algorithm . Comput Graph 21 ,
 163 – 169 .

 40 . Bloomenthal , J. (1988) Polygonization of
implicit surfaces . Comput Aided Geom Des 5 ,
 341 – 355 .

 41. Povray. Povray–the persistence of vision ray
tracer, http://www.povray.org/, accessed on
October 17, 2007.

 42. Parulek , J. , Novotný , P. , and Šrámek , M.
 (2006) XISL – a development tool for con-
struction of implicit surfaces, in SCCG’06:
Proceedings of the 22nd Spring Conference on
Computer Graphics , Comenius University ,
 Bratislava , pp. 128 – 135 .

 43. Pasko , A. , Savchenko , A. , and Savchenko , V.
 (1996) Polygon-to-function conversion for
sweeping , in The Eurographics/SIGGRAPH
Workshop on Implicit Surfaces (Hart , J. and
 van Overveld , K. , eds.) , Eurographics, Eind-
hoven , The Netherlands , pp. 163 – 171 .

 44 . Sourin , A. I. and Pasko , A. A. (1996) Func-
tion representation for sweeping by a moving
solid . IEEE Transactions on Visualization and
Computer Graphics 2 , 11 – 18 .

 45. Schmidt , R. and Wyvill , B. (2005) General-
ized sweep templates for implicit modeling, in
 GRAPHITE’05: Proceedings of the 3rd Inter-
national Conference on Computer Graphics
and Iinteractive Techniques , ACM , New York ,
pp. 187 – 196 .

 46. Parulek , J. and Šrámek , M. (2007) Implicit
modeling by metamorphosis of 2D shapes,
in SCCG’07: Proceedings of the 23rd Spring
Conference on Computer Graphics , Comenius
University , Bratislava , pp. 227 – 234 .

 47. GeomCell http://cvs.ui.sav.sk/twiki/bin/view/
EGEE/UserGuide, accessed on December
13, 2008.

 48. PLY format: http://www.cc.gatech.edu/pro-
jects/large_models/ply.html, accessed on
Dec ember 14, 2007.

 49. Sramek, M., Dimitrov, L. I., Straka, M., and
Cervenansky, M. (2004) The f3d tools for
processing and visualization of volumetric
data. J Med Inform Technol 7, MIP-71–
MIP-79.

 50 . Elias , H. , Henning , A. and Schwarz , D. E.
 (1971) Stereology: application to biomedical
research . Physiol Rev 51 , 158 – 196 .

 Chapter 11

 Location Proteomics: Systematic Determination of Protein
Subcellular Location

 Justin Newberg , Juchang Hua, and Robert F. Murphy

 Summary

 Proteomics seeks the systematic and comprehensive understanding of all aspects of proteins, and location
proteomics is the relatively new subfield of proteomics concerned with the location of proteins within cells.
This review provides a guide to the widening selection of methods for studying location proteomics and
integrating the results into systems biology. Automated and objective methods for determining protein
subcellular location have been described based on extracting numerical features from fluorescence micro-
scope images and applying machine learning approaches to them. Systems to recognize all major protein
subcellular location patterns in both two-dimensional and three-dimensional HeLa cell images with high
accuracy (over 95% and 98%, respectively) have been built. The feasibility of objectively grouping proteins
into subcellular location families, and in the process of discovering new subcellular patterns, has been
demonstrated using cluster analysis of images from a library of randomly tagged protein clones. Generative
models can be built to effectively capture and communicate the patterns in these families. While automated
methods for high-resolution determination of subcellular location are now available, the task of applying
these methods to all expressed proteins in many different cell types under many conditions represents a
very significant challenge.

 Key words: Location proteomics , Subcellular location trees , Subcellular location features , Fluores-
cence microscopy , Pattern recognition , Cluster analysis , Generative models , CD-tagging , Systems
biology .

 A critical aspect of the analysis of a proteome is the collection of
detailed information about the subcellular location of all of its
proteins. Since subcellular location can change during the cell
cycle and in response to internal (mutation) or external (drugs,
hormones, metabolites) effectors, the acquisition of sufficient

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_11

313

314 Newberg, Hua, and Murphy

information for even a single protein can be challenging. Two
strategies are possible: experimental determination and compu-
tational prediction .

 The former approach involves assigning class labels to data
using automated learning methods. Depending on the applica-
tion, classes can take on different meaning. Typically in location
proteomic studies, various proteins or organelles define classes. If
the classes of the data samples are known (in other words, if the
data are class-labeled), then supervised learning approaches can
be used, wherein classifiers are trained to distinguish between the
classes, and new data can be automatically labeled as belonging
to these classes. If data is not class labeled, then unsupervised
learning approaches can be used, typically to group data by simi-
larity and to identify important clusters in a dataset. In location
proteomics, these clusters can correspond to important protein
or organelle patterns.

 A range of approaches to predicting location from sequence
have been described, including detection of targeting motifs,
analysis of amino acid composition, and modeling based on
sequence homology (1– 6) . What is clear is that all subcellular
location prediction systems suffer from deficiencies in the train-
ing data: a limited number of proteins with known locations and
insufficiently detailed descriptions for those that have been deter-
mined. This is because raw experimental data are converted into
words that describe location, and both the process of assigning
words and the limitations of the words themselves create loss of
information. This is true even when standardized terms such as
the Cellular Component terms from the Genome Ontology (7)
are used. (Of course, many determinations of location are done
by microscopy at low magnification and therefore the resolution
of the imaging becomes the limiting factor.) There is thus an
urgent need to collect new protein subcellular location data with
high resolution. We first consider approaches using visual assign-
ment of location.

 Such efforts can be characterized along three dimensions:
whether or not the approach used involves a selective screen for
a particular location, whether or not the proteins to be analyzed
are chosen randomly , and whether or not the resolution of the
determinations is at or near the limit of optical microscopy. Tate
et al. (8) used a gene trap approach to screen for proteins local-
ized in the nucleus of mouse embryonic stem cells. Rolls et al.
 (9) used a cDNA library fused with GFP to screen for proteins
with nuclear envelope distributions. Similarly, Misawa et al. (10)
used a GFP-fusion cDNA library to identify 25 proteins showing
specific intracellular localization. In contrast, Simpson et al. (11)
used N- and C-terminal GFP fusion of cDNAs to assign locations
to more than 100 novel proteins in monkey Vero cells, while Jarvik
et al. (12) used random genomic tagging (CD-tagging) to create

 Location Proteomics 315

more than 300 GFP-expressing cell clones and assign locations.
Huh et al. (13) created a even larger library of 6,029 yeast strains
with GFP-tagged ORFs (open reading frames) to characterize
the localization of yeast proteins.

 While the vast majority of studies of protein location using
fluorescence microscopy have employed visual interpretation of
the resulting images, there have been efforts to bring automation
to this process (14– 23) . These have been based on work over the
past decade demonstrating not only that computational analysis can
be used to recognize known subcellular location patterns (24– 30)
but also that the accuracies achieved are equal to, and in some
cases better than, those of visual analysis (17) .

 Images from many of these studies are publicly available.
 Table 1 summarizes some of these and other studies and illus-
trates how they are different by design. In addition, Schubert
et al. (21) have developed multiepitope ligand cartography, a
robotically controlled immunofluorescence microscopy system
that can capture as many as 100 distinct antibodies in the same

 Table 1
 Data collections relevant to location proteomics

 Project
 Species (cell
type)

 Number of
proteins

 Public
access

 Tagging
method 2D/3D Mag

 Yeast GFP
fusion
localization
database

 Yeast >4,000 yeastgfp.
ucsf.edu

 cDNA c-ter-
minal GFP
fusion

 2D 100×

 Human
Protein
Atlas

 Human (>40
tissue
types)

 >6,000 proteinatlas.
org

 Immuno-
histochemical
staining

 2D 20×

 CD-tagging
database

 Mouse 3T3 >100 cdtag.bio.
cmu.edu

 Internal GFP
fusion

 3D 60×

 GFP-cDNA
localization
project

 Human
(HeLa)
and mon-
key (Vero)

 >1,000 gfp-cdna.
embl.de

 cDNA terminal
GFP fusion

 2D 63×

 Protein
subcellular
location
image
database

 Human
(Hela)
and mouse
(3T3)

 >100 pslid.cbi.
cmu.edu

 Immunofluo-
rescence and
genomic
internal GFP
fusion

 2D/3D 100× + 60×

 Cell centered
database

 Various Various ccdb.ucsd.
edu

 Various 2D/3D 60×–40,000×

316 Newberg, Hua, and Murphy

image sample, but collections of images from this approach are
not yet publicly available.

 This review briefly covers the process of data collection for
determination of subcellular location, followed by a more detailed
discussion of a range of automated methods for analysis of the
resulting images. The large scale application of these methods
over the next few years will help to address the need for large sets
of proteins with well-characterized locations, and this in turn will
further aid development of future systems capable of modeling
and predicting subcellular location.

 Perhaps the most common method for determining the subcellular
location of a protein is to label the protein with a fluorescent probe
and then to visualize the distribution of the protein within cells under
a fluorescence microscope. We will limit our discussion to variations
on this approach, and we will not consider alternatives such as cell
fractionation followed by protein identification and quantitation.
Such approaches have been described (18, 20) but are fundamen-
tally limited by the resolution of the fractionation step.

 A typical fluorescence microscope consists of a light source
such as an arc lamp or laser. Light passes through an excitation
filter that allows only a specific wavelength through. Next, a
condenser focuses the light onto the sample. This excites fluoro-
phores in the sample to emit higher wavelength light that passes
through the objective and then an emission filter that removes
any undesired wavelengths. Next, the emitted, filtered light hits
the detector (a photomultiplier tube or CCD-camera) and is
stored digitally as a grayscale image. Multiple filter sets and cor-
responding probes can be thus used to obtain multiple grayscale
images, producing a multichannel image.

 The various approaches to tagging a protein for fluorescence
microscopy can basically be divided into those that tag native
proteins with a fluorescent dye and those that modify the coding
sequence of the protein to introduce a fluorescent group into the
molecule (for review see refs. 9, 14) .

 Native proteins are most commonly tagged in situ using anti-
bodies conjugated with a fluorescent dye, but fluorescent probes
that can specifically bind to a protein, such as phalloidin bind-
ing to F-actin, are also used. However, these approaches cannot
usually be applied to a living cell, since the cell membrane has to
be made permeable for the probes to enter the cell; moreover,
they also require antibodies or probes with appropriate specifi-
city, which make them hard to apply on a proteome wide scale.

2. Acquisition of
Protein Subcel-
lular Location
Images

 Location Proteomics 317

Significant efforts to apply immunolabeling at the proteomic level
have been undertaken, notably by the Human Protein Atlas (47).

 Tagging of proteins by modifying their DNA sequence does
not have the above disadvantages. This approach involves either
modifying a coding sequence (cDNA) and then introducing this
sequence into cells or modifying the genome sequence directly (in
either a targeted or a random manner). One of the powerful ran-
dom tagging techniques is CD tagging (14) . In this approach, the
coding sequence of a green fluorescent protein (GFP) is inserted
randomly into genomic DNA by a retroviral vector. Because the
tagging happens to the genomic DNA, the modified protein keeps
its original regulatory sequences and expression level. This is in
contrast to cDNA modification, in which a constitutive, highly
expressed promoter is usually used and thus the expression level
of the protein is typically higher than normal. By repeatedly per-
forming random tagging on cells of identical lineage, most of, or
eventually all of the proteins within a given cell line can be tagged
and have their subcellular locations determined.

 As mentioned earlier, systems for recognizing subcellular patterns
in a number of cell types have been developed. The heart of each
of these systems is a set of numerical features that quantitatively
describe the subcellular location pattern in a fluorescence micro-
scope image. These features, termed subcellular location features
(SLFs), are designed to be insensitive to the position, rotation,
and total intensity of a cell image (29) . The only requirement for
the calculation of these SLFs is that each input image contain a
single cell. This requirement can be met in multiple cell images
by segmenting the images into single cell regions either manu-
ally or automatically, using approaches such as modified Voronoi
tessellation (28) , watershed (26, 27) , levelset methods (30) , and
graphical model methods (29) .

 A specific nomenclature has been used to enable unambigu-
ous references to the features used in a particular study. Sets of
features are referred to using the prefix “SLF” followed by a set
number. Individual features are referred to by the set name fol-
lowed by a period and its index within the set. For example, SLF1
refers to the first set of features, and SLF1.2 refers to the second
feature in this set. We briefly summarize the various types of SLFs
below.

 Morphological features (SLF1.1–1.8) . The high intensity blobs of
pixels in fluorescence microscope images might be the first thing

3. Interpretation
of Protein Sub-
cellular Location
Images

3.1. Subcellular
Location Features

3.2. SLFs for 2D
Images

318 Newberg, Hua, and Murphy

a cell biologist looks at when trying to resolve subcellular loca-
tion patterns. Morphological features mainly describe the charac-
teristics of these blobs, or objects . An object is defined as a group
of touching (connected) pixels that are above a threshold (the
threshold is determined automatically). Eight morphological fea-
tures have been defined (15) to describe the number, size, and
relative position of the objects.

 Edge features (SLF1.9–1.13) . The edge features are calculated
by first finding edges in the fluorescence image. These edges can
be thought of as consisting of positions that have low intensity
in one direction and high intensity in the opposite direction. The
number of above-threshold pixels that are along an edge, the total
fluorescence of the edge pixels, and measures of the homogeneity
with which edges are aligned in the image are especially useful
for characterizing proteins whose patterns are not easily divided
into objects (such as cytoskeletal proteins). Proteins showing a
radiating (star-like) distribution (such as tubulin) have low edge
homogeneity, while those showing aligned fibers (such as actin)
have higher edge homogeneity (15) .

 Geometric features (SLF1.14–1.16) . The starting point for
these features is determination of the convex hull of the cell,
which is defined as the smallest convex set which surrounds all
above threshold pixels. Three features have been defined using
the convex hull: the fraction of the area of the convex hull that is
occupied by above threshold pixels, the roundness of the convex
hull, and the eccentricity of the convex hull (15) .

 DNA features (SLF2.17–2.22) . The central landmark in
eukaryotic cells is the nucleus, and thus having a parallel image
of the DNA distribution of a cell is quite valuable. When this is
present, a set of features can be calculated to measure quantities
such as how far on average protein objects are from the nucleus,
and how much overlap exists between the protein and DNA dis-
tributions (15) .

 Haralick texture features (SLF3.66–3.78) . For patterns that
are not easily decomposed into objects using thresholding, meas-
ures of image texture are often very useful. Texture features are
calculated as various statistics defined by Haralick (24) that sum-
marize the relative frequency with which one gray level appears
adjacent to another one. Adjacency can be defined in the hori-
zontal, vertical, and two diagonal directions in two-dimensional
(2D) images. The texture features are averaged over these four
directions to achieve rotational invariance. These features were
first introduced for classification of cell patterns in the initial
demonstration of the feasibility of automated subcellular pattern
analysis (25) .

 Zernike moment features (SLF3.17–3.65) . Like the con-
vex hull and texture features, the rationale behind using these
moment features is to capture general information about the dis-

 Location Proteomics 319

tribution of a protein in a rotationally invariant way. Because the
Zernike moments are defined on the unit circle, a cell image is
first mapped to the unit circle using polar coordinates, where the
center of a cell is the origin of the unit circle. Then, the similar-
ity between the transformed image and the Zernike polynomials
are calculated by conjugation. By using the absolute value of the
resulting moments, the features become rotation invariant (25) .

 Skeleton features (SLF7.80–7.84) . The goal behind these fea-
tures is to characterize the shape of the objects found by thresh-
olding. This is done by first obtaining the skeleton of each object
by a recursive erosion operation on the edge. Each skeleton
is then described by features such as its length and degree of
branching, and these are averaged over all objects to give features
of the cell as a whole (17) .

 Daubechies 4 wavelet features (SLF15.145–15.174) . The prin-
ciple behind wavelet decomposition is to measure the response
of an image to a filter (a wavelet) applied in the horizontal, verti-
cal, and diagonal directions. Wavelet decomposition can be per-
formed recursively, with each pass measuring the response of the
filter at a lower frequency (31) . Thus the average energy (sum of
squared intensities) at each level of decomposition of an image
using a wavelet function provides (among other things) informa-
tion on the frequency (size) distribution of fluorescent objects
but without the need for thresholding.

 Gabor texture features (SLF15.85–15.144) . These features are
calculated by convolving an image with a 2D Gabor filter and cal-
culating the mean and standard deviation of the resulting image
 (32) . By using different parameters to generate the Gabor filter, a
total of sixty Gabor texture features can be calculated (33) .

 In a series of studies, the SLFs described above have been applied
to a set of 2D HeLa cells images showing the distribution of nine
proteins and a parallel DNA-binding probe (15) . The nine pro-
teins that were labeled by immunofluorescence are located in the
endoplasmic reticulum (the protein p63), the Golgi complex (the
proteins giantin and gpp130), lysosomes (LAMP2), endosomes
(transferrin receptor), mitochondria, nucleoli (nucleolin), and
cytoskeleton (beta-tubulin and F-actin). These protein classes
which represent the major organelles in a cell were combined
with a DNA-stained nucleus class selected from the parallel DNA
images to form a 10-class subcellular location dataset. Example
images are shown in Fig. 1 . To evaluate the performance of an
automated classifier, 90% of the images in each class were used to
train that classifier and then its accuracy was obtained by testing
it with the remaining 10% of the images. The process was then
repeated nine additional times using different training and test-
ing sets under the constraint that each image appears in a test set
only once (this approach is termed tenfold cross-validation), and

3.3. Classification of
2D Images

320 Newberg, Hua, and Murphy

 Fig. 1 . Representative images of 2D HeLa dataset. These images have been preprocessed to remove background fluores-
cence and pixels below threshold. Images show the subcellular localization of (A) an ER protein, (B) Golgi protein giantin,
(C) Golgi protein Gpp130, (D) lysosomal protein LAMP2, (E) a mitochondrial protein, (F) nucleolar protein nucleolin, (G)
filamentous actin, (H) transferin receptor, (I) cytoskeleton protein tubulin, and (J) DNA . Scale bar = 10 μ m. Reprinted from
 ref. 15 as allowed by Oxford University Press .

 Location Proteomics 321

results from each repeat were averaged to get an overall classifica-
tion accuracy. When the image set was first collected, an accuracy
of 83% was obtained using a neural network classifier and a set of
37 SLFs (15) . Through the use of additional features and clas-
sifiers over the past few years, the accuracy on this dataset has
risen to 92% for a majority-voting ensemble classifier using a set
of 47 SLFs (33) . These results are shown in Table 2 . Even better
results have been obtained on this dataset using a multiresolution
classification scheme that achieved an accuracy of 95% (34) . The
automated systems are able to distinguish two Golgi proteins,
GPP130 and giantin, which have been shown to be very hard to
discriminate by visual inspection, as shown in Table 3 (17) . A
comparison of computer (Table 2) and human (Table 3) clas-
sifications is shown in Fig. 2 (35) .

 Although most adherent cultured cells are very thin compared
to their diameter in the plane of the substrate, a high resolution
2D image (which typically samples from only 0.5 to 1 μ m in the
axial direction) represents only a fraction of the compartments
that are present in the three-dimensional (3D) cell. By taking 2D
confocal microscope images at a series of depths within a cell,
we can obtain a 3D image of a cell. Sampling in the axial direc-
tion is done typically every 0.5–2 μ m, but depends on the micro-
scope and the experimental design. Three types of 2D SLFs have

3.4. SLFs for 3D
Images

 Table 2
 Confusion matrix of 2D HeLa cell images using optimal majority-voting ensemble
classifier with feature set SLF16

 DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

 DNA 98.9 1.2 0 0 0 0 0 0 0 0

 ER 0 96.5 0 0 0 2.3 0 0 0 1.2

 Gia 0 0 90.8 6.9 0 0 0 0 2.3 0

 Gpp 0 0 14.1 82.4 0 0 2.4 0 1.2 0

 Lam 0 0 1.2 0 88.1 1.2 0 0 9.5 0

 Mit 0 2.7 0 0 0 91.8 0 0 2.7 2.7

 Nuc 0 0 0 0 0 0 98.8 0 1.3 0

 Act 0 0 0 0 0 0 0 100 0 0

 TfR 0 1.1 0 0 12.1 2.2 0 1.1 81.3 2.2

 Tub 1.1 2.2 0 0 0 1.1 0 0 1.1 94.5

 The overall accuracy was 92.3%. Data from ref. 33

322 Newberg, Hua, and Murphy

 Table 3
 Confusion matrix of human classification of images from
2D HeLa dataset

 DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

 DNA 100 0 0 0 0 0 0 0 0 0

 ER 0 90 0 0 3 6 0 0 0 0

 Gia 0 0 56 36 3 3 0 0 0 0

 Gpp 0 0 53 43 0 0 0 0 3 0

 Lam 0 0 6 0 73 0 0 0 20 0

 Mit 0 3 0 0 0 96 0 0 0 0

 Nuc 0 0 0 0 0 0 100 0 0 0

 Act 0 0 0 0 0 0 0 100 0 0

 TfR 0 13 0 0 3 0 0 0 83 0

 Tub 0 3 0 0 0 0 0 3 0 93

 The overall accuracy was 83%. The major confusion came from the two
Golgi protein, giantin and Gpp130, which were hard to distinguish by
human inspection. Data from ref. 17

 Fig. 2 . Comparison of automated and visual classification of subcellular location pat-
terns in 2D images of HeLa cells. Each dark square shows the classification accuracy
of a specific pattern, while the solid line indicates equal performance between the two
approaches. While six of the patterns are classified equally well by both, the computer
performs significantly better on three of the patterns (two Golgi and one lysosomal).
Reprinted from ref. 35 with permission (© 2004 IEEE) .

 Location Proteomics 323

been extended to three dimensions so that they can capture some
information which is not available in 2D images. Results from
automated classification using these 3D SLFs show improvement
over the 2D SLF. Brief descriptions of these 3D features are pre-
sented below.

 Morphological features (SLF9.1–9.28) . The 3D morpho-
logical features are direct extensions of their 2D counterparts.
Objects are found in 3D and size is replaced by volume. More-
over, distance features are decomposed into two components,
one situated in the plane of the image and the other axially
through the stack. Similar to the case for 2D images, a few 3D
features (SLF9.9–9.14) can be defined relative to a parallel
DNA image (27) .

 Edge features (SLF11.15–11.16) . The number of pixels along
the edges and the total fluorescence of these pixels are calculated
on every slice of the 3D images and then summed up. The frac-
tions of these two values over the entire 3D image are used as 3D
edge features (16) .

 Haralick texture features (SLF11.17–11.42) . The Haralick
texture features can be extended to 3D images by considering
all 13 directions in which a pixel can be considered adjacent to
its neighbor pixels in 3D space (rather than the four directions
in 2D space). The average value and the range of the 13 texture
statistics over all 13 directions are used, yielding 26 features. Har-
alick texture features require a choice of image resolution and
gray level bit depth to optimize the performance of recogniz-
ing patterns. Experiments revealed that 0.4 μ m per pixel resolu-
tion and 256 (8 bit) gray levels were the best combination for
recognizing subcellular patterns in the 3D HeLa image dataset
described below (36) .

 The 3D SLFs have been applied to a set of 3D HeLa images of
the same nine proteins as in the 2D HeLa image collection (27) .
A three-laser confocal microscope was used to record images
of cells labeled simultaneously with three different probes (the
images were collected in the Center for Biologic Imaging at the
University of Pittsburgh with the kind assistance and support of
Dr. Simon Watkins). In addition to probes for one of the nine
targeted patterns, propidium iodide was used to stain DNA (after
RNAse treatment), and a third probe was used to label total cell
protein. The image of this third tag was used in combination with
the DNA image to automatically segment images into single cell
regions (27) .

 The first evaluation of automated classification of this data-
set used 28 morphological features, including 14 features which
depend on the parallel DNA image. By using a neural network
classifier, an overall accuracy of 91% was achieved (27) . To deter-
mine how well classification could be performed without using a

3.5. Classification of
3D Images

324 Newberg, Hua, and Murphy

parallel DNA image, a new feature set SLF14 was created with
14 DNA-independent morphological images, two edge features,
and 26 Haralick texture features. An overall accuracy of 98% was
achieved using features selected from this set (36) as shown in
 Table 4 . The results are nearly perfect, and the extension from
2D to 3D significantly increases the ability to distinguish the two
Golgi proteins, Gpp130 and Giantin.

 The classification results described above have shown the ability
of the SLFs to distinguish major subcellular location patterns
with a classifier trained on class-labeled images. This is super-
vised learning, in which the protein or location classes are known
at the outset. In contrast, unsupervised learning tries to find an
optimal way of dividing unlabeled images into distinct groups
or clusters. In location proteomics, clustering methods are used
to find the major subcellular location pattern groups for all pro-
teins across a proteome or large dataset. An optimal clustering
on the location patterns of proteomes (finding subcellular loca-
tion families) can offer a fundamental framework for assigning
locations to proteins. Such a framework is useful for many rea-
sons, one of which is because it can be used to automatically
generate an ontology that effectively describes protein locations,
and another of which is that each pattern (family) is tied to the
images that defined it.

3.6. Clustering of
Subcellular Location
Images

 Table 4
 Confusion matrix of 3D HeLa images using neural network classifier with seven
features selected from SLF17

 DNA ER Gia Gpp Lam Mit Nuc Act TfR Tub

 DNA 98 2 0 0 0 0 0 0 0 0

 ER 0 100 0 0 0 0 0 0 0 0

 Gia 0 0 100 0 0 0 0 0 0 0

 Gpp 0 0 0 96 4 0 0 0 0 0

 Lam 0 0 0 4 95 0 0 0 0 2

 Mit 0 0 2 0 0 96 0 2 0 0

 Nuc 0 0 0 0 0 0 100 0 0 0

 Act 0 0 0 0 0 0 0 100 0 0

 TfR 0 0 0 0 2 0 0 0 96 2

 Tub 0 2 0 0 0 0 0 0 0 98

 The overall accuracy was 98%. Data from ref. 36

 Location Proteomics 325

 There are many different clustering algorithms and most of
them require a similarity (or distance) function, which defines the
way to calculate the similarity (or dissimilarity) of images in the
feature space. Two well-known distance functions are Euclidean
distance and Mahalanobis distance. Instead of unscaled Euclidean
distances, which calculate the straight line distance in feature
space between two images, standardized (or z -scored) Euclidean
distances, which are Euclidean distances calculated after normaliz-
ing each feature to zero mean and unit variance, can be used. The
Mahalanobis distance takes into account the correlation between
features by scaling the distance with the covariance. Standard-
ized Euclidean distance was shown to empirically produce the
best agreement among different clustering algorithms applied to
subcellular location images (19) .

 k-Means clustering is a well-known centroid-based algo-
rithm. Each data point is grouped into one of k clusters whose
centroid is closest to it in the feature space. A centroid of a cluster
is defined as the average feature vector of all the data points in
that cluster. The starting centroids of the k clusters are randomly
chosen from the data points or randomly generated. When a new
data point is clustered into a certain cluster, the cluster centroid is
updated accordingly. The process is repeated over all data points
a few times until all the clusters converge.

 To determine into how many groups the data should be clus-
tered, an Akaike Information Content (AIC) score can be calcu-
lated for many values of k , the number of clusters. AIC measures
the log-likelihood of the model penalized by the number of
parameters of the model. A clustering result with small k and
small variance of each cluster will have a relatively low AIC score,
which means the clustering result is good. By varying k and com-
paring the AIC scores, an optimal k can be found (37) . Bayesian
Information Criterion can be used in place of AIC.

 Unlike the k-means clustering algorithm, hierarchical clus-
tering does not depend on the choice of the number of clus-
ters. Initially, each of the data points is a cluster. The distances
of all of the clusters are calculated pairwise and the closest two
clusters are joined together. This is repeated until all are joined.
The result of hierarchical clustering shows how the clusters
converge to fewer but larger clusters. A dendrogram is usu-
ally used to show the result of hierarchical clustering. A den-
drogram generated from the SLFs of fluorescence microscope
images has been termed a “subcellular location tree (SLT)”
 (16) . A SLT tells us how close the subcellular location pattern
of one protein is to that of another protein. In order to increase
the robustness of hierarchical clustering, consensus methods
can be used (19) . In consensus clustering, a random half of
images from each protein is used to build a hierarchical tree.

326 Newberg, Hua, and Murphy

This is repeated and a consensus tree is built to show branches
that are conserved (38) .

 A third clustering approach is based on the confusion matrix
generated by a classifier. This approach starts with training a clas-
sifier to discriminate all different proteins regardless of the pos-
sibility that some proteins may share the same location pattern. If
two proteins actually do share a same location pattern, the classi-
fier will not be able to tell them apart, which will then be shown
in the confusion matrix as a large number in off-diagonal cells. By
merging such confused proteins into a group, we can finally com-
bine proteins which share a location pattern and obtain clusters
which can be well separated by the classifier (19) .

 As described before, the CD-tagging technique has been
used to introduce an internal GFP domain in randomly targeted
proteins in mouse 3T3 cells and to prepare a large library of
subcellular location images (12) . 3D images have been collected
for these clones using spinning disk confocal microscopy. The
consensus clustering based on k-means algorithm divided 90
proteins into 17 groups, which represent the major location pat-
terns distinguishable by the current 3D SLFs. A SLT was also
generated on the same dataset. The proteins assigned to the
same branch of the SLT often visually appear to display similar
patterns. On the other hand, the proteins with distinct location
patterns are well separated. This SLT (shown in Fig. 3) and the
representative images of each leaf are available online at http://
murphylab.web.cmu.edu/services/PSLID/ (19) . The whole
process of building such a consensus SLT is automated and
objective. The tree shows the major subcellular location patterns
which are distinguishable in a collection of 90 different proteins
in 3T3 cells as well as the hierarchical relations among these
patterns. This clustering method is very promising to reveal the
framework of protein subcellular location families when a com-
plete image collection is available for all the proteins in a given
cell type. Recently, images of 188 randomly tagged clones have
been clustered into 35 distinct location clusters (23) . In addition
to being used to group proteins by their location patterns, clus-
tering of images has been used to group drugs by their effects
upon subcellular patterns (39) .

 Thus far we have discussed analysis of independent single cell
regions. However, most fluorescence micrographs contain mul-
tiple cells per image field, and there is useful information in the
spatial distribution of cells. Moreover, these cells may be express-
ing extracellular proteins of interest, and may be influencing each
other (through things like cell division, hormonal signaling, or
mechanical coupling).

 There are various approaches to dealing with multicell
images. The simplest are applied to images containing only one

3.7. Multiple Cell
Image Analysis

 Location Proteomics 327

 Fig. 3 . A consensus subcellular location tree generated from the 3D 3T3. image dataset. The SLF11 feature set and
standard (z -scored) Euclidean distance were used. The columns on the right of the tree show the protein name (if
known), human observation of subcellular location, and subcellular location inferred from Gene Ontology (GO) annota-
tions. Proteins marked with a double asterisk have significantly different locations between the description of human
observation and the inference from GO annotation. Reprinted from ref. 19 under the terms of the Creative Commons
License .

328 Newberg, Hua, and Murphy

pattern in all of the cells. In one approach, field level features,
which are independent of the number and rotation of cells in
the image, are used to train classifiers. Huang and Murphy (40)
showed that such features could be used to give a 95% accuracy.
Their work was done using a modified version of the 2D HeLa
images described above, where they used multiple single cell
regions to synthesize multicell images containing anywhere from
2 to 6 cells. Following this work, Newberg and Murphy (41)
showed that field level features combined with voting classifica-
tion schemes can be used to effectively analyze protein patterns
across human tissues. They trained a system that could distin-
guish between eight major organelle patterns with an 83% accu-
racy; this became 97% when only the most confident classification
assignments were considered.

 In another approach, information from surrounding cells is
used to influence the classifier assignments for a local cell region
in the image. This approach thus involves segmentation as a
first step. If the image contains a homogeneous pattern (that is,
all of the cells express the same protein pattern), simple voting
methods can be used. These involve segmenting images, using
SLFs in the classification of single cell regions, and then simply
assigned the most common class label in the multicell image to
all regions in that image. When multicell images contain more
than one pattern (i.e., one group of cells expressing a tubulin
pattern and another expressing a nuclear pattern), more complex
voting schemes are needed. Chen and Murphy (42) showed that
a graphical models approach can effectively deal with inhomo-
geneous data. This works by allowing close cell regions to have
more influence than further away regions when deciding upon a
class label for that region. Distances can be measured in both the
physical space (where regions lie in an image) and feature space.
Using synthetic multicell data (generated from the 2D HeLa
image set), they were able to achieve greater than 90% accuracy
in images containing up to four different types of patterns. This
initial approach has been significantly improved and extended in
subsequent work (43, 44) .

 The aforementioned methods consider protein subcellular loca-
tion patterns at the level of each cell (or group of cells) and do
not capture any information about the individual components
of the cellular pattern. When they are applied to a new mixture
pattern which combines the components from several different
basic patterns (i.e., the location pattern of a protein which exists
in different organelles or compartments), the cell level recog-
nition methods tend to either generate a new location group
(clustering) or simply be confused (classification). A more desir-
able result, however, might be a quantitative breakdown of how
basic patterns compose the new mixed pattern (45) . To this

3.8. Object Type Rec-
ognition and Genera-
tive Models

 Location Proteomics 329

end, an object-based method was developed wherein object
types are learned from several class-labeled images, and then
they are used to recognize a new image pattern based on this
pattern’s object type composition. In this two-stage learning
problem, first objects are extracted from known image classes
and the object types are learned by clustering on object features,
termed subcellular object features (SOFs). Note that objects in
an image are defined as a group of connected pixels that are
above some threshold. In the second stage, features, which
describe the object type composition as well as the relative posi-
tions of these objects, are extracted from new mixture patterns.
These in turn can be used to train classifiers to recognize the
new patterns (45) .

 This two-stage method has been applied to the previously
described 2D HeLa dataset, which consists of ten different sub-
cellular location classes. AIC-based k-means clustering on the
extracted SOFs indicated that there were 19 unique object types
in the images. Next, from each image sample, 11 SOFs and two
SLFs were extracted for each of the 19 object types. A classifier
was trained using a subset of these features to distinguish between
the ten classes. Classification accuracy using cross-validation was
75%, and when the two Golgi apparatus proteins were merged,
the accuracy increased to 82%. These results indicate that the
SOFs and object types are informative for describing the protein
patterns (45) .

 The utility of these features and object types is that they can
be used to characterize mixture patterns. Zhao et al. (45) dem-
onstrated this using an unmixing approach to decompose mix-
ture patterns into components of fundamental patterns. A linear
regression method was first applied. It assumes that the features
of a mixture pattern are linear combinations of the features of
fundamental patterns. The coefficients (weights) of each funda-
mental pattern can be solved from linear equations. However,
even in fundamental patterns, the fractions of each object type
are not fixed. They vary from cell to cell. In a second unmix-
ing approach, multinomial distributions were used to model the
object type components of fundamental patterns and the fun-
damental pattern components of mixture patterns. The param-
eters of the model were then solved by the maximum likelihood
method.

 The object-type-based pattern recognition enables systems
to recognize patterns composed of a mixture of components
(object types) of the basic patterns. The learned object types can
potentially be used to describe new subcellular location patterns
or subtle protein location changes that might occur when cells
are treated with drugs. More importantly, the recognition of the
object types makes it possible to build generative models for pro-
tein location patterns. Zhao and Murphy (46) defined a method

330 Newberg, Hua, and Murphy

that uses a three part model, with a nuclear, cell boundary, and
protein component. Each component is learned separately, and
the protein model uses object types at its core. In addition to cap-
turing a subcellular pattern, the models also capture the variance
of the pattern between images. Thus, these generative models
can be used to create sets of images. The power of these genera-
tive models is that they, unlike conventional microscopy which
only allows for a few proteins to be specifically imaged at a time,
potentially allow for the creation of images that contain as many
data channels as there are proteins in a proteome, and thus, these
models are expected to become an essential tool for location pro-
teomics and systems biology.

 References

 1. Nakai , K. (2000) Protein sorting signals and
prediction of subcellular localization . Adv.
Protein Chem. 54 , 277 – 344 .

 2. Park , K. J. and Kanehisa , M. (2003) Predic-
tion of protein subcellular locations by sup-
port vector machines using compositions of
amino acids and amino acid pairs . Bioinfor-
matics 19 , 1656 – 1663 .

 3. Guda , C. , Fahy , E. , and Subramaniam ,
 S. (2004) MITOPRED: A genome-scale
method for prediction of nucleus-encoded
mitochondrial proteins . Bioinformatics 20 ,
 1785 – 1794 .

 4. Lu , Z. , Szafron , D. , Greiner , R. , Lu , P. ,
 Wishart , D. S. , Poulin , B. , Anvik , J. , Mac-
donell , C. , and Eisner , R. (2004) Predict-
ing subcellular localization of proteins using
machine-learned classifiers . Bioinformatics 20 ,
 547 – 556 .

 5. Chou , K. C. , and Shen , H. B. (2006) Hum-
PLoc: A novel ensemble classifier for predict-
ing human protein subcellular localization .
 Biochem. Biophys. Res. Commun. 347 , 150 –
 157 .

 6. Yu , C. S. , Chen , Y. C. , Lu , C. H. , and Hwang ,
 J. K. (2006) Prediction of protein subcellular
localization . Proteins 64 , 643 – 651 .

 7. Harris , M.A. , Clark , J. , Ireland , A. , Lomax ,
 J. , Ashburner , M. , Foulger , R. , Eilbeck , K. ,
 Lewis , S. , Marshall , B. , Mungall , C. , Richter ,
 J. , Rubin , G.M. , Blake , J.A. , Bult , C. , Dolan ,
 M. , Drabkin , H. , Eppig , J.T. , Hill , D.P. , Ni , L. ,
 Ringwald , M. , Balakrishnan , R. , Cherry , J.M. ,
 Christie , K. R., Costanzo , M. C., Dwight , S. S.,
 Engel , S. , Fisk , D. G., Hirschman , J.E. , Hong ,
 E.L. , Nash , R.S. , Sethuraman , A. , Theesfeld ,
 C. L., Botstein , D. , Dolinski , K. , Feierbach ,
 B. , Berardini , T. , Mundodi , S. , Rhee , S. Y.,
 Apweiler , R. , Barrell , D. , Camon , E. , Dimmer ,

 E. , Lee , V. , Chisholm , R. , Gaudet , P. , Kibbe ,
 W. , Kishore , R. , Schwarz , E.M. , Sternberg , P. ,
 Gwinn , M. , Hannick , L. , Wortman , J. , Ber-
riman , M. , Wood , V. , de la Cruz , N. , Tonel-
lato , P. , Jaiswal , P. , Seigfried , T. , and White ,
 R. (2004) The Gene Ontology (GO) database
and informatics resource . Nucleic Acids Res.
 32 , D258 – D261 .

 8. Tate , P. , Lee , M. , Tweedie , S. , Skarnes , W.
C. , and Bickmore , W. A. (1998) Capturing
novel mouse genes encoding chromosomal
and other nuclear proteins . J. Cell Sci. 111 ,
 2575 – 2585 .

 9. Rolls , M. M. , Stein , P. A. , Taylor , S. S. , Ha ,
 E. , McKeon , F. , and Rapoport , T. A. (1999)
 A visual screen of a GFP-fusion library identi-
fies a new type of nuclear envelope membrane
protein . J. Cell Biol. 146 , 29 – 44 .

 10. Misawa , K. , Nosaka , T. , Morita , S. , Kaneko ,
 A. , Nakahata , T. , Asano , S. , and Kitamura , T.
 (2000) A method to identify cDNAs based
on localization of green fluorescent protein
fusion products . Proc. Natl Acad. Sci. USA
 97 , 3062 – 3066 .

 11. Simpson , J. C. , Wellenreuther , R. , Poustka ,
 A. , Pepperkok , R. , and Wiemann , S. (2000)
 Systematic subcellular localization of novel
proteins identified by large-scale cDNA
sequencing . EMBO Rep. 1 , 287 – 292 .

 12. Jarvik , J. W. , Fisher , G. W. , Shi , C. , Hennen ,
 L. , Hauser , C. , Adler , S. , and Berget , P. B.
 (2002) In vivo functional proteomics: Mam-
malian genome annotation using CD-tagging .
 BioTechniques 33 , 852 – 867 .

 13. Huh , W.-K. , Falvo , J. V. , Gerke , L. C. , Car-
roll , A. S. , Howson , R. W. , Weissman , J. S. ,
and O’Shea , E. K. (2003) Global analysis of
protein localization in budding yeast . Nature
 425 , 686 – 691 .

 Location Proteomics 331

 14. Jarvik , J. W. , Adler , S. A. , Telmer , C. A. , Sub-
ramaniam , V. , and Lopez , A. J. (1996) CD-
Tagging: A new approach to gene and protein
discovery and analysis . BioTechniques 20 ,
 896 – 904 .

 15. Boland , M. V. and Murphy , R. F. (2001) A
neural network classifier capable of recogniz-
ing the patterns of all major subcellular struc-
tures in fluorescence microscope images of
HeLa cells . Bioinformatics 17 , 1213 – 1223 .

 16. Chen , X. , Velliste , M. , Weinstein , S. , Jarvik , J.
W. , and Murphy , R. F. (2003) Location pro-
teomics – Building subcellular location trees
from high resolution 3D fluorescence micro-
scope images of randomly-tagged proteins .
 Proc. SPIE 4962 , 298 – 306 .

 17. Murphy , R. F. , Velliste , M. , and Porreca , G.
 (2003) Robust numerical features for descrip-
tion and classification of subcellular location
patterns in fluorescence microscope images . J.
VLSI Sig. Proc. 35 , 311 – 321 .

 18. Jiang , X. S. , Zhou , H. , Zhang , L. , Sheng ,
 Q. H. , Li , S. J. , Li , L. , Hao , P. , Li , Y. X. ,
 Xia , Q. C. , Wu , J. R. , and Zeng , R. (2004)
 A high-throughput approach for subcellular
proteome: Identification of rat liver proteins
using subcellular fractionation coupled with
two-dimensional liquid chromatography tan-
dem mass spectrometry and bioinformatic
analysis . Mol. Cell. Proteomics 3 , 441 – 455 .

 19. Chen , X. and Murphy , R. F. (2005) Objec-
tive clustering of proteins based on subcellular
location patterns . J. Biomed. Biotechnol. 2005 ,
 87 – 95 .

 20. Drahos , K. L. , Tran , H. C. , Kiri , A. N. , Lan ,
 W. , McRorie , D. K. , and Horn , M. J. (2005)
 Comparison of Golgi apparatus and endoplas-
mic reticulum proteins from livers of juvenile
and aged rats using a novel technique for sepa-
ration and enrichment of organelles . J. Biomol.
Tech. 16 , 347 – 355 .

 21. Schubert , W. , Bonnekoh , B. , Pmmer , A. J. ,
 Philipsen , L. , Bockelmann , R. , Malykh , Y. ,
 Gollnick , H. , Friedenberger , M. , Bode , M. ,
and Dress , A. W. M. (2006) Analyzing pro-
teome topology and function by automated
multi-dimensional fluorescence microscopy .
 Nat. Biotechnol. 24 , 1270 – 1278 .

 22. Sigal , A. , Milo , R. , Cohen , A. , Geva-Zatorsky ,
 N. , Klein , Y. , Alaluf , I. , Swerdlin , N. , Perzov ,
 N. , Danon , T. , Liron , Y. , Raveh , T. , Carpen-
ter , A. E. , Lahav , G. , and Alon , U. (2006)
 Dynamic proteomics in individual human cells
uncovers widespread cell-cycle dependence of
nuclear proteins . Nat. Methods 3 , 525 – 531 .

 23. Garcia Osuna , E. , Hua , J. , Bateman , N. ,
 Zhao , T. , Berget , P. , and Murphy , R. (2007)

 Large-scale automated analysis of location
patterns in randomly tagged 3T3 cells . Ann.
Biomed. Eng. 35 , 1081 – 1087 .

 24. Haralick, R., Shanmugam, K., and Dinstein, I
(1973) Textural features for image classifica-
tion. IEEE Trans. Systems Man Cybernet. SM
S-3, 610–621.

 25. Boland , M. V. , Markey , M. K. , and Murphy ,
 R. F. (1998) Automated recognition of pat-
terns characteristic of subcellular structures in
fluorescence microscopy images . Cytometry
 33 , 366 – 375 .

 26. Adiga , P. S. and Chaudhuri , B. B. (2000)
 Region based techniques for segmentation of
volumetric histo-pathological images . Com-
put. Methods Programs Biomed. 61 , 23 – 47 .

 27. Velliste, M. and Murphy, R.F. (2002) Auto-
mated determination of protein subcellular
locations from 3D fluorescence microscope
images. Proceedings of the 2002 IEEE Inter-
national Symposium on Biomedical Imaging,
867–870.

 28. Jones, T.R., Carpenter, A.E., and Golland, P.
(2005) Voronoi-based segmentation of cells
on image manifolds. ICCV Workshop on Com-
puter Vision for Biomedical Image Applica-
tions, 535–543.

 29. Chen, S.-C., Zhao, T., Gordon , G.J., and
Murphy, R.F. (2006) A novel graphical model
approach to segmenting cell images. Proceed-
ings of the IEEE Symposium on Computational
Intelligence in Bioinformatics and Computa-
tional Biology, 1–8.

 30. Coulot, L., Kirschner, H., Chebira, A., Moura,
J.M.F., Kovacevic, J., Osuna, E.G., and Murphy,
R.F. (2006) Topology preserving STACS seg-
mentation of protein subcellular location images.
Proceedings of the 2006 IEEE International Sym-
posium on Biomedical Imaging, 566–569.

 31. Daubechies , I. (1988) Orthonormal bases of
compactly supported wavelets . Commun. Pure
Appl. Math. 41 , 909 – 996 .

 32. Daugman , J. D. (1988) Complete discrete
2-D Gabor transforms by neural networks for
image analysis and compression . IEEE Trans.
Acoustics Speech Sig. Proc. 36 , 1169 – 1179 .

 33. Huang , K. and Murphy , R. F. (2004) Boost-
ing accuracy of automated classification of
fluorescence microscope images for location
proteomics . BMC Bioinform. 5 , 78 .

 34. Chebira , A. , Barbotin , Y. , Jackson , C. , Mer-
ryman , T. , Srinivasa , G. , Murphy , R. F. , and
 Kovacevic , J. (2007) A multiresolution approach
to automated classification of protein subcellular
location images . BMC Bioinform . 8 , 210 .

 35. Murphy, R.F. (2004) Automated interpreta-
tion of subcellular location patterns. 2004

332 Newberg, Hua, and Murphy

IEEE International Symposium on Biomedical
Imaging, 53–56.

 36. Chen, X. and Murphy, R. F. (2004) Robust
classification of subcellular location pat-
terns in high resolution 3D fluorescence
microscope images. Proceedings of the 26th
Annual International Conference of the IEEE
Engineering in Medicine and Biology Society,
1632–1635.

 37. Ichimura , N. (1997) Robust clustering based
on a maximum-likelihood method for esti-
mating a suitable number of clusters . Syst.
Comput. Jpn 28 , 10 – 23 .

 38. Thorley , J. L. and Page , R. M. (2000) Rad-
Con: Phylogenetic tree comparison and con-
sensus . Bioinformatics 16 , 486 – 487 .

 39. Perlman , Z. E. , Slack , M. D. , Feng , Y. ,
 Mitchison , T. J. , Wu , L. F. , and Altschuler ,
 S. J. (2004) Multidimensional drug profil-
ing by automated microscopy . Science 306 ,
 1194 – 1198 .

 40. Huang, K. and Murphy, R.F. (2004) Auto-
mated classification of subcellular patterns in
multicell images without segmentation into
single cells. Proceedings of the 2004 IEEE
International Symposium on Biomedical Imag-
ing, 1139–1142.

 41. Newberg , J. Y. and Murphy , R. F. (2008)
 A framework for the automated analysis of
subcellular patterns in human protein atlas
images . J. Proteome Res. 7 , 2300 – 2308 .

 42. Chen , S.-C . and Murphy , R. F. (2006) A
graphical model approach to automated classi-
fication of protein subcellular location patterns
in multi-cell images . BMC Bioinform . 7 , 90 .

 43. Chen, S.-C., Gordon, G., and Murphy,
R.F. (2006) A novel approximate inference
approach to automated classification of pro-
tein subcellular location patterns in multi-cell
images. Proceedings of the 2006 IEEE Inter-
national Symposium on Biomedical Imaging,
558–561.

 44. Chen , S.-C. , Gordon , G. J. , and Murphy ,
 R. F. (2008) Graphical models for struc-
tured classification, with an application to
interpreting images of protein subcellular
location patterns . J. Mach. Learning Res. 9 ,
 651 – 682 .

 45. Zhao , T. , Velliste , M. , Boland , M. V. , and
 Murphy , R. F. (2005) Object type recogni-
tion for automated analysis of protein subcel-
lular location . IEEE Trans. Image Process. 14 ,
 1351 – 1359 .

 46. Zhao, T. and Murphy, R. F. (2007) Auto-
mated learning of generative models for
subcellular location: Building blocks for
systems biology. Cytometry Part A 71A ,
978–990.

47. Uhlen et al. (2005) A human protein atlas
for normal and cancer tissues based on anti-
body proteomics. Mol. Cell Proteomics, 4,
1920–1932.

 Chapter 12

 Model-Based Global Analysis of Heterogeneous
Experimental Data Using gfit

 Mikhail K. Levin , Manju M. Hingorani , Raquell M. Holmes ,
 Smita S. Patel , and John H. Carson

 Summary

 Regression analysis is indispensible for quantitative understanding of biological systems and for develop-
ing accurate computational models. By applying regression analysis, one can validate models and quantify
components of the system, including ones that cannot be observed directly. Global (simultaneous) analysis
of all experimental data available for the system produces the most informative results. To quantify com-
ponents of a complex system, the dataset needs to contain experiments of different types performed under
a broad range of conditions. However, heterogeneity of such datasets complicates implementation of the
global analysis. Computational models continuously evolve to include new knowledge and to account for
novel experimental data, creating the demand for flexible and efficient analysis procedures. To address
these problems, we have developed gfit software to globally analyze many types of experiments, to validate
computational models, and to extract maximum information from the available experimental data.

 Key words: Regression analysis , Computational model , Curve fitting , MATLAB , Computer simu-
lation , Least-squares .

 Computational models play increasingly important roles in biol ogy.
Constructing a model that accurately represents the mechanism
of a system, reliably simulates its behavior, and has well-defined
parameter values is the ultimate goal of many research projects.
Models are used for interpreting experimental observations, test-
ing hypotheses, integrating knowledge, discovering components
responsible for certain behavior, designing more informative

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_12

335

336 Levin et al.

experiments, and making quantitative predictions (1) . Remark-
ably, computational models act both as tools for studying biology
and as representations of the resulting knowledge. Indeed, quanti-
tative mechanistic information incorporated into a model allows it
to make predictions outside the domain of existing observations.

 The focus of this chapter is on understanding experimental
data and extracting useful information from it. The role of a model
in this process is to postulate a relationship between conditions of
experiments and the observed results. Using regression analysis,
different models can be tested for their ability to explain the
experimental observations, and their parameters can be estimated.
Thus, regression analysis ties together models and data, validating
the former and extracting information from the latter (2, 3) .

 Unfortunately, practical application of this procedure to
biological systems can be complicated. As will be shown in this
chapter, even relatively simple models may contain too many
parameters to estimate based on a single experiment of any type.
Therefore, to test whether the model is consistent with the data
and to determine its parameters, data from multiple experiments
need to be analyzed globally, while applying all known constraints
to the values of parameters (4) .

 In this chapter, we discuss the challenges associated with
practical application of regression analysis to biological systems.
The problems we describe are exacerbated in complex models
and experimental designs, and thus are especially frustrating for
quantitative biologists. We describe our software, gfit , which
helps to overcome these problems and illustrate its utility with
three biological systems of increasing complexity.

 Regression analysis includes a range of methods for establishing
a model that accurately represents a system and makes accurate
predictions of its behavior. The specific tasks include searching
for optimal parameter values, testing whether the model agrees
with experimental data, estimating parameter confidence inter-
vals, testing whether more experimental data are needed, detect-
ing outlier points, and selecting the preferred model from two
possible ones. In regression analysis, model F is defined as a
quantitative relationship between experimental measurements
(dependent variables) Y and experiment conditions (independ-
ent variables) C

 Y = F (C, x) + e (1)

 where x is a vector of model parameters (variables affecting
behavior of the system that cannot be controlled or directly
observed during experiment), and e is a set of measurement
errors (see Note 1) (5) .

 1.1. Regression
Analysis

 Connecting Models with Data 337

 Goodness of fit, the closeness of model simulations to the
measurements, is quantified by objective function S(x). The most
commonly used objective function is a sum of squared residuals
(see Note 2),

 () () 2

1

,
N

i i
i

S
=

⎡ ⎤= −⎣ ⎦∑x Y F C x (2)

 or, in case of nonuniformly distributed ε , a weighted sum of
squared residuals

() () 2

1

,
,

N
i i

i i

S
s=

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
∑

Y F C x
x , where si is a standard deviation of ei (3)

 Curve fitting is a problem of finding parameters x that produce
the best fit, that is minimize the objective function:

x

min ().S x (4)

 Curve fitting is an optimization problem, performed by opti-
mization engines. Many tasks of regression analysis are based on
curve fitting.

 One common obstacle to broader application of regression analy-
sis to biological problems is failure of many models to directly
simulate the experimentally observed variable. For example, a
typical system model may simulate concentrations of reacting
species, values that are rarely observed in an experiment directly.
One way of addressing this discrepancy is to convert measured
values into the type simulated by the model. However, such con-
versions often introduce statistical errors and are not always pos-
sible. The better solution is to simulate exactly the same value
type as measured in the experiment. To achieve that, separate
experiment models may be required. Experiment models use the
system model to simulate the system’s response to manipula-
tions and the experimentally measured signal (see Fig. 1). The
approach of separating system models and experiment models is
used in Virtual Cell software (6) .

 A curve fitting procedure for a heterogeneous dataset can be
quite complex and require extensive communication between its
entities, i.e., model, optimization engine, experiment conditions,
measurements, parameters, and constraints (see Fig. 2A). Before
a search for optimal parameter values can begin, the data for each
experiment has to be examined:
 – To determine which variables need to be simulated and their

sizes
 – To check that the data required for the simulation has been

provided

 1.2. Applying
Regression Analysis
to Experimental Data

338 Levin et al.

 – To check against constraints on variable dimensions and values
imposed by the model

 – To determine what parameters can be estimated and to choose
their starting values

 Once the data have been examined, the optimization proce-
dure can be initiated by passing a vector of starting parameter values
to the optimization engine. Depending on the engine type, param-
eter constraints can be also provided. The engine conducts opti-
mization by repeatedly changing parameters and recalculating the
objective function on the basis of experimental measurements and
simulations. To simulate each experiment, the input data for the
model has to be assembled from applicable optimization parameters
and experiment conditions. The input data also have to be checked
against the constraints, since not all of them can be enforced by
optimization engines. After simulating all experiments, the appro-
priate objective function can be computed and used by optimiza-
tion engine to determine the direction of the search.

 Curve fitting procedure follows complicated rules that depend
on the computational model, experimental data, and optimization
engine. In addition, parameter constraints need to reflect various
considerations related to the research project. These factors make
the analysis procedure not only complex, but also highly variable,
making design and maintenance of project-specific software prohi-
bitively expensive. Fortunately, the patterns of data flow during

 Fig. 1 . Application of scientific method to quantitative biology. Mechanistic Hypothesis
about a biological system leads to a System Model, a quantitative description of system
components and their interactions. To test the Hypothesis, the system is treated in a
controlled manner and its behavior is measured. The ideas, assumptions, and, possibly,
hypotheses involved in the treatment are parts of Experiment Design. The Measurement
obtained by following the Experiment Protocol is compared with Simulation. To make
the comparison meaningful, all Simulations need to have same physical meaning and
dimensionality as their corresponding Measurements. Therefore, an Experiment Model,
an in silico counterpart of Experiment Protocol, is derived from each Experiment Design.
Experiment Models interacting with the System Model produce Simulations that are
quantitatively compared with the Measurements .

 Connecting Models with Data 339

regression analysis are largely independent of the system under
investigation. This fact allowed us to design software that solves
the analysis problem generally and for any model type.

 The purpose of gfit is connecting models with various types of
experimental data. First, it simplifies the model’s task of directly
simulating experimentally observable variables. Second, during
regression analysis, gfit maintains communications between the
analysis components, acting as a mediator (see Fig. 2B). Third,
by defining standard application interfaces for models, optimiza-
tion engines, objective functions, and other entities, it facilitates
customization of the analysis procedure.

 Of all components, application interfaces of models represent
the biggest problem. Almost every step of regression analysis
procedure depends on what information is required and produced
by the model. Yet, every model has different inputs and outputs.
To be able to perform regression analysis with any kind of compu-
tational model, gfit uses a metadata approach. Any model used by
 gfit is expected to have an attached Model Description (see Note
 3) defining its inputs and outputs as sets of variables (see Note 4).
More information about Model Descriptions is provided later in
this chapter. Once the rules for performing simulations with the
model are known, the analysis process becomes more straightfor-
ward and independent of the model type (Fig. 3).

 Regression analysis is a complicated process with many pit-
falls. gfit strives to provide information that can help researchers
avoid mistakes related to the analysis. In the protocols that follow,
the reader will build simple models and use the existing models
and experimental data for parameter estimation.

 1.3. Design of gfit

 Fig. 2 . Components of regression analysis. Arrows indicate information flow between components. (A) Analysis proce-
dure requires extensive interactions between components. (B) To streamline the procedure, gfit mediates all interactions
between components .

340 Levin et al.

 1. Version 6.5 or later of MATLAB (Mathworks, Natick, MA),
a common science and engineering computing software, is
required for running simulations.

 2. MATLAB Optimization Toolbox (Mathworks) is required for
regression analysis.

 1. Download the latest version of gfit from http://gfit.
sourceforge.net . The zip-archive contains gfit.jar library
and other files required for interaction of gfit with MATLAB.

 2. Unzip the file to a convenient location on your hard disk. For
this chapter we will assume location C:/. Folder C:/Mgfit
will be created.

 3. Start MATLAB .
 4. Change MATLAB ’s current directory to C:/Mgfit.
 5. To start installation, type mgfit in MATLAB ’s command line

and press Enter .

2. Materials

 2.1. Software
Requirements

 2.2. Installation of gfit

 Fig. 3 . Flow of information through regression analysis components. Communications between the components are
controlled by gfit according to Model Description. During simulation of each experiment, independent variables from the
experiment conditions and parameters are tested against constraints and combined into model input data. The input
received by the model is guaranteed to be valid and to contain sufficient information for the simulation. Combining condi-
tions with parameters keeps the model agnostic about the purpose of the simulation. Size of variables in model output
depends on the input. The dependence is defined in Model Description and used by gfit to provide the input that will
result in model output directly comparable with the measured variables for that experiment .

 Connecting Models with Data 341

 6. Respond Yes to the query about adding C:/Mgfit to
MATLAB ’s path.

 7. Restart MATLAB if requested.
 8. After installation, the same command, mgfit, will bring up

 gfit user interface window.

 rsys library is used for solving ODEs for mass-action reaction
systems, as described in Subheading 3.3 .
 1. Download the latest version of rsys for your operating system

from http://gfit.sourceforge.net .
 2. Unzip the file and put the library file anywhere on the MATLAB

path. For example, to C:/Mgfit folder.

 A zip archive containing all model and data files mentioned in this
chapter can be downloaded from http://gfit.sourceforge.
net . The data files included are in tab/newline-delimited format.
These files can be opened in a text editor, but it is more convenient
to view them in a spreadsheet. Please check the readme.txt file
for the most current information.

 In this section, we will create a model for equilibrium binding
of a protein, E , to a ligand, L , (Eq. 5) and use it for analysis of
experimental data. This analysis is quite simple and can be accom-
plished with many existing programs (including commonly used
spreadsheet applications). We will use it to illustrate the principles
of data analysis and model validation used by gfit , and later apply
them to more interesting examples.

 D

[][]
, where

[]
DK E L

E L EL K
EL

+ =����⇀↽���� (5)

 If only total concentrations of E and L are known, E T = [E] +
[EL] and [L T] = [L] + [EL] , equilibrium concentration of the
complex can be written as

 ()2
D T T D T T T T4

[]
2

K E L K E L E L
EL

+ + − + + −
= (6)

 1. Open MATLAB editor by typing edit in the command line.
Editor window will appear.

 2. Add the code shown in Listing 1 and save the file as
eq_binding.m in C:/Mgfit/Models folder.

 2.3. Installation of
 rsys Library

 2.4. Data and Models

3. Using gfit :
Examples

 3.1 Simple Model
Example: Equilibrium
Binding

 3.1.1. Create Standalone
Model

342 Levin et al.

 Steps 1 and 2 create a MATLAB m-file function. Line 1 contains
 MATLAB keyword function followed by the name of the out-
put variable signal , followed by the name of the function, eq_bind-
ing , and a list of input variables (Et, Lt, Kd). Line 2 is a comment,
marked in MATLAB by the % character. Line 3 performs the calcu-
lation according to Eq. 6 . Line 4 assigns the calculated, [EL] , to
the output variable.

 The model we created has three input variables and one output
variable. To perform a simulation, we need to supply values for
input variables and store the result in the output variable. Variables
in MATLAB (and in gfit) can contain a single value or arrays of
numbers. The arrays may have 0, 1, or many dimensions. 0D array,
scalar, stores a single number; 1D array, stores a vector of numbers;
2D array contains a matrix, etc . Models can take advantage of this
fact. For example, our model can accept vectors of Et and Lt con-
centration and simulate an entire titration curve in one call. We will
use the model in Listing 1 to simulate different experiments.

 1. Simulate and plot a titration curve for Lt changing from
0 to 50

 Lt = 0:50; EL = eq_binding(1, Lt, 5);
plot(Lt, EL)

 2. Simulate and plot a titration curve for Et changing from
0 to 20

 Et = 1:20; EL = eq_binding(Et, 10, 5);
plot(Et, EL)

 The model is flexible in that it can simulate experiments with
different numbers of measurements (20 or 50) and with dif-
ferent combinations of variables that change and remain con-
stant. However, if we did not know how input variables were
used inside the model, it would be easy to call the model with
illegal variables. For example, the following command will
produce an error, because the size of Et vector is not equal
to the size of Lt vector.

 Et = 1:20; Lt = 0:50; EL = eq_binding
(Et, Lt, 5);
 As well, mistakenly supplying negative values for the input

parameters will produce a warning and a meaningless simulation
result. Although we can keep track of correct variable sizes and
values when manually executing a simple model, this task becomes

 3.1.2. Perform Simulation

 3.1.3. Simulate Titration
Curves

Listing 1 MATLAB function simulating binding equilibrium

 Connecting Models with Data 343

tedious if many different experiments have to be simulated by a
complex model. To create a connection between experimental
data and a model that is practically useful, there has to be a
method for automatically tracking the requirements of the model
and for reconciling these requirements with existing experimen-
tal data. gfit learns about the requirement of the model and its
expected output by reading the associated user generated Model
Description (see Note 3).

 1. Insert lines 3–13 into previously created eq_binding.m, as
shown in Listing 2 .

 2. Add variable signal to the list of inputs.
 MATLAB m-files with a tag as on line 3 are recognized by gfit

as models. Lines 3–13 are occupied by Model Description.
Note that each of the lines starts from character %, a comment
in MATLAB language. Therefore, Model Description is
ignored by MATLAB and the meaning of the original program
is not changed. Model Description is used by gfit to ensure
that the model always receives legitimate input variables and
to interpret experimental data that belongs to the model.
 The information in Model Description is organized in a tabular

fashion. Any number of tables can be present. Tables in Model

 3.1.4. Create gfit Model
Description

Listing 2. gfit model for binding equilibrium.

344 Levin et al.

Description are space/tab/newline-delimited. Rows in each table
should contain same number of elements. However, if an element
needs to be empty (as in minVal of signal variable), an empty pair
of brackets ((), [], ‘’, or “”) can be used. Brackets should also
surround multiword elements.

 The first table (lines 4–8) should list all model I/O variables
in the same order as in the input list of the function. The first col-
umn of every table contains variable names. The second column
of the first table defines variable types. Type free for variable Et
means that its value could either be known precisely and supplied
with the experiment conditions, or not known and appear as one
of the optimization parameters. Variable Lt is independent, mean-
ing that its value should always be known exactly and appear in
the experimental data. Variable Kd has para type and is sought
as an optimization parameter. Variable signal has dependent type
and therefore is expected to be calculated by the model.

 The Model Description is also used to set bound limits on
the input variables. Column three of the first table, (minVal)
specifies the minimum value of zero for all variables except signal ,
which is dependent and cannot have its value constrained. This
has been included in the first table but can also be placed in a
separate table.

 In this example, the size of variables is set in the second table
of Model Description (lines 10–12). The length of Et variable
vector is set equal to the length of Lt as required by the model. It
also sets the length of signal produced by the model to have the
length of Lt . Since the size of the output variable must be known
by gfit , the latter expression guarantees that the results are equal
to a known length. The table also states (line 12, in the third
column−plotVs) that signal should be plotted versus Lt.

 1. Start gfit by typing mgfit in MATLAB command line. gfit
window will appear.

 2. Select eq_binding.m model by choosing menu Model
ÆPick Model . The name of the model will appear in the
model field.

 3. Arrange data for two experiments in a spreadsheet application
as shown in Fig. 4A . Names of the experiments should appear
in the top line of the data block. First experiment Titration
one contains two variables Lt and Et having equal size. Second
experiment, Titration two , contains only the independent
variable, Lt , required by the model. Note that variables Lt in
experiments one and two have different sizes.

 4. To transfer data to gfit , select both experiments in the spread-
sheet and copy it into the clipboard. Names of experiments
should appear in the top row of the selected block.

 3.1.5. Import Data into gfit

 Connecting Models with Data 345

 5. In gfit window, choose menu DataÆPaste-add Data . gfit
 recognizes tab/newline-delimited data stored in clipboard
and checks it against the requirements of Model Description
to assure that it can be used with the current model. If there
is an inconsistency between data and the requirements of the
Model Description, an error message will appear.
 Once the data is acquired by gfit , it generates parameters for all

para variables and for every free model variable in the model that is
missing in the experimental data (Fig. 4B). Parameters are gener-
ated based on the input variables defined in Model Description.

 During simulation of an experiment, input variables draw
their values either from the supplied experimental data, or from
current values of parameters. In gfit , parameters and input vari-
ables have a many-to-many relationship. When simulating differ-
ent experiments, a variable containing an array of numbers can
collect its values from many parameters. One parameter can be
also connected to multiple variables as long as the variables have
the same physical units (discussed below).

 Fig. 4 . gfit imports experimental data from a spreadsheet. (A) Spreadsheet containing two experiments− Titration one and
 Titration two . Black rectangle shows the cells to be selected, copied, and imported to gfit . (B) Once the data are imported,
 gfit user interface shows model parameters .

346 Levin et al.

 Linkage of parameters to different variables can be adjusted
through gfit parameter table in the user interface (Fig. 4B).
For every parameter, the table shows its name, optimization
flag (pick), low bound constraint (smallest value allowed),
start (current) value, and upper bound constraint. Param-
eters in the table can be sorted by several criteria. To switch
between different sorting methods, click sort parameter table
header button. All parameters can be selected or deselected
for optimization (discussed below) by clicking on pick but-
ton. Bound constraints for each parameter are set based on
the variable’s constraints in the Model Description. The valid
interval of constraints can be only reduced through the user
interface. For example, minimal value for K D can be changed
to 1.0, but not to −1.0.

 1. Set parameter Et ex2 to 15.0 and parameter Kd to 1.
 2. To perform simulation click on Simulate button .
 3. Click on button Plot. A plot will appear.

 The model we created can be conveniently used for simu-
lating equilibrium concentration of EL complex under differ-
ent expe riment conditions. Unfortunately, concentration of a
complex is seldom measured directly in an experiment. In the
simplest case, experimentally observed values are proportional
to [EL]. To avoid transformation of the data (even a linear one)
prior to analysis, the model needs to simulate the measured sig-
nal.

 1. To simulate the signal observed in a real experiment
(e.g., binding induced change of fluorescence), introduce
two more variables, signal gain, gain , and signal back-
ground, c. Assume the signal to be proportional to [EL]
with an offset.

 2. Add more columns to the first table of Model Description to
set default starting values of parameters, physical units, and
human-readable descriptions of model variables. Resulting
model is shown in Listing 3 .
 These changes make this model more flexible because it can

now be used for any experiment that measures a value propor-
tional to the equilibrium concentration of the complex. Param-
eters by default take more reasonable starting values. Human
readable variable descriptions appear when mouse cursor hovers
over a name in the parameter table. Units prevent mixing incom-
patible variables in the same parameter.

 1. From the data archive, open file eq_binding_data_fig5.
txt in a text editor. The file contains data for one experiment,
select and copy its entire contents.

 3.1.6. Simulate with gfit

 3.1.7. Refine Model

 3.1.8. Fit Data

 Connecting Models with Data 347

 2. In gfit interface, select the updated model and import the data
into gfit .

 3. To view the imported data click Plot .
 4. Click Fit . Optimization engine will search parameter space for

the best fit, and will display the optimized values and their
confidence intervals (Fig. 5) (see Notes 5, 6, and 7).

 5. To view fitted data click Plot .
 In this section, we have created a regular MATLAB m-file

and added a gfit Model Description to it, which allowed us to
connect it with experimental data to perform simulation and fitting.
In the following sections, we will apply this technique to more
complex biological systems.

 The model created in the previous section can be used for studying
relatively simple systems where binding properties are character-
ized only by the dissociation constant. However, binding processes
are often more complex and characterized by multiple parameters.
Binding of proteins to discrete positions on a linear lattice (DNA,

 3.2. More Complex
Example: Equilibrium
Binding to a Polymer

Listing 3. Updated gfit model for binding equilibrium.

348 Levin et al.

RNA, microtubules, and microfilaments) plays important roles in
many biological processes. In this section, we will discuss bind-
ing of the helicase from hepatitis C virus to single-stranded (ss)
DNA substrates. The experimental data were obtained by titrating
a constant concentration of the helicase with oligonucleotides of
different lengths while monitoring the reduction of intrinsic fluo-
rescence of the helicase caused by ssDNA binding (7) . With this
example we take regression analysis a step further and globally fit
many titration curves to quantify helicase properties that are not
apparent from any single experiment.

 The model of equilibrium binding to a lattice, in addition to
concentrations and the dissociation constant, uses parameters
related to the geometry of the molecules, namely lattice length
 N , protein’s minimal binding site (M , number of lattice units
interacting with the protein), and protein’s occlusion site (S ,
number of lattice units from which one protein molecule excludes
the others) (Fig. 6A). The model assumes noncooperative and
sequence-independent binding. Since the K D observed in lattice

 Fig. 5 . Fitting the results of a fluorimetric titration experiment. The interface shows optimal values for each parameter
and their confidence intervals .

 Fig. 6 . Binding of proteins to lattices depends on their geometry. (A) Protein geometry
parameters are minimal binding site, M , and occlusion site, S . (B) If lattice length,
 N < M, binding free energy is approximately proportional to N . (C) If N > M , the observed
 K D is inversely proportional to the number of alternative binding configurations, N − M
+ 1. (D) If more than one protein can bind to a lattice molecule, N ≥ S + M , binding
configurations for all possible numbers of bound proteins have to be considered .

 Connecting Models with Data 349

binding experiments changes with the lattice length, the model
uses a more fundamental microscopic dissociation constant, 0

DK
 , defined as the dissociation constant observed with lattice of
length M . Thus, variables 0

DK , M , and S keep same values in all
experiments.

 The model calculates concentration of bound protein, E B ,
from total protein concentration, E T , total concentration of lat-
tice, L T , and N . Depending on relative values of M , S , and N ,
three cases can be considered. If lattice is shorter than the minimal
binding site (Fig. 6B), N < M , and assuming equal contribution
of each lattice unit to the binding free energy, the binding can be
described by Eq. 6 , where the observed dissociation constant

(1 /)(/)0
D D ,N MN MK K −= ξ where ξ is a concentration unit

 conversion factor. (7)

 For longer lattices that can accommodate only one protein
molecule (Fig. 6C), M £ N < 2 S , the observed dissociation
constant is inversely proportional to the number of distinct
positions the protein can occupy.

0
D

D 1
K

K
N M

=
− +

 (8)

 If multiple proteins can bind to a single lattice molecule, Eq. 6
can no longer be used, and the extent of binding has to be
calculated by numerically solving Eq. 9 (8) . Alternatively, if the
number of proteins bound to a lattice is large, a lower order
equation can provide accurate results (9) .

 ()
()

max

max

T B
00
DB

T T B
00
D

!
, where .

! !

i
L

ii

ii
L

ii

E E
i

K N iS iE
L N iS iE E

K

=

=

⎛ ⎞−Ω ⎜ ⎟ − +⎝ ⎠
= Ω =

−⎛ ⎞−Ω ⎜ ⎟⎝ ⎠

∑

∑
 (9)

 Although apparent dissociation constant, K D , can be estimated
on the basis of a single titration experiment, true 0

DK cannot
be determined without prior knowledge of M and S . All three
parameters can be determined simultaneously by globally fitting
titration curves for many ssDNA substrates of different lengths.

 The model for lattice binding lattice_binding_v1.m,
provided in the data archive, follows a similar pattern as previ-
ously created eq_binding.m model. Both models start with
Model Description. We will now test whether the model is con-
sistent with the observed results, estimate the parameters, and
determine their confidence intervals.

350 Levin et al.

 1. Start gfit and choose model lattice_binding_v1.m.
 2. Open file lattice_binding_data.txt in a spreadsheet.

The file contains data for nine titration experiments. As before,
the top row contains only names of experiments with variable
names and values appearing below (see Note 8).

 3. Select and copy entire dataset. Make sure that selection
starts at experiment name row and no values on the bottom
are left out.

 4. Choose menu Data®Paste-add Data to import data to gfit .
The parameters generated for the dataset will appear. View
data by clicking button Plot.

 1. Make sure that all parameters are selected for optimization and
click button Fit . Because of the larger number of parameters
and more involved computation, fitting may take a couple of
minutes to complete.

 2. Plot the fitted data. The fit does not match the data. Notice,
however, that unlike the data, all fitted curves start from the
same value. This happened because same value of f 0 param-
eter was used for all experiments.

 3. Right-click on the name of f 0 parameter and choose menu
 Separate Elements . Parameter f 0 separated into nine param-
eters, one for each experiment. Also separate elements of
parameter fg , because the gain of the signal is also known to
vary between experiments.

 4. Click button Fit.
 Using this model and dataset, gfit is expected to produce

a good fit at the first attempt (Figs. 7 and 8). However, this
result is not typical. In our experience with other models, local
optimization algorithms seldom find the global minimum in the
first attempt. This highlights the importance of global optimiza-
tion methods (10, 11) . Generally, finding a global minimum of a
nonlinear problem is unattainable within finite time. Neverthe-
less, even if a good fit has been found, it is advisable to search the
parameter space for alternative minima. Discovering distinct sets
of parameters that produce “as good,” or “nearly as good” fits is
important to diagnose overparameterized models or insufficient
amount of experimental observations.

 The method currently used by gfit for exploring parameter
space is random restart. This simple method is implemented as
a “globalizer” on top of the existing local optimization engine.
Random restart repeatedly reinitiates local optimization with
a randomly chosen set of parameters. The new starting param-
eter values are picked from a uniform distribution for doubly-
constrained parameters, from a truncated normal distribution for
singly-constrained parameters, and from a normal distribution

 3.2.1. Import Titration Data
for Global Analysis

 3.2.2. Fit the Data

 Connecting Models with Data 351

for the unconstrained ones. Random restart procedure is imple-
mented without a defined termination condition. It is supposed
to be interrupted by the user.

 1. Choose menu AnalysisÆRandom Restart (see Note 9).
 2. Allow the program to perform a few hundred optimizations and

interrupt it by clicking button Cancel . The best found param-
eter values appear in the right column of the parameter table.

 3. To check the goodness of fit visually, copy best found param-
eter values to the start column by clicking the table header
button <<value , click button Simulate , then button Plot (see
 Note 10).
 More generally, the following rule-of-thumb procedure can be

used to decide if the random restart search should be continued.

 3.2.3. Search for Global
Minimum

 Fig. 7 . Results of global fitting of nine equilibrium titration experiments. The interface shows a table of 21 parameters.
Three parameters, Kd 0 , M, and S , were globally applied to all experiments, while each of the others were used in one
experiment only. For example, parameter f0 ex3 was used in experiment 3 only. Optimization started with parameter
values displayed in column start , and arrived to the optimal values displayed in column optimum . Column confidence
shows parameter standard errors (68% confidence intervals) estimated using asymptotic method .

352 Levin et al.

 1. With random restart running or terminated, open most recent
file C:/Mgfit/Temp/Optim_ nnn .txt in a simple text edi-
tor (see Note 9).

 2. Select and copy entire contents of the file and paste it into
a spreadsheet application. Now each row of the spreadsheet
contains a set of optimized parameters, while the first column
contains the values of objective function. Parameter sets appear
in the order they were calculated.

 3.2.4. When Should
Random Restart
be Terminated?

 Fig. 8 . Plots of nine globally fitted titration experiments. In each titration, increasing concentrations of ssDNA were added
to the constant concentration of helicase. Concentrations of helicase as well as lengths of ssDNA were different in each
titration. Binding to DNA reduced the intrinsic fluorescence of the helicase. Experimental measurements of fluorescence
are shown as dots . Results of the simulation are shown as solid lines .

 Connecting Models with Data 353

 3. Sort parameter sets by their objective function. The best fitting
parameter set is now at the top row of the table.

 4. Examine the better fitting parameter sets. Identify a group of
better fitting sets with similar goodness of fit values starting
from the top row.
 a If the group is small, the search is worth continuing.
 b If the group is large and at least some of the parameters

have significantly different values, the data does not suffi-
ciently constrain model parameters. Additional experiments
may be needed.

 c If the group is large and parameter values are similar between
different sets, the group is probably in the vicinity of the
global minimum of the problem.

 In this section, we describe modeling and analysis of a kinetic
pathway responsible for loading sliding clamp proteins onto
DNA during replication initiation. The clamp, PCNA, encir-
cles DNA and binds to DNA polymerase, conferring processiv-
ity to the replication complex. PCNA is loaded onto DNA by
the heteropentameric clamp loader protein, RFC, in a process
that involves ATP binding and hydrolysis and conformational
changes of the proteins (Fig. 9A) (12) . Although the process
has been extensively studied, understanding at the quantitative

 3.3. Advanced
Example: Kinetic
Mechanism of Clamp
Assembly on DNA

 Fig. 9 . Mechanism of clamp loading on DNA. (A) Clamp loader protein, RFC, catalyzes assembly of circular PCNA clamps
onto primed DNA in a reaction driven by ATP binding and hydrolysis. (B) Design of ATPase experiments, with initial mix-
ing of RFC and PCNA with ATP, followed by varying delay times, mixing with DNA, and measurement of product kinetics.
(C) Simplified clamp loading reaction scheme. RFC (in the presence of PCNA; RC) binds ATP (T). The ternary complex
undergoes an activation step (RA) before DNA (N) binding, rapid ATP hydrolysis and dissociation from the clamp-DNA
complex (CN) .

354 Levin et al.

level is incomplete. Properties of individual species and reactions
involved in this process are difficult to determine because almost
any measurement technique is affected by a combination of many
simultaneously occurring reactions. Computational modeling in
conjunction with regression analysis provides a feasible solution
to this complex problem.

 Currently we are building, validating, and refining a mecha-
nistic model of the process that can resolve many species and
quantify the rates of individual reactions that may not be observed
experimentally. A simplified reaction scheme, the first iteration of
modeling process, is shown in Fig. 9C . The challenge of esti-
mating the rates of many individual reactions can be addressed
by monitoring the process from different perspectives. As noted
earlier, each measurement is a function of many or all of the rates
in the process; however, measurements from different perspec-
tives are likely to be affected in distinct ways by individual reac-
tion rates. Therefore, taken together, multiple measurements of
presteady-state kinetics monitored by a few different methods can
provide sufficient constraints to the parameters of the model.

 Results of global regression analysis of data from two types of
presteady-state experiments, one measuring ATP hydrolysis and
the other phosphate (Pi) release by RFC protein, are shown in
 Figs. 10 and 11 . ATP hydrolysis was monitored by a radiometric
assay measuring formation of 32 P-ADP over time from 32 P-ATP,
and Pi release was monitored by the change in fluorescence of a
reporter, Pi Binding Protein, on binding the Pi released by RFC
following ATP hydrolysis. Salient features of the experimental
design in both cases are (Fig. 9B): (a) rapid mixing of a constant
concentration of RFC (in the presence of excess PCNA clamp)
with excess ATP; (b) incubation of RFC with ATP for varying
times; (c) rapid mixing of the RFC, ATP, PCNA mix with excess
DNA and measurement of product formation and release over
time. Salient features of the model mechanism are (Fig. 9C): (a)
RFC binding to ATP; (b) a proposed step that might account for
the observed increase in ATPase activity with increasing RFC-
ATP incubation time; (c) DNA binding to the RFC-ATP com-
plex; (d) ATP hydrolysis; (e) release of ADP, Pi and clamp−DNA
complex.

 Simultaneous fitting of a large number of experiments
requires efficient simulation. The most computationally intensive
operation performed by RFC model is integration of ODE sys-
tems to simulate mass-action reactions. To accelerate this process,
reaction kinetics was simulated using native rsys library. A com-
bination of a flexible and user-friendly scripting language, such
as MATLAB , with a native library for computationally intensive
parts of simulation was found to be especially productive.

 Given estimates of ATP and DNA-binding rate constants, the
model produces a good fit for datasets from both ATP hydrolysis

 Connecting Models with Data 355

as well as Pi release experiments in a single seamless operation.
Confidence in the parameters obtained from the fits is increased
by using the random restart method, as described in Subhead-
ing 3.2.3 . A highlight of the findings is that global fitting of the
ATPase data validates the proposed step between ATP binding
and hydrolysis (Fig. 9C), and reveals that it is a relatively slow,
and thus mechanistically important, step in the clamp assembly
reaction (rate constant: kRt_Act). We can now formulate specific,
testable hypotheses regarding the nature of this step; e.g., an ATP
binding-driven conformational change in RFC that enables pro-
ductive interactions with the clamp and DNA.

 It is clear that the reaction depicted in Fig. 9C represents a
simplified model of the clamp assembly reaction, in which the

 Fig. 10 . Parameters of RFC clamp loader model. The values of parameters were obtained by global fitting of 22 presteady-
state kinetic measurements .

356 Levin et al.

number of possible species and steps are restricted. Such limita-
tions are often introduced in models to focus on specific experi-
mentally measured parameters, and thereby increase confidence
in the fit. For example, this model omits RFC binding to the
clamp, since the parameters defining this step are unknown and
are not measured explicitly in the ATPase experiments. Under
such circumstances, however, it is entirely possible that good-
ness of fit to the data becomes unrelated to the quality of the
model. gfit enables model-based global analysis of a variety of

 Fig. 11 . Fitting of kinetic data by the clamp loader model. Depending on the measurement conditions, kinetics of Pi
release and ADP production exhibits different extent of lag followed by a burst and approach to the steady state. The
presence of multiple “features” in the kinetic curves facilitates constraining parameters of the model .

 Connecting Models with Data 357

experiments to find parameter values that are consistent across
the board. Therefore, a more comprehensive model of clamp
assembly can be developed from the start, and then continually
validated and refined by data input from experiments measur-
ing clamp binding, clamp opening, DNA binding, clamp−DNA
release, etc., leading to discovery of the preferred mechanism of
clamp assembly on DNA.

 1. In regression analysis literature, dependent variables may be
referred to as response or observed variables; independent vari-
ables may be referred to as predictor or explanatory variables.

 2. Residual is the difference between the experimental measure-
ment and the simulation produced by the model.

 3. Model Description is metadata attached to gfit models that
defines their correct usage. It contains model name, version,
general human-readable comments about the purpose of the
model and its algorithm, and, most importantly, machine-
readable descriptions of the model’s input and output vari-
ables. For each variable, it specifies name, type, physical
unit, dimensions, and a range of acceptable values. Variable
dimensions are defined either as constants or in relationship
to another variable dimension or index variable. Variables
may change their size depending on experimental data and
user input. Dimensions of each variable usually change in
concert with dimensions of other variables.

 4. Variable (in gfit context) is an array of elements (numbers)
defined in Model Description. A variable may contain a single
element (scalar variable, 0D), a vector of elements (1D), a
matrix (2D), etc. Variables are used for storing information
about an experiment, for passing data to the model and for
receiving data simulated by the model. Depending on the
Model Description, each variable dimension may be fixed, or
vary individually or in concert with other variable dimensions.
This property of variables increases flexibility of gfit models.

 5. During calculations, all control elements of gfit interface are
disabled with the exception of the button Cancel. Clicking
this button prevents simulation of the next experiment. Simu-
lation of the current experiment will not be aborted.

 6. During fitting, information about each iteration is displayed
in MATLAB command window. If fitting is aborted, the last
values of parameters appear in the right column of parameter
table.

4. Notes

358 Levin et al.

 7. Currently gfit uses an asymptotic method for determining
confidence intervals of parameters. This method is known to
be inaccurate for nonlinear models.

 8. In spreadsheet-arranged data, a colon following a variable
name indicates that the variable is scalar and its value should
appear in the cell to the right of the name.

 9. During a random restart run, starting parameter values and
optimization results are accumulated in files Start_ nnn .txt
and Optim_ nnn .txt, respectively, in folder C:/Mgfit/
Temp/, where nnn are digits starting from 000 and incre-
mented for each subsequent random restart search. The files
contain tab/newline-delimited tables with each set of param-
eters occupying one row. The first row contains parameter
names. In addition, the first column of Optim_ nnn .txt file
contains objective function values, S(x). To check the progress
of the search without interrupting it, open either of the files
in a simple text editor, select, and copy its entire contents, and
paste it into a spreadsheet application.

 10. Column 6 of parameter table contains values produced by
optimization (completed or interrupted). To be able to edit
the values, to use them for simulation, or as starting values
for fitting, copy them to column 4 by clicking table header
button <<value.

 Authors thank members of the Center for Cell Analysis and Mod-
eling: Pavel Kraykivski, Igor Novak, Jim Schaff, and Boris Slep-
chenko for their advice and critical discussions and Les Loew for
his support. Experimental data for clamp loader protein was pro-
vided thanks to Siying Chen. This work was supported in part by
grants NS15190 (NIH), RR13186 (NIH), RR022232 (NIH)
and RR022624 (NIH) to J.H.C; GM55310 (NIH) to S.S.P;
GM64514-01 (NIH) and MCB 0448379 (NSF) to M.M.H.

Acknowledgments

 References

 1. Mogilner , A. , Wollman , R. , and Marshall ,
 W. F. (2006) Quantitative modeling in cell
biology: what is it good for ? Dev. Cell. 11 ,
 279–287 .

 2. Albeck , J. G. , MacBeath , G. , White , F. M. ,
 Sorger , P. K. , Lauffenburger , D. A. , and Gau-
det , S. (2006) Collecting and organizing sys-
tematic sets of protein data . Nat. Rev. Mol.
Cell. Biol. 7 , 803–812 .

 3. Jaqaman , K. and Danuser , G. (2006) Link-
ing data to models: data regression . Nat. Rev.
Mol. Cell. Biol. 7 , 813–819 .

 4. Beechem , J. M. (1992) Global analysis of bio-
chemical and biophysical data . Meth. Enzymol.
 210 , 37–54 .

 5. Draper, N.R. and Smith, H. (1998) Applied
Regression Analysis. Wiley, New York.

 Connecting Models with Data 359

 6. Slepchenko , B. M. , Schaff , J. C. , Macara , I. , and
 Loew , L. M. (2003) Quantitative cell biology with
the Virtual Cell . Trends Cell. Biol. 13 , 570–576 .

 7. Levin , M. K. and Patel , S. S. (2002) Helicase
from hepatitis C virus, energetics of DNA
binding . J. Biol. Chem. 277 , 29377–29385 .

 8. Epstein , I. R. (1978) Cooperative and non-
cooperative binding of large ligands to a finite
one-dimensional lattice. A model for ligand-
oligonucleotide interactions . Biophys. Chem. 8 ,
 327–339 .

 9. Tsodikov , O. V. , Holbrook , J. A. , Shkel , I. A. ,
and Record , M. T. , Jr. (2001) Analytic binding
isotherms describing competitive interactions

of a protein ligand with specific and nonspe-
cific sites on the same DNA oligomer . Biophys.
J. 81 , 1960–1969 .

 10. Moles , C. G. , Mendes , P. , and Banga , J. R.
 (2003) Parameter estimation in biochemical
pathways: a comparison of global optimiza-
tion methods . Genome Res. 13 , 2467–2474 .

 11. Banga , J. R. (2008) Optimization in com-
putational systems biology . BMC Syst. Biol.
 2 , 47 .

 12. Johnson , A. and O Donnell , M. (2005)
 Cellular DNA replicases: components and
dynamics at the replication fork . Annu. Rev.
Biochem. 74 , 283–315 .

 Chapter 13

 Multicell Simulations of Development and Disease Using
the CompuCell3D Simulation Environment

 Maciej H. Swat, Susan D. Hester, Ariel I. Balter , Randy W. Heiland,
 Benjamin L. Zaitlen, and James A. Glazier

 Summary

 Mathematical modeling and computer simulation have become crucial to biological fields from genomics
to ecology. However, multicell, tissue-level simulations of development and disease have lagged behind
other areas because they are mathematically more complex and lack easy-to-use software tools that allow
building and running in silico experiments without requiring in-depth knowledge of programming. This
tutorial introduces Glazier–Graner–Hogeweg (GGH) multicell simulations and CompuCell3D, a simu-
lation framework that allows users to build, test, and run GGH simulations.

 Key words : Glazier–Graner–Hogeweg model , GGH , CompuCell3D , Mitosis , Cell growth ,
 Cell sorting , Chemotaxis , Multicell modeling , Tissue-level modeling , Developmental biology ,
 Computational biology .

 Most contemporary life scientists, whether theoretical or experi-
mental, have relatively narrow disciplinary training. This speciali-
zation is partly a consequence of the speed of current progress in
the life sciences and concomitant growth in the number of active
researchers.

 While the success of contemporary biology might lead naïve
observers to conclude that our understanding is a simple super-
position of achievements in the subfields composing life sciences,
only rarely can we understand how a biological phenomenon
operates by analyzing and understanding how its isolated com-
ponents operate.

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_13

361

362 Swat et al.

 Just as knowing how transistors work is not sufficient to
design and build a modern microprocessor, knowing the “function”
of an enzyme does not suffice to design cells’ biochemical net-
works or even to predict the phenotypic effect of knocking out
specific genes.

 Systems biology is a scientific discipline that studies complex
interactions in biology, relying more on knowledge integration
than on detailed studies of individual biological subsystems. Systems
biologists often build mathematical models and computer simu-
lations of living cells, tissues, organs, or even entire organisms to
embody their understanding of this integration.

 The last decade has seen fairly realistic simulations of single
cells that can confirm or predict experimental findings. Because
they are computationally expensive, they can simulate at most
several cells at once. Even more detailed subcellular simulations
can replicate some of the processes taking place inside individual
cells. For example, Virtual Cell (http://www.nrcam.uchc.edu)
supports microscopic simulations of intracellular dynamics to
produce detailed replicas of individual cells, but can only simulate
single cells or small cell clusters.

 Simulations of tissues, organs, and organisms present a
somewhat different challenge: how to simplify and adapt single
cell simulations to apply them efficiently to study, in silico ,
ensembles of several million cells. To be useful, these simpli-
fied simulations should capture key cell-level behaviors, provid-
ing a phenomenological description of cell interactions without
requiring prohibitively detailed molecular-level simulations of the
internal state of each cell. While an understanding of cell biol-
ogy, biochemistry, genetics, etc. is essential for building useful,
predictive simulations, the hardest part of simulation building is
identifying and quantitatively describing appropriate subsets of
this knowledge. In the excitement of discovery, scientists often
forget that modeling and simulation, by definition, require sim-
plification of reality.

 One choice is to ignore cells completely, e.g., Physiome (1)
models tissues as continua with bulk mechanical properties and
detailed molecular reaction networks, which is computationally
efficient for describing dense tissues and noncellular materi-
als like bone, extracellular matrix (ECM), fluids, and diffusing
chemicals (2, 3) , but not for situations where cells reorganize
or migrate.

 Multicell simulations are useful for interpolating between
single-cell and continuum-tissue extremes because cells provide
a natural level of abstraction for simulation of tissues, organs,
and organisms (4) . Treating cells phenomenologically reduces
the millions of interactions of gene products to several behav-
iors: most cells can move, divide, die, differentiate, change
shape, exert forces, secrete and absorb chemicals and electrical

 Multicell Simulations of Development and Disease Using the CompuCell3D 363

charges, and change their distribution of surface properties. The
 Glazier–Graner–Hogeweg (GGH) approach facilitates multi-
scale simulations by defining spatially extended generalized cells ,
which can represent clusters of cells, single cells, subcompart-
ments of single cells, or small subdomains of noncellular materi-
als. This flexible definition allows tuning of the level of detail in
a simulation from intracellular to continuum without switching
simulation frameworks to examine the effect of changing the
level of detail on a macroscopic outcome, e.g., by switching
from a coupled ordinary differential equation (ODE) Reaction-
Kinetics (RK) model of gene regulation to a Boolean descrip-
tion or from a simulation that includes subcellular structures to
one that neglects them.

 Because it uses a regular cell lattice and regular field lattices, GGH
simulations are often faster than equivalent Finite Element (FE)
simulations operating at the same spatial granularity and level of
modeling detail, permitting simulation of tens to hundreds of
thousands of cells on lattices of up to 1,024 3 pixels on a single
processor. This speed, combined with the ability to add biologi-
cal mechanisms via terms in the effective energy, permit GGH
modeling of a wide variety of situations, including tumor growth
 (5– 9) , gastrulation (10– 12) , skin pigmentation (13– 16) , neuro-
spheres (17) , angiogenesis (18– 23) , the immune system (24, 25) ,
yeast colony growth (26, 27) , myxobacteria (28– 31) , stem-cell
differentiation (32, 33) , Dictyostelium discoideum (34– 37) , simu-
lated evolution (38– 43) , general developmental patterning (14,
 44) , convergent extension (45, 46) , epidermal formation (47) ,
 Hydra regeneration (48, 49) , plant growth, retinal patterning
 (50, 51) , wound healing (47, 52, 53) , biofilms (54– 57) , and limb-
bud development (58, 59) .

 All GGH simulations include a list of objects , a description of their
 interactions and dynamics , and appropriate initial conditions .

 Objects in a GGH simulation are either generalized cells or
 fields in two dimensions (2D) or three dimensions (3D). Gener-
alized cells are spatially extended objects (Fig. 1), which reside
on a single cell lattice and may correspond to biological cells,

2. GGH Applications

3. GGH Simulation
Overview

364 Swat et al.

subcompartments of biological cells, or to portions of noncel-
lular materials, e.g., ECM, fluids, solids, etc. (8, 48, 60– 72) . We
denote a lattice site or pixel by a vector of integers, i→ , the cell
index of the generalized cell occupying pixel i→ by s (i→) and the
 type of the generalized cell s (i→) by t (s (i→)). Each generalized cell
has a unique cell index and contains many pixels. Many general-
ized cells may share the same cell type. Generalized cells permit
coarsening or refinement of simulations by increasing or decreas-
ing the number of lattice sites per cell, grouping multiple cells
into clusters or subdividing cells into variable numbers of subcells
(subcellular compartments). Compartmental simulation permits
detailed representation of phenomena like cell shape and polarity,
force transduction, intracellular membranes and organelles, and
cell-shape changes. For details on the use of subcells, which we
do not discuss in this chapter, see refs. 27, 31, 73, 74 . Each gener-
alized cell has an associated list of attributes, e.g., cell type , surface
area , and volume , as well as more complex attributes describ-
ing a cell’s state, biochemical interaction networks, etc. Fields are
continuously variable concentrations, each of which resides on
its own lattice. Fields can represent chemical diffusants, nondif-
fusing ECM, etc. Multiple fields can be combined to represent
materials with textures, e.g., fibers.

 Interaction descriptions and dynamics define how GGH
objects behave both biologically and physically. Generalized-
cell behaviors and interactions are embodied primarily in the
 e ffective energy , which determines a generalized cell’s shape,

 Fig. 1 . Detail of a typical two-dimensional GGH cell-lattice configuration. Each domain represents a single spatially
extended cell. The detail shows that each generalized cell is a set of cell-lattice sites (or pixels), i→ , with a unique index,
 s (i→), here 4 or 7. The shade of gray denotes the cell type, t (s (i→)) .

 Multicell Simulations of Development and Disease Using the CompuCell3D 365

motility, adhesion, and response to extracellular signals. The
effective energy mixes true energies, such as cell–cell adhesion,
with terms that mimic energies, e.g., the response of a cell to a
chemotactic gradient of a field (75) . Adding constraints to the
effective energy allows description of many other cell properties,
including osmotic pressure, membrane area, etc. (76– 83) .

 The cell lattice evolves through attempts by generalized cells
to move their boundaries in a caricature of cytoskeletally driven
cell motility. These movements, called index-copy attempts , change
the effective energy, and we accept or reject each attempt with a
probability that depends on the resulting change of the effective
energy , H , according to an acceptance function . Nonequilibrium
statistical physics then shows that the cell lattice evolves to locally
minimize the total effective energy. The classical GGH imple-
ments a modified version of a classical stochastic Monte-Carlo
pattern-evolution dynamics, called Metropolis dynamics with
Boltzmann acceptance (84, 85) . A Monte Carlo Step (MCS) con-
sists of one index-copy attempt for each pixel in the cell lattice.

 Auxiliary equations describe cells’ absorption and secretion
of chemical diffusants and extracellular materials (i.e., their inter-
actions with fields), state changes within cells, mitosis, and cell
death. These auxiliary equations can be complex, e.g., detailed
RK descriptions of complex regulatory pathways. Usually, state
changes affect generalized-cell behaviors by changing parameters
in the terms in the effective energy (e.g., cell target volume or type
or the surface density of particular cell-adhesion molecules).

 Fields also evolve due to secretion, absorption, diffusion,
reaction, and decay according to partial differential equations
(PDEs). While complex coupled-PDE models are possible,
most simulations require only secretion, absorption, diffusion,
and decay, with all reactions described by ODEs running inside
individual generalized cells. The movement of cells and variations
in local diffusion constants (or diffusion tensors in anisotropic
ECM) mean that diffusion occurs in an environment with mov-
ing boundary conditions and often with advection. These
constraints rule out most sophisticated PDE solvers and have
led to a general use of simple forward-Euler methods, which
can tolerate them.

 The initial condition specifies the initial configurations of the
cell lattice, fields, a list of cells and their internal states related to
auxiliary equations, and any other information required to com-
pletely describe the simulation.

 The core of GGH simulations is the effective energy , which
describes cell behaviors and interactions.

 One of the most important effective-energy terms describes
cell adhesion. If cells did not stick to each other and to extracellu-
lar materials, complex life would not exist (86) . Adhesion provides

3.1. Effective Energy

366 Swat et al.

a mechanism for building complex structures, as well as for hold-
ing them together once they have formed. The many families of
adhesion molecules (CAMs, cadherins, etc.) allow embryos to
control the relative adhesivities of their various cell types to each
other and to the noncellular ECM surrounding them, and thus
to define complex architectures in terms of the cell configurations
which minimize the adhesion energy.

 To represent variations in energy due to adhesion between
cells of different types, we define a boundary energy that depends
on J (t (s), t (s ¢)).

The boundary energy per unit area between two cells (s , s ¢)
of given types (t (s), t (s ¢)) at a link (the interface between two
neighboring pixels):

= − δ∑� �
� �� �

neighbors

boundary
,

((()), (())) (1 ((), ())),
i j

H J i j i jt s t s s s

(1)

 where the sum is over all neighboring pairs of lattice sites i→ and j→ ,
and the boundary-energy coefficients are symmetric

 J(t(s),t (s¢)) = J(t (s¢),t (s)). (2)

 In addition to boundary energy, most simulations include
multiple constraints on cell behavior. The use of constraints to
describe behaviors comes from the physics of classical mechan-
ics. In the GGH context we write constraint energies in a general
 elastic form:

 Hconstraint = l (value − target_value)2. (3)

 The constraint energy is zero if value = target_value (the con-
straint is satisfied) and grows as value diverges from target_value .
The constraint is elastic because the exponent of 2 effectively
creates an ideal spring pushing on the cells and driving them
to satisfy the constraint. λ is the spring constant (a positive real
number), which determines the constraint strength . Smaller val-
ues of λ allow the pattern to deviate more from the equilibrium
condition (i.e., the condition satisfying the constraint). Because
the constraint energy decreases smoothly to a minimum when
the constraint is satisfied, the energy-minimizing dynamics used
in the GGH automatically drives any configuration toward one
that satisfies the constraint. However, because of the stochastic
simulation method, the cell lattice need not satisfy the constraint
exactly at any given time, resulting in random fluctuations. In
addition, multiple constraints may conflict, leading to configura-
tions which only partially satisfy some constraints.

 Because biological cells have a given volume at any time, most
GGH simulations employ a volume constraint, which restricts vol-
ume variations of generalized cells from their target volumes:

 Multicell Simulations of Development and Disease Using the CompuCell3D 367

2
vol vol t()(() ()) ,H v V

s

l s s s= −∑

 (4)

 where for cell s , l vol (s) denotes the inverse compressibility of
the cell, v (s) is the number of pixels in the cell (its volume),
and V t (s) is the cell’s target volume . This constraint defines
 P ∫ -2 l (v (s) - V t (s)) as the pressure inside the cell. A cell with
 v < Vt has a positive internal pressure, while a cell with v > V t has
a negative internal pressure.

 Since many cells have nearly fixed amounts of cell membrane,
we often use a surface-area constraint of form:

= −∑ 2

surf surf t()(() ()) ,H s S
s

l s s s

 (5)

 where s (s) is the surface area of cell s , S t is its target surface area,
and l surf (s) is its inverse membrane compressibility.1

 Adding the boundary energy and volume constraint terms
together (Eqs. 1 and 4), we obtain the basic GGH effective energy :

neighbors

GGH
,

2
vol t

((()), (())) (1 ((), ()))

()(() ()) .

i j

H J i j i j

v V
s

t s t s d s s

l s s s

= −

+ −

∑

∑

� �

� �� �

(6)

 A GGH simulation consists of many attempts to copy cell indices
between neighboring pixels. In CompuCell3D, the default dynami-
cal algorithm is modified Metropolis dynamics . During each index-
copy attempt, we select a target pixel, i→

 , randomly from the cell
lattice, then randomly select one of its neighboring pixels, i ′

�
 , as a

 source pixel (note that the neighbor range may be greater than one).
If they belong to the same generalized cell (i.e., if () ()i is s= ′

� �
) we

do nothing. Otherwise, the cell containing the source pixel, ()is ′
�

 ,
attempts to occupy the target pixel. Consequently, a successful index
copy increases the volume of the source cell and decreases the volume
of the target cell by one pixel (Fig. 2).

 In the modified Metropolis algorithm we evaluate the change
in the total effective energy due to the attempted index copy and
accept the index-copy attempt with probability

mexp(/) : 0;

(() ())
1 : 0

H T H
P i i

H
s s

− Δ Δ >⎧ ⎫
→ =′ ⎨ ⎬Δ ≤⎩ ⎭

� �
 (7)

 where Tm is a parameter representing the effective cell motility
(we can think of Tm as the amplitude of cell-membrane fluctua-
tions). Equation 7 is the Boltzmann acceptance function . Users

 3.2. Dynamics

 1Because of lattice discretization and the option of defining long-range neighborhoods, the surface area
of a cell scales in a non-Euclidian, lattice-dependent manner with cell volume (see ref. 61 on bubble
growth).

368 Swat et al.

can define other acceptance functions in CompuCell3D. The
conversion between MCS and experimental time depends on
the average values of DH/Tm . MCS and experimental time are
proportional in biologically meaningful situations (20, 87– 89) .

 Consider an effective energy consisting of boundary-energy and
volume-constraint terms as in Eq. 6 . After choosing the source
(i ′
�

) and destination (i→) pixels (the cell index of the source will
overwrite the target pixel if the index copy is accepted), we cal-
culate the change in the effective energy that would result from
the copy. We evaluate the change in the boundary energy and
volume constraint as follows. First, we visit the target pixel’s
neighbors (i ′′

�
). If the neighbor pixel belongs to a different gen-

eralized cell from the target pixel, i.e., when () ()i is s≠′′
� �

 (see
 Eq. 1), we decrease DH by ,((()) (())J i it s t s ′′

� �
 . If the neighbor

belongs to a cell different from the source pixel (i ′
�

) we increase
 DH by ,((()) (())J i it s t s′ ′′

� �
 .

 3.3. Algorithmic
Implementation of
Effective-Energy
Calculations

 Fig. 2. GGH representation of an index-copy attempt for two cells on a 2D square lattice – The “ white ” pixel (source)
attempts to replace the “ gray ” pixel (target). The probability of accepting the index copy is given by Eq. 7 .

 Multicell Simulations of Development and Disease Using the CompuCell3D 369

 The change in volume-constraint energy is evaluated accord-
ing to

 ,

Δ = −

= + − + − −′ ′

− − + −′ ′

= + − + − −′ ′

� � � �

� � � �

� � � �

new old
vol vol vol

2 2
vol t t

2 2
vol t t

vol t t

[((()) 1 (())) ((()) 1 (()))]

[((()) (())) ((()) (()))]

[{1 2((()) (()))} {1 2((()) (()))}]

H H H

v i V i v i V i

v i V i v i V i

v i V i v i V i

l s s s s

l s s s s

l s s s s

(8)

 where v(s (i ′
�

)) and v(s (i→)) denote the volumes of the general-
ized cells containing the source and target pixels, respectively.

 In this example, we could calculate the change in the effective
energy locally, i.e., by visiting the neighbors of the target of the index
copy. Most effective energies are quasi-local, allowing calculations
of DH similar to those presented above (Fig. 3). The locality of the
effective energy is crucial to the utility of the GGH approach. If we
had to calculate the effective energy for the entire cell lattice for each
index-copy attempt, the algorithm would be prohibitively slow.

 For longer-range interactions we use the appropriate list of
neighbors, as shown in Fig. 4 and Table 1 . Longer-range inter-
actions are less anisotropic but result in slower simulations.

 Fig. 3. Calculating changes in the boundary energy and the volume-constraint energy on a nearest-neighbor square
lattice .

370 Swat et al.

 One advantage of the GGH model over alternative techniques is its
mathematical simplicity. We can implement fairly easily a computer
program that initializes the cell lattice and fields, performs index

 4. CompuCell3D

 Table 1
 Multiplicity and Euclidian distances of n th-nearest
neighbors for 2D square and hexagonal lattices

 The number of n th neighbors and their distances from the central pixel
differ in a 3D lattice. CompuCell3D calculates distance between neigh-
bors by setting the volume of a single pixel (whether in 2D or 3D) to 1.

 2D Square lattice 2D Hexagonal lattice

 Neighbor
 order

 Number of
 neighbors

 Euclidian
 distance

 Number of
Neighbo r s

 Euclidian
 distance

 1 4 1 6

2 / 3

 2 4
 2

 6

6 / 3

 3 4 2 6

8 / 3

 4 8
 5

 12

14 / 3

 Fig. 4. Locations of n th nearest neighbors on a 2D square lattice and a 2D hexagonal lattice .

 Multicell Simulations of Development and Disease Using the CompuCell3D 371

copies, and displays the results. In the 15 years since the GGH
model was developed, researchers have written numerous programs
to run GGH simulations. Because all GGH implementations share
the same logical structure and perform similar tasks, much of this
coding effort has gone into rewriting code already developed by
someone else. This redundancy leads to significant research over-
head and unnecessary duplication of effort and makes model repro-
duction, sharing and validation needlessly cumbersome.

 To overcome these problems, we developed CompuCell3D
as a framework for GGH simulations (90, 91) . Unlike specialized
research code, CompuCell3D is a simulation environment that
allows researchers to rapidly build and run shareable GGH-based
simulations. It greatly reduces the need to develop custom code
and its adherence to open-source standards ensures that any such
code is shareable.

 CompuCell3D supports nonprogrammers by providing visu-
alization tools, an eXtensible Markup Language (XML) interface
for defining simulations, and the ability to extend the framework
through specialized modules. The C+ computational kernel of
CompuCell3D is also accessible using the open-source scripting
language Python, allowing users to create complex simulations
without programming in lower-level languages such as C or C+.
Unlike typical research code, changing a simulation does not
require recompiling CompuCell3D.

 Users define simulations using CompuCell3D XML (CC3DML)
 configuration files and/or Python scripts. CompuCell3D reads
and parses the CC3DML configuration file and uses it to define
the basic simulation structure, then initializes appropriate Python
services (if they are specified) and finally executes the underlying
simulation algorithm.

 CompuCell3D is modular: each module carries out a defined
task. CompuCell3D terminology calls modules associated with
index copies or index-copy attempts plugins . Some plugins cal-
culate changes in effective energy, while others (lattice monitors)
react to accepted index copies, e.g., by updating generalized cells’
surface areas, volumes, or lists of neighbors. Plugins may depend
on other plugins. For example, the Volume plugin (which cal-
culates the volume–energy constraint in Eq. 4) depends on
VolumeTracker (a lattice monitor), which, as its name suggests,
tracks changes in generalized cells’ volumes. When implicit plugin
dependencies exist, CompuCell3D automatically loads and initial-
izes dependent plugins. In addition to plugins, CompuCell3D
defines modules called steppables which run either repeatedly after a
defined intervals of Monte Carlo Steps or once at the beginning or
end of the simulation. Steppables typically define initial conditions,
alter cell states, update fields, or output intermediate results.

 Figure 5 shows the relations among index-copy attempts,
Monte Carlo Steps, steppables, and plugins.

372 Swat et al.

 To show how to build simulations in CompuCell3D, the reminder
of this chapter provides a series of examples of gradually increasing
complexity. For each example we provide a brief explanation of
the physical and/or biological background of the simulation and
listings of the CC3DML configuration file and Python scripts,
followed by a detailed explanation of their syntax and algorithms.

 5. Building
CC3DML-Based
Simulations Using
CompuCell3D

 Fig. 5. Flow chart of the GGH algorithm as implemented in CompuCell3D. CompuCell3D includes a Graphical User Inter-
face (GUI) and visualization tool, CompuCell Player (also referred to as Player). From Player the user opens a CC3DML
configuration file and/or Python file and hits the “Play” button to run the simulation. Player allows users to define multiple
2D or 3D visualizations of generalized cells, fields or various vector plots while the simulation is running and save them
automatically for postprocessing .

 Multicell Simulations of Development and Disease Using the CompuCell3D 373

We can specify many simulations using only a simple CC3DML
configuration file. We begin with three examples using only
CC3DML to define simulations.

 XML is a text-based data-description language that allows stand-
ardized representations of data. XML syntax consists of lists of
 elements , each either contained between opening (<Tag>) and
closing (</Tag>) tags:2

 5.1. A Short Introduc-
tion to XML

 2In the text, we denote XML, CC3DML, and Python code using the Courier font. In listings presenting
syntax, user-supplied variables are given in italics . Broken-out listings are boxed. Punctuation at the end
of boxes is implicit.

 <Tag Attribute1=” text1 ”> ElementText </Tag>

 <Tag Attribute1=” attribute_text1 ” Attribute2 =”
 attribute_text2 ”/>

 <Cell>
 <Nucleus Size=”10”/>
 <Membrane Area=”20.5”>Expanding</Membrane>

 </Cell>

 We will denote the <Tag>…</Tag> syntax as a <Tag> tag
pair . The opening tag of an XML element may contain additional
 attributes characterizing the element. The content of the XML
element (ElementText in the above example) and the values
of its attributes (text1 , attribute_text1 , attribute_
text2) are strings of characters. Computer programs that read
XML may interpret these strings as other data types such as inte-
gers, Booleans, or floating point numbers. XML elements may be
nested. The simple example below defines an element Cell with
subelements (represented as nested XML elements) Nucleus
and Membrane assigning the element Nucleus an attribute
Size set to “10” and the element Membrane an attribute Area
set to “20.5,” and setting the value of the Membrane element to
Expanding:

 Although XML parsers ignore indentation, all the listings pre-
sented in this chapter are block indented for better readability.

 One of the simplest CompuCell3D simulations mimics crystal-
line grain growth, or annealing . Most simple metals are com-
posed of microcrystals, or grains , each of which has a particular
crystalline-lattice orientation. The atoms at the surfaces of these
grains have a higher energy than those in the bulk because of
their missing neighbors. We can characterize this excess energy

 5.2. Grain-Growth
Simulation

or of form:

374 Swat et al.

as a boundary energy . Atoms in convex regions of a grain’s sur-
face have a higher energy than those in concave regions, in par-
ticular those in the concave face of an adjoining grain, because
they have more missing neighbors. For this reason, an atom at
a convex curved boundary can reduce its energy by “hopping”
across the grain boundary to the concave side (62) . The move-
ment of atoms moves the grain boundaries, lowering the net
configuration energy through annealing or coarsening , with
the net size of grains growing because of grain disappearance.
Boundary motion may require thermal activation because atoms
in the space between grains may have higher energy than atoms
in grains. The effective energy driving grain growth is simply the
boundary energy in Eq. 1 .

 In CompuCell3D, we can represent grains as generalized
cells. CC3DML Listing 1 defines our grain-growth simulation.

 Each CC3DML configuration file begins with the <Com-
puCell3D> tag and ends with the </CompuCell3D> tag.
A CC3DML configuration file contains three sections in the
following sequence: the lattice section (contained within the

<CompuCell3D>
 <Potts>
 <Dimensions x=100" y="100" z="1"/>
 <Steps>10000</Steps>
 <Temperature>5</Temperature>
 <Boundary_y>Periodic</Boundary_y>
 <Boundary_x>Periodic</Boundary_x>
 <NeighborOrder>2</NeighborOrder>
 </Potts>

 <Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Grain" TypeId="1"/>
 </Plugin>

 <Plugin Name="Contact">

 <Energy Type1="Grain" Type2="Grain">5</Energy>

<Energy Type1="Medium" Type2="Grain">0</Energy>

 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <NeighborOrder>3</NeighborOrder>
 </Plugin>

 <Steppable Type="UniformInitializer">
<Region>
<BoxMin x="0" y="0" z="0"/>
<BoxMax x="100" y="100" z="1"/>
<Gap>0</Gap>
<Width>5</Width>

 <Types>Grain</Types>
 </Region>
 </Steppable>

</CompuCell3D>

L
at

ti
ce

 S
ec

ti
on

P
lu

gi
ns

 S
ec

ti
on

St
ep

pa
bl

es
 S

ec
ti
on

 Listing 1. CC3DML configuration file for 2D grain-growth simulation .

 Multicell Simulations of Development and Disease Using the CompuCell3D 375

<Potts> tag pair), the plugins section , and the steppables section .
The lattice section defines global parameters for the simulation:
cell-lattice and field-lattice dimensions (specified using the syntax
<Dimensions x=”x_dim” y=”y_dim” z=”z_dim”/>),
the number of Monte Carlo Steps to run (defined within the
<Steps> tag pair) the effective cell motility, Tm, (defined within
the <Temperature> tag pair), and boundary conditions. The
default boundary conditions are no-flux . However, in this simu-
lation, we have changed them to be periodic along the x and y
axes by assigning the value Periodic to the <Boundary_x>
and <Boundary_y> tag pairs. The value set by the <Neigh-
borOrder> tag pair defines the range over which source pixels
are selected for index-copy attempts (see Fig. 4 and Table 1).

 The plugins section lists the plugins the simulation will use.
The syntax for all plugins that require parameter specification is:

 <Plugin Name=” PluginName ”>
 <ParameterSpecification/>

 </Plugin>

 <CellType TypeName=” Name ” TypeId=” Integer
Number ”/>

 <Energy Type1=” TypeName1 ” Type2=” TypeName1 ”>
 EnergyValue </Energy>

 The CellType plugin uses the parameter syntax

 to map verbose generalized-cell-type names to numeric cell
TypeIds for all generalized-cell types. It does not participate
directly in index copies, but is used by other plugins for cell-type-
to-cell-index mapping.

 Note : Even though the grain-growth simulation fills the
entire cell lattice with cells of type Grain, the current imple-
mentation of CompuCell3D requires that all simulations define
the Medium cell type with TypeId 0. Medium is a special cell
type with unconstrained volume and surface area that fills all cell-
lattice pixels unoccupied by cells of other types.

 The Contact plugin calculates changes in the boundary
energy defined in Eq. 1 for each index-copy attempt. The param-
eter syntax for the Contact plugin is:

 where TypeName1 and TypeName2 are the names of the cell
types and EnergyValue is the boundary-energy coefficient, J
(TypeName1,TypeName2) , between cells of TypeName1 and
 TypeName2 (see Eq. 1). The <NeighborOrder> tag pair spec-
ifies the interaction range of the boundary energy. The default
value of this parameter is 1.

 The steppables section includes only the UniformIni-
tializer steppable. All steppables have the following syntax:

376 Swat et al.

 The Frequency attribute is optional and by default is 1
MCS.

 CompuCell3D simulations require specification of initial con-
dition. The simplest way to define the initial cell lattice is to use
the built-in initializer steppables, which construct simple regions
filled with generalized cells.

 The UniformInitializer steppable in the grain-growth
simulation defines one or more rectangular (parallelepiped in 3D)
regions filled with generalized cells of user selectable types and
sizes. We enclose each region definition within a <Region> tag
pair. We use the <BoxMin> and <BoxMax> tags to describe the
boundaries of the region, The <Width> tag pair defines the size
of the square (cubical in 3D) generalized cells and the <Gap> tag
pair creates space between neighboring cells. The <Types> tag
pair lists the types of generalized cells. The grain-growth simula-
tion uses only one cell type, Grain, but we can also initialize cells
using types randomly chosen from the list, as in Listing 2 .

 Note : The coordinate values in the BoxMax element must
be one more than the coordinates of the corresponding corner
of the region to be filled. So to fill a square of side 10 beginning
with pixel location (5,5) we use the following region-boundary
specification:

 Listing the same type multiple times results in a proportion-
ally higher fraction of generalized cells of that type. For example,

 Listing 2. CC3DML code excerpt using the UniformInitializer steppable to initialize a rectangular region filled
with 5 × 5 pixel generalized cells with randomly assigned cell types (either Condensing or NonCondensing) .

<Steppable Type="UniformInitializer"

 <Region>

 <BoxMin x="10" y="10" z="0"/>

 <BoxMax x="90" y="90" z="1"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Condensing,NonCondensing</Types>

 </Region>

</Steppable>

 <Steppable Type=” SteppableName ” Frequency=”
 FrequencyMCS ”>
 < ParameterSpecification />

 </Steppable>

 <BoxMin x=”5” y=”5” z=”0”/>
 <BoxMax x=”16” y=”16” z=”1”/>

 <Types>Condensing,Condensing,NonCondensing
</Types>

 Multicell Simulations of Development and Disease Using the CompuCell3D 377

 Fig. 6. Snapshots of the cell-lattice configuration for the grain-growth simulation on a 100 × 100 pixel third-neighbor
square lattice, as specified in Listing 1 . Boundary conditions are periodic in both directions .

 will allocate approximately 2/3 of the generalized cells to type
Condensing and 1/3 to type NonCondensing. Uniform-
Initializer allows specification of multiple regions. Each
region is independent and can have its own cell sizes, types, and
cell spacing. If the regions overlap, later-specified regions over-
write earlier-specified ones. If region specification does not cover
the entire lattice, uninitialized pixels have type Medium.

 Figure 6 shows sample output generated by the grain-growth
simulation.

 One advantage of GGH simulations compared to FE simu-
lations is that going from 2D to 3D is easy. To run a 3D grain-

378 Swat et al.

growth simulation on a 100 × 100 × 100 lattice we only need to
make the following replacements in Listing 1 :

 <Dimensions x=”100” y=”100” z=”1”/> →
 <Dimensions x=”100” y=”100” z=”100”/>

 and

 <BoxMax x=”100” y=”100” z=”1”/> → <BoxMax
x=”100” y=”100” z=”100”/>

 Grain growth simulations are particularly sensitive to lattice
anisotropy, so running them on lower-anisotropy lattices is desirable.
Longer-range lattices are less anisotropic but cause simulations to
run more slowly. Fortunately, a hexagonal lattice of a given range
is less anisotropic than a square lattice of the same range. To
run the grain-growth simulation on a hexagonal lattice, we add
<LatticeType>Hexagonal</LatticeType> to the lattice
section in Listing 1 and change the two occurrences of

 <NeighborOrder>3</NeighborOrder>

 Figure 7 shows snapshots for this simulation.
 Note : One inconvenience of the current implementation of Com-

puCell3D is that it does not automatically rescale parameter values
when interaction range, lattice dimensionality or lattice type change.
When changing these attributes, users must recalculate parameters
to keep the underlying physics of the simulation the same.

 CompuCell3D dramatically reduces the amount of code nec-
essary to build and run a simulation. The grain-growth simula-
tion took about 25 lines of CC3DML instead of 1,000 lines of
C, C++ or Fortran.

 Cell sorting is an experimentally observed phenomenon in which
cells with different adhesivities are randomly mixed and reag-
gregated. They can spontaneously sort to reestablish coherent
homogenous domains (92, 93) . Sorting is a key mechanism in
embryonic development.

 The grain-growth simulation used only one type of generalized
cell. Simulating sorting of two types of biological cell in an aggregate
floating in solution is slightly more complex. Listing 3 shows a simple
cell-sorting simulation. It is similar to Listing 1 with a few additional
modules (shown in bold). The effective energy is that in Eq. 6 .

 The most significant departure from the lattice section in
 Listing 1 is that we omit the boundary condition specification
and use default no-flux boundary conditions.

 5.3. Cell-Sorting
Simulation

to

<NeighborOrder>1</NeighborOrder>

 Multicell Simulations of Development and Disease Using the CompuCell3D 379

 In the CellType plugin we introduce the two cell types,
Condensing and NonCondensing, in place of Grain. In
addition, we do not fill the lattice completely with Condensing
and NonCondensing cells, so the interactions with Medium
become important. The boundary-energy matrix in the Con-
tact plugin thus requires entries for the additional cell-type pairs.
The hierarchy of boundary energies listed results in cell sorting.

 We also add the Volume plugin, which calculates the vol-
ume-constraint energy as given in Eq. 4 . In this plugin the
<TargetVolume> tag pair sets target volume V t = 25 for both
Condensing and NonCondensing cells; similarly, the <Lambda-
Volume> tag pair sets the constraint strength lvol = 2.0 for both
cell types. We will see later how to define volume-constraint
parameters for each cell type or each cell individually.

 In the cell-sorting simulation we initialize the cell lattice
using the BlobInitializer steppable, which specifies circular
(or spherical in 3D) regions filled with square (or cubical in 3D)
cells of user-defined size and types. The syntax is very similar to
that for UniformInitializer.

 Looking in detail at the syntax of BlobInitializer in
 Listing 3 , the <Radius> tag pair defines the radius of a circular

 Fig. 7. Snapshots of the cell-lattice configuration for the grain-growth simulation on a 100 × 100 pixel first-neighbor hex-
agonal lattice as specified in Listing 1 with substitutions described in the text. The x and y length units in an hexagonal lattice
differ, resulting in differing x and y dimensions for a cell lattice with an equal number of pixels in the x and y directions .

380 Swat et al.

<CompuCell3D>
 <Potts>

<Dimensions x="100" y="100" z="1"/>
 <Steps>10000</Steps>
 <Temperature>10</Temperature>
 <NeighborOrder>2</NeighborOrder>
 </Potts>

 <Plugin Name="Volume">
 <TargetVolume>25</TargetVolume>
 <LambdaVolume>2.0</LambdaVolume>
 </Plugin>

<Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Condensing" TypeId="1"/>
 <CellType TypeName="NonCondensing" TypeId="2"/>
 </Plugin>

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy>
 <Energy Type1="Condensing" Type2="Condensing">2</Energy>
 <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>
 <Energy Type1="NonCondensing" Type2="Medium">16</Energy>
 <Energy Type1="Condensing" Type2="Medium">16</Energy>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

<Steppable Type="BlobInitializer">
 <Region>
 <Gap>0</Gap>
 <Width>5</Width>
 <Radius>40</Radius>

<Center x="50" y="50" z="0"/>
<Types>Condensing,NonCondensing</Types>

</Region>
</Steppable>

</CompuCell3D>

 Listing 3. CC3DML configuration file simulating cell sorting between Condensing and NonCondensing cell
types. Highlighted text indicates modules absent in Listing 1 . Notice how little modification of the grain-growth CC3DML
 configuration file this simulation requires.

(or spherical) domain of cells in pixels. The <Center> tag,
with syntax <Center x=” x_position ” y=” y_position ”
z=” z_position ”/>, defines the coordinates of the center of
the domain. The remaining tags are the same as for Uniform-
Initializer. As with UniformInitializer, we can define
multiple regions. We can use both UniformInitializer and
BlobInitializer in the same simulation. In the case of over-
lap, later-specified regions overwrite earlier ones.

 We show snapshots of the cell-sorting simulation in Fig. 8 .
The less cohesive NonCondensing cells engulf the more cohe-
sive Condensing cells, which cluster and form a single central
domain. By changing the boundary energies, we can produce
other cell-sorting patterns (94, 95) .

 Multicell Simulations of Development and Disease Using the CompuCell3D 381

 In the two simulations we have presented so far, the cellular
pattern develops without fields. Often, however, biological pattern-
ing mechanisms require us to introduce and evolve chemical fields
and to have cells’ behaviors depend on the fields. To illustrate the
use of fields, we model the in vitro behavior of bacteria and mac-
rophages in blood. In the famous experimental movie taken in the
1950s by David Rogers at Vanderbilt University, the macrophage
appears to chase the bacterium, which seems to run away from the
macrophage. We can model both behaviors using cell secretion of
diffusible chemical signals and movement of the cells in response to
the chemicals (chemotaxis): the bacterium secretes a signal (a che-
moattractant) that attracts the macrophage and the macrophage
secretes a signal (a chemorepellant) that repels the bacterium (96) .

 Listing 4 shows the CC3DML configuration file for the
bacterium-and-macrophage simulation.

 5.4. Bacterium-
and-Macrophage
Simulation

 Fig. 8. Snapshots of the cell-lattice configurations for the cell-sorting simulation in Listing 3 . The boundary-energy hier-
archy drives NonCondensing (light gray) cells to surround Condensing (dark gray) cells. The white background denotes
surrounding Medium .

382 Swat et al.

 Listing 4. CC3DML configuration file for the bacterium-and-macrophage simulation.

<CompuCell3D>
 <Potts>

<Dimensions x="100" y="100" z="1"/>
 <Steps>100000</Steps>
 <Temperature>20</Temperature>
 <LatticeType>Hexagonal</LatticeType>
 </Potts>

<Plugin Name="CellType">
 <CellType TypeName="Medium" TypeId="0"/>
 <CellType TypeName="Bacterium" TypeId="1" />
 <CellType TypeName="Macrophage" TypeId="2"/>
 <CellType TypeName="Red" TypeId="3"/>
 <CellType TypeName="Wall" TypeId="4" Freeze=""/>
 </Plugin>

 <Plugin Name="VolumeFlex">
 <VolumeEnergyParameters CellType="Macrophage" TargetVolume="150"

LambdaVolume="15"/>
 <VolumeEnergyParameters CellType="Bacterium" TargetVolume="10"

LambdaVolume="60"/>
 <VolumeEnergyParameters CellType="Red" TargetVolume="100"

LambdaVolume="30"/>
 </Plugin>

 <Plugin Name="SurfaceFlex">
 <SurfaceEnergyParameters CellType="Macrophage" TargetSurface="50"

LambdaSurface="30"/>
 <SurfaceEnergyParameters CellType="Bacterium" TargetSurface="10"

LambdaSurface="4"/>
 <SurfaceEnergyParameters CellType="Red" TargetSurface="40"

LambdaSurface="0"/>
 </Plugin>

 <Plugin Name="Contact">
 <Energy Type1="Medium" Type2="Medium">0</Energy>
 <Energy Type1="Macrophage" Type2="Macrophage">150</Energy>
 <Energy Type1="Macrophage" Type2="Medium">8</Energy>
 <Energy Type1="Bacterium" Type2="Bacterium">150</Energy>
 <Energy Type1="Bacterium" Type2="Macrophage">15</Energy>
 <Energy Type1="Bacterium" Type2="Medium">8</Energy>
 <Energy Type1="Wall" Type2="Wall">0</Energy>
 <Energy Type1="Wall" Type2="Medium">0</Energy>
 <Energy Type1="Wall" Type2="Bacterium">150</Energy>
 <Energy Type1="Wall" Type2="Macrophage">150</Energy>
 <Energy Type1="Wall" Type2="Red">150</Energy>
 <Energy Type1="Red" Type2="Red">150</Energy>
 <Energy Type1="Red" Type2="Medium">30</Energy>
 <Energy Type1="Red" Type2="Bacterium">150</Energy>
 <Energy Type1="Red" Type2="Macrophage">150</Energy>
 <NeighborOrder>2</NeighborOrder>
 </Plugin>

 <Plugin Name="Chemotaxis">

 Multicell Simulations of Development and Disease Using the CompuCell3D 383

 The simulation has five generalized-cell types: Medium, Bac-
terium, Macrophage, Red (blood) cells, and a surrounding
Wall. It also has two diffusible fields, representing a chemoattract-
ant, ATTR, and a chemorepellent, REP. Because the default bound-
ary-energy between any generalized-cell type and the edge of the
cell lattice is zero, we define a surrounding wall to prevent cells from
sticking to the cell-lattice boundary. As in our previous simulations,
we assign cell types using the CellType plugin. Note the new syn-
tax in the line specifying the cell type making up the walls:

<ChemicalField Source="FlexibleDiffusionSolverFE" Name="ATTR">
 <ChemotaxisByType Type="Macrophage" Lambda="1"/>
 </ChemicalField>

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="REP">
 <ChemotaxisByType Type="Bacterium" Lambda="-0.1"/>
 </ChemicalField>
 </Plugin>

 <Steppable Type="FlexibleDiffusionSolverFE">
 <DiffusionField>
 <DiffusionData>
 <FieldName>ATTR</FieldName>
 <DiffusionConstant>0.10</DiffusionConstant>
 <DecayConstant>0.00005</DecayConstant>
 <DoNotDiffuseTo>Wall</DoNotDiffuseTo>
 <DoNotDiffuseTo>Red</DoNotDiffuseTo>
 </DiffusionData>

<SecretionData>
<Secretion Type="Bacterium">200</Secretion>

</SecretionData>
</DiffusionField>

<DiffusionField>
<DiffusionData>
<FieldName>REP</FieldName>
<DiffusionConstant>0.10</DiffusionConstant>
<DecayConstant>0.001</DecayConstant>

 <DoNotDiffuseTo>Wall</DoNotDiffuseTo>
 <DoNotDiffuseTo>Red</DoNotDiffuseTo>

 </DiffusionData>
 <SecretionData>
 <Secretion Type="Macrophage">200</Secretion>

 </SecretionData>
 </DiffusionField>

 </Steppable>

 <Steppable Type="PIFInitializer">
 <PIFName>bacterium_macrophage_2D_wall_v3.pif</PIFName>
 </Steppable>

</CompuCell3D>

<CellType TypeName=”Wall” TypeId=”4” Freeze=””/>

384 Swat et al.

 The Freeze=”” attribute excludes generalized cells of type
Wall from participating in index copies, which makes the walls
immobile.

 We replace the Volume plugin with VolumeFlex and add
the plugin SurfaceFlex. These plugins allow independent
assignment of target values and constraint strengths in the volume-
constraint and surface-constraint energies (Eqs. 4 and 5). These
plugins require a line for each generalized-cell type, specifying the
type name and the target volume (or target surface area), and lvol
(or lsurf) for that generalized-cell type:

 Fig. 9 . Connecting a field to GGH dynamics using a chemotaxis-energy term. The difference in the value of the field c at the
source (i

Æ
¢) and target (i

Æ
) pixels changes the ΔH of the index-copy attempt. Here c (i

Æ
) > c(i

Æ¢) and l > 0, so ΔH chem < 0,
increasing the probability of accepting the index-copy attempt in Eq. 7 .

 <VolumeEnergyParameters CellType=” Name ”
TargetVolume=” Value ” LambdaVolume=” Value “/>

 We implement the actual bacterium-macrophage “chasing”
mechanism using the Chemotaxis plugin, which specifies how a
generalized cell of a given type responds to a field. The Chemotaxis
plugin biases a cell’s motion up or down a field gradient by changing
the calculated effective-energy change used in the acceptance func-
tion, Eq. 7 by the addition of a term DHchem. For a field c (i→):

 chem chem (() ()),H c i c il ¢Δ = − −
� �

 (9)

 where c (i→) is the chemical field value at the index-copy target
pixel, c (i→¢) is the field at the index-copy source pixel, and lchem is
the strength and direction of chemotaxis. If lchem > 0 and c (i→) >c
c (i→¢), then DHchem is negative, increasing the probability of accept-
ing the index copy in Eq. 7 (Fig. 9). The net effect is that the
cell moves up the field gradient with a velocity ∼ lchem ∇

→
c (i.e., the

field describes a chemoattractant for the cell). If lchem is negative,
the opposite occurs, and the cell will move down the field gradi-
ent (the chemo repellant for the cell). Plugins with more sophisti-
cated DHchem calculations (e.g., including response saturation) are
available within CompuCell3D (see the CompuCell3D User Guide
http://www.compucell3d.org).

 Multicell Simulations of Development and Disease Using the CompuCell3D 385

 In the Chemotaxis plugin we must identify the names of
the fields, where the field information is stored, the list of the
generalized-cell types that will respond to the fields, and the
strength and direction of the response (Lambda = lchem). The
information for each field is specified using the syntax

<ChemicalField Source=” where field is stored ”
Name=” field name ”>

 <ChemotaxisByType Type=” cell_type1 ”
Lambda=” lambda1 ”/>

 <ChemotaxisByType Type=” cell_type2 ”
Lambda=” lambda1 ”/>
 </ChemicalField>

 In our current example, the first field, named ATTR, is stored
in FlexibleDiffusionSolverFE. Macrophage cells are
attracted to ATTR with lchem = 1 . None of the other cell types
responds to ATTR. Similarly, Bacterium cells are repelled by
REP with l chem = − 0.1 .

 Keep in mind that fields are not created within the Chem-
otaxis plugin, which only specifies how different cell types
respond to the fields. We define and store the fields elsewhere.
Here, we use the FlexibeDiffusionSolverFE steppable as
the source of our fields. The FlexibleDiffusionSolverFE
steppable is the main CompuCell3D tool for defining diffusing
fields, which evolve according to the diffusion equation:

 2()
() () () () (),

c i
D i c i k i c i s i

t
∂ = ∇ − +

∂

�
� � � � � (10)

 where c (i→) is the field concentration and D (i→) , k (i→) , and s (i→)
denote the diffusion constant (in m 2 /s), decay constant (in s −1),
and secretion rates (in concentration/s) of the field, respectively.
 D (i→) , k (i→) , and s (i→) may vary with position and cell-lattice
configuration.

 As in the Chemotaxis plugin, we may define the behaviors of
multiple fields, enclosing each one within <DiffusionField>
tag pairs. For each field, users provide values for the name of the
field (using the <FieldName> tag pair), the diffusion constant
(using the <DiffusionConstant> tag pair), and the decay con-
stant (using the <DiffusionConstant> tag pair), all enclosed
by the <DiffusionData> tag pair.

 Note : Forward-Euler methods are numerically unstable for
large diffusion constants, limiting the maximum nominal diffu-
sion constant allowed in CompuCell3D simulations. However,
by increasing the PDE-solver calling frequency, which reduces
the effective time step, CompuCell3D can simulate arbitrarily
large diffusion constants. For more information, see the Compu-
Cell3D User Guide .

386 Swat et al.

 Each optional <DoNotDiffuseTo> tag pair, with syntax

 prevents the field from diffusing into field-lattice pixels where the
corresponding cell-lattice pixel, i→ , is occupied by a cell, s (i→) , of
the specified type. In our case, chemical fields do not diffuse into
the pixels occupied by Wall or Red cells. The optional <Secre-
tionData> tag pair defines a subsection which identifies cell
types that secrete or absorb the field and the rates of secretion:

 <DoNotDiffuseTo> cell_type </DoNotDiffuseTo>

 <SecretionData>

 <Secretion Type=” cell_type1 ”> real_rate1 </
Secretion>

 <Secretion Type=” cell_type2 ”> real_rate2 </
Secretion>

 <SecretionData>

 A negative rate simulates absorption. In the bacterium and
macrophage simulation, Bacterium cells secrete ATTR and
Macrophage cells secrete REP.

 We load the initial configuration for the bacterium-and-mac-
rophage simulation using the PIFInitializer steppable. Many
simulations require initial generalized-cell configurations that we
cannot easily construct from primitive regions filled with cells using
BlobInitializer and UniformInitializer. To allow
maximum flexibility, CompuCell3D can read the initial cell-lattice
configuration from Pixel Initialization Files (PIFs). A PIF is a text
file that allows users to assign multiple rectangular (parallelepiped
in 3D) pixel regions or single pixels to particular cells.

 Each line in a PIF has the syntax

 Cell_id Cell_type x_low x_high y_low y_high
z_low z_high

 where Cell_id is a unique cell index. A PIF may have multiple,
possibly non-adjacent, lines starting with the same Cell_id ; all
lines with the same Cell_id define pixels of the same generalized
cell. The values x_low , x_high , y_low , y_high , z_low , and
 z_high define rectangles (parallelepipeds in 3D) of pixels belong-
ing to the cell. In the case of overlapping pixels, a later line over-
writes pixels defined by earlier lines. The following line describes a
6 × 6-pixel square cell with cell index 0 and type Amoeba:

 0 Amoeba 10 15 10 15 0 0

 If we save this line to the file “amoebae.pif,” we can load it
into a simulation using the following syntax:

 Multicell Simulations of Development and Disease Using the CompuCell3D 387

 <Steppable Type=”PIFInitializer”>

 <PIFName>amoebae.pif</PIFName>

 </Steppable>

 Listing 5. Simple PIF initializing two cells, one each of type Bacterium and Amoeba.

0 Amoeba 10 15 10 15 0 0

1 Bacterium 25 30 25 30 0 0

0 Amoeba 16 16 15 15 0 0

1 Bacterium 25 27 31 35 0 0

 Fig. 10 . Initial configuration of the cell lattice based on the PIF in Listing 5 . In practice, because constructing complex PIFs
by hand is cumbersome, we generally use custom-written scripts to generate the file directly, or convert images stored
in graphical formats (e.g., gif, jpeg, png) from experiments or other programs .

 Listing 5 illustrates how to construct arbitrary shapes using a
PIF. Here we define two cells with indices 0 and 1, and cell types
Amoeba and Bacterium, respectively. The main body of each
cell is a 6 × 6 square to which we attach additional pixels.

 All lines with the same cell index (first column) define a single cell.
 Figure 10 shows the initial cell-lattice configuration speci-

fied in Listing 5 .
 Listing 6 shows the PIF for the bacterium-and-macrophage

simulation.
 In Listing 4 , we read the cell-lattice configuration from the file

“bacterium_macrophage_2D_wall_v3.pif” using the lines:

388 Swat et al.

 Listing 6. PIF defining the initial cell-lattice configuration for the bacterium-and-macrophage simulation. The file is stored
as “bacterium_macrophage_2D_wall_v3.pif”.
0 Red 10 20 10 20 0 0

1 Red 10 20 40 50 0 0

2 Red 10 20 70 80 0 0

3 Red 40 50 0 10 0 0

4 Red 40 50 30 40 0 0

5 Red 40 50 60 70 0 0

6 Red 40 50 90 95 0 0

7 Red 70 80 10 20 0 0

8 Red 70 80 40 50 0 0

9 Red 70 80 70 80 0 0

10 Wall 0 99 0 1 0 0

10 Wall 98 99 0 99 0 0

10 Wall 0 99 98 99 0 0

10 Wall 0 1 0 99 0 0

11 Bacterium 5 5 5 5 0 0

12 Macrophage 35 35 35 35 0 0

13 Bacterium 65 65 65 65 0 0

14 Bacterium 65 65 5 5 0 0

15 Bacterium 5 5 65 65 0 0

16 Macrophage 75 75 95 95 0 0

17 Red 24 28 10 20 0 0

18 Red 24 28 40 50 0 0

19 Red 24 28 70 80 0 0

20 Red 40 50 14 20 0 0

21 Red 40 50 44 50 0 0

22 Red 40 50 74 80 0 0

23 Red 54 59 90 95 0 0

24 Red 70 80 24 28 0 0

25 Red 70 80 54 59 0 0

26 Red 70 80 84 90 0 0

27 Macrophage 10 10 95 95 0 0

 <Steppable Type=”PIFInitializer”>

 <PIFName>bacterium_macrophage_2D_wall_
v3.pif</PIFName>

 </Steppable>

 Figure 11 shows snapshots of the bacterium-and-macrophage
simulation. By adjusting the properties and number of bacteria,
macrophages and red blood cells and the diffusion properties of
the chemical fields, we can build a surprisingly good reproduction
of the experiment.

 Multicell Simulations of Development and Disease Using the CompuCell3D 389

 CC3DML is convenient for building simple simulations such as
those we presented above. To describe more complex simulations,
CompuCell3D allows users to write specialized, shareable modules
in C/C++ (through the CompuCell3D Application Programming
Interface , or CC3D API) or Python (through a Python-scripting
interface). C and C++ modules have the advantage that they run
at native speed. However, developing them requires knowledge
of both C/C++ and the CC3D API, and their integration with
CompuCell3D requires recompilation of the source code. Python
module development is less complicated, since Python has simpler
syntax than C/C++ and users can modify and extend a library of
Python-module templates included with CompuCell3D. Moreover,
Python modules do not require recompilation.

 Tasks performed by CompuCell3D modules either relate
to index-copy attempts (plugins) or run either once, at the
beginning or end of a simulation, or once every several MCS
(steppables). Tasks running every index-copy attempt, like

 6. Python Scripting

 Fig. 11 . Snapshots of the bacterium-and-macrophage simulation from Listing 4 and the PIF in Listing 6 saved in the
file “bacterium_macrophage_2D_wall_v3.pif.” The upper row shows the cell-lattice configuration with the Macrophages
in gray , Bacteria in white with black borders, red blood cells in dark gray , and Medium in white . The middle row shows
the concentration of the chemoattractant ATTR secreted by the Bacteria. The bottom row shows the concentration of the
chemorepellant REPL secreted by the Macrophages. The bars at the bottom of the field images show the concentration
scales (white , low concentration; black , high concentration) .

390 Swat et al.

 effective-energy-term calculations, are the most frequently-called
tasks in a GGH simulation and writing them in Python may slow
down simulations. Steppables and lattice monitors are called less
frequently and thus they are good candidates for Python imple-
mentation. Using Python scripts users can perform cell param-
eter adjustments that depend on the state of the simulation, e.g.
simulating cell growth in response to a certain chemical, cell-type
differentiation and changes in cell-cell adhesion, etc .

 Python is an object-oriented scripting language with all the
syntactic constructs present in any modern programming lan-
guage. Python supports popular flow-control statements such as
if-elif-else conditional instructions and for and while
loops. Unlike C/C++, Python does not use “;” to end lines or “{”
and “}” to define code blocks. Instead, Python relies on inden-
tation to define blocks of code. if statements, for or while
loops and their subsections are created by a “:” and increasing
the level of indentation. The end of a block is indicated by a
decrease in the level of indentation. Python uses the “=” operator
for assignments and “= =” for checking equality between objects.
For example, in the following code:

 6.1. A Short
Introduction to Python

 Here, real is a member of the Python class complex, which
represents complex numbers. If the object has composite subob-
jects, we use the “.” operator recursively:

 b=2

 vif b==2:

 a=10

 for c in range(0,a):

 b=a+c

 print b

 we indent the body of the if statement and the body of the inner
for loop. The for loop is executed inside the if statement.
a=0 assigns the variable a a value of 10, while b==2 is true if
b has a value of 2. The for loop assigns the variable c values 0
through a−1 and executes instructions inside the loop body.

 As an object-oriented language, Python supports classes ,
 inheritance , and polymorphism . Accessing members of objects uses
the “.” operator. For example, to access the real part of a complex
number, we use the following code:

 a=complex(2,3)

 a=1.5+0.5j

 print a.real

 Multicell Simulations of Development and Disease Using the CompuCell3D 391

 object.subobject.member_of_subobject

 Users may define Python objects without declaring their
type. A single data structure such as a list or dictionary can store
objects of multiple types. Python provides automatic memory
management, which frees users from remembering to deallocate
memory for objects that are no longer used.

 Long source code lines can be carried over to the following
line using the “\” character:

 very_long_variable_name = \
very_long_variable_name * very_important_constant

 Note : Double underscore “__” has a reserved meaning in Python
and should not be confused with a single underscore “_”.

 We will present additional Python features in the subsequent sec-
tions and explain, step-by-step, some basic concepts of Python pro-
gramming (for more on Python, see Learning Python , by Mark Lutz
 (97)). For more information on Python scripting in CompuCell3D,
see our Python Tutorials and CompuCell3D User Guide (available
from the CompuCell3D website, http://www.compucell3d.org).

 Python scripting allows users to augment their CC3DML configu-
ration files with Python scripts or to code their entire simulations
in Python (in which case the Python script looks very similar to the
CC3DML script it replaces). Listing 7 shows the standard block
of template code for running a Python script in conjunction with a
CC3DML configuration file.

 The import sys line provides access to standard functions
and variables needed to manipulate the Python runtime environ-
ment. The next two lines

 6.2. Building
Python-Based
CompuCell3D
Simulations

 from os import environ

 from os import getcwd

 import environ and getcwd housekeeping functions into the
current namespace (i.e., current script) and are included in all of
our Python programs. In the next three lines,

 import string

 sys.path.append(environ[“PYTHON_MODULE_\
PATH”])

 import CompuCellSetup

 we import the string module, which contains convenience func-
tions for performing operations on strings of characters; set the
search path for Python modules; and import the CompuCell-

392 Swat et al.

Setup module, which provides a set of convenience functions
that simplify initialization of CompuCell3D simulations.

 Next, we create and initialize the core CompuCell3D modules:

 Listing 7. Basic Python template to run a CompuCell3D simulation through a Python interpreter. Later examples will be
based on this script.
import sys

from os import environ

from os import getcwd

import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here

steppableRegistry=CompuCellSetup.getSteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

 sim,simthread = CompuCellSetup.getCoreSimu\
lationObjects()

 CompuCellSetup.initializeSimulationObjects\
(sim,simthread)

 We then create a steppable registry (a Python container that
stores steppables, i.e., a list of all steppables that the Python code
can access) and pass it to the function that runs the simulation:

 steppableRegistry=CompuCellSetup.getSteppable\
Registry()

 CompuCellSetup.mainLoop(sim,simthread,\
steppableRegistry)

 In Subheading 6.3 , we extend this template to build a sim-
ple simulation.

 Multicell Simulations of Development and Disease Using the CompuCell3D 393

 Suppose that we would like to add a caricature of oscillatory gene
expression to our cell-sorting simulation (Listing 3) so that cells
exchange types every 100 MCS. We will implement the changes
to cell types using a Python steppable, since it occurs at intervals
of 100 MCS.

 Listing 8 shows the changes to the Python template in Listing 7
that are necessary to create the desired type switching (changes are
shown in bold).

 A CompuCell3D steppable is a class (a type of object) that
holds the parameters and functions necessary for carrying out a task.
Every steppable defines at least four functions: __init__(self,
_simulator, _frequency), start(self), step(self,
mcs), and finish(self).

 6.3. Cell-Type-
Oscillator Simulation

 Listing 8. Python script expanding the template code in Listing 7 into a simple TypeSwitcherSteppable
steppable. The code illustrates dynamic modification of cell parameters using a Python script. Lines added to Listing
7 are shown in bold.
import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup
sim,simthread = CompuCellSetup.getCoreSimulationObjects()

from PySteppables import *
class TypeSwitcherSteppable(SteppablePy):
 def __init__(self,_simulator,_frequency=100):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator
 self.inventory=self.simulator.getPotts().getCellInventory()
 self.cellList=CellList(self.inventory)

 def step(self,mcs):
 for cell in self.cellList:
 if cell.type==1:
 cell.type=2
 elif (cell.type==2):
 cell.type=1
 else:
 print "Unknown type. In cellsort simulation there should\
 only be two types 1 and 2"

#Create extra player fields here or add attributes

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

typeSwitcherSteppable=TypeSwitcherSteppable(sim,100);
steppableRegistry.registerSteppable(typeSwitcherSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

394 Swat et al.

 CompuCell3D calls the start(self) function once at the
beginning of the simulation before any index-copy attempts. It
calls the step(self, mcs) function periodically after every
_frequency MCS. It calls the finish(self) function once
at the end of the simulation. Listing 8 does not have explicit
start(self) or finish(self) functions. Instead, the class
definition:

 class TypeSwitcherSteppable(SteppablePy):

 causes the TypeSwitcherSteppable to inherit components
of the SteppablePy class. SteppablePy contains default
definitions of the start(self), step(self,mcs), and
finish(self) functions. Inheritance reduces the length of the
user-written Python code and ensures that the TypeSwitcher-
Steppable object has all needed components. The line

 from PySteppables import *

 makes the content of the “PySteppables.py” file (or module)
available in the current namespace. The PySteppables module
includes the SteppablePy base class .

 The __init__ function is a constructor that accepts user-
defined parameters and initializes a steppable object. Consider
the __init__ function of the TypeSwitcherSteppable:

 def __init__(self,_simulator,_frequency=100):

 SteppablePy.__init__(self,_frequency)

 self.simulator=_simulator

 self.inventory=self.simulator.getPotts()\
.getCellInventory()

 self.cellList=CellList(self.inventory)

 In the def line, we pass the necessary parameters: self (which
is used in Python to access class variables from within the class),
_simulator (the main CompuCell3D kernel object which runs
the simulation), and _frequency (which tells steppableReg-
istry how often to run the steppable here, every 100 MCS). Next
we call the constructor for the inheritance class, SteppablePy,
as required by Python. The statement

 self.simulator=_simulator

 assigns to the class variable self.simulator a reference to
the _simulator object, passed from the main script. We can
think of a Python reference as a pointer variable that stores the
address of some object but not a copy of the object itself. The
last two lines construct a list of all generalized cells in the simula-
tion, a cell inventory , which allows us to visit all of the cells with
a simple for loop to perform various tasks. The cell inventory is

 Multicell Simulations of Development and Disease Using the CompuCell3D 395

a dynamic structure, i.e., it updates automatically when cells are
created or destroyed during a simulation.

 The section of the TypeSwitcherSteppable steppable that
implements the cell-type switching is found in the step(self,
mcs) function:

 def step(self,mcs):

 for cell in self.cellList:

 if cell.type==1:

 cell.type=2

 elif (cell.type==2):

 cell.type=1

else:

 print “Unknown type”

 We use the cell inventory to iterate over all cells in the sim-
ulation and reassign their cell types between cell.type 1 and
cell.type 2. If we encounter a cell.type that is neither 1
nor 2 (which we should not), we print an error message.

 Once we have created a steppable (i.e., created an object of class
TypeSwitcherSteppable) we must register it using the regis-
terSteppable function from the steppableRegistry object:

 typeSwitcherSteppable=TypeSwitcherSteppable\
(sim,100);

 steppableRegistry.registerSteppable(typeSwi\
tcherSteppable)

 CompuCell3D will not run unregistered steppables.
As we will see, much of the script is not specific to this exam-

ple. We will recycle it with slight changes in later examples. Fig-
ure 12 shows snapshots of the cell-type-oscillator simulation.

 We mentioned earlier that users can run simulations without a
CC3DML configuration file. Listing 9 shows the cell-type-oscilla-
tor simulation written entirely in Python, with changes to Listing
 8 shown in bold .

 The configureSimulation function replaces the
CC3DML file from Listing 3. After importing CompuCellSetup
and ElementCC3D from XMLUtils module, we have access to
functions and modules that provide all the functionality necessary
to code the simulation in Python. The general Python syntax cor-
responding to the opening lines of each CC3DML block is:

 nameElem=parentElement.ElementCC3D(“Name”),

 where “Name” refers to the name of the section in a CC3DML con-
figuration file (e.g. Compucell3D, Potts, Plugin, Step-
pable). parentElement denotes CC3DML element containing
element “Name”. The rest of the block usually follows the syntax:

396 Swat et al.

 tagNameElem=parentElement.ElementCC3D\
(“TagName”,{attributes},value),

 Fig. 12. Results of the Python cell-type-oscillator simulation using the TypeSwitcherSteppable steppable implemented in List-
ing 8 in conjunction with the CC3DML cell-sorting simulation in Listing 3 . Cells exchange types and corresponding adhesivities
and colors every 100 MCS; i.e., between t = 90 MCS and t = 110 MCS and between t = 1,490 MCS and t = 1,510 MCS .

 where “TagName” corresponds to the tag pair used to assign a value
to a the parameter in a CC3DML file or, for values within subsections:

 parentElement.ElementCC3D(“SubSection”,\
{att ributes},value).

 In case CC3DML element has only value but no attributes (e.g.
<Temperature>10</Temperature>) we use the following
syntax:

 tagName=parentElement.ElementCC3D(“TagName”,\
{},value).

 For CC3DML elements with attributes only and no values (e.g.
 <Dimensions x=”100” y=”100” z=”1” />) the correct syn-
tax is shown below:

 tagName= parentElement.ElementCC3D(“TagName”,\
{attributes}).

 Multicell Simulations of Development and Disease Using the CompuCell3D 397

Finally, for CC3DML elements with no attributes and no values
(e.g. <Potts>) we use syntax of the form:

 Listing 9. Stand-alone Python cell-type-oscillator script containing an initial section that replaces the CC3DML con-
figuration file from Listing 3 . Lines added to Listing 8 are shown in bold .

tagName= parentElement.ElementCC3D(“TagName”).

In the first block, corresponding to the <Potts> section of
CC3DML code, we input the cell-lattice parameter values using
rules and syntax described above:

potts.ElementCC3D(“ParameterName”,{attributes},\
value)

where ParameterName matches a parameter name used in the
CC3DML lattice section.

Next we define the cell types using the syntax:

cellType.ElementCC3D(“CellType”,{“TypeName:\
type, “TypeId: id }).

The next section assigns contact energies between the cell
types:

contact.ElementCC3D(“Energy”,{“Type1”: type,\
“Type2”: type },value).

We input the rest of the parameter values in a similar fashion,
following the general syntax described above.

The examples in Listing 8 and Listing 9 define the Type-
SwitcherSteppable class within the main Python script, but
separating extension modules from the main script and using an
import statement to refer to modules stored in external files is
more practical because it ensures that each module can be used in
multiple simulations without duplicating source code, and makes
the scripts more readable and editable. We will follow this conven-
tion in our remaining examples.

 Multicell Simulations of Development and Disease Using the CompuCell3D 399

 CompuCell3D can simulate simple physical experiments with
foams. Indeed, GGH techniques grew out of foam-simulation
techniques (73) . Our next example shows how to use CC3DML
and Python scripts to simulate quasi-2D foam flow.

 The experimental apparatus (Fig. 13) consists of a chan-
nel created by two parallel rectangular glass plates separated by
5 mm, with the gap between their long sides sealed and that
between their short sides open. A foam generator injects small,
uniform-sized bubbles at one short end, pushing older bubbles
toward the open end of the channel, creating a foam flow. The
top glass plate has a hole through which we inject air. Bubbles
passing under this point grow because of the air injected into
them, forming characteristic patterns (Fig. 14) (98) .

 6.4. Two-Dimensional
Foam-Flow Simulation

 Fig. 13 . Schematic of experiment for studying quasi-2D foam flow .

 Fig. 14 . Detail of processed experimental image of flowing quasi-2D bubbles. Image
size is 15 cm × 15 cm .

400 Swat et al.

 Generalized cells will represent bubbles in this simulation. To
simulate this experiment in CompuCell3D we need to write Python
steppables that (1) create bubbles at one end of the channel, (2)
inject air into the bubble which includes a given location (the iden-
tity of this bubble will change in time due to the flow), and (3)
remove bubbles at the open end of the channel. We will store the
source code in a file called “foamairSteppables.py”. We will also
need a main Python script to call these steppables appropriately.

 We simulate bubble injection by creating generalized cells
(bubbles) along the lattice edge corresponding to the left end of
the channel (small- x values of the cell lattice). We simulate air injec-
tion into a bubble at the injection point by identifying the bubble
currently at the injection point and increasing its target volume at a
fixed rate. Removing a bubble from the simulation simply requires
assigning it a target volume of zero once it comes close to the right
end of the channel (large- x values of the cell lattice).

 We first define a CC3DML configuration file for the foam-flow
simulation (Listing 10). The CC3DML configuration file is sim-
ple: it initializes the VolumeLocalFlex, CellType, Contact
and CenterOfMass plugins. We do not use a cell-lattice-initial-
izer steppable, because all bubbles are created as the simulation
runs. We use VolumeLocalFlex because individual bubbles
will change their target volumes during the simulation. We also
include the CenterOfMass plugin to track the changing centroids
of each bubble.

 Note : The CenterOfMass plugin in CompuCell3D actually
calculates Cxs

�
 , the centroid of the generalized cell multiplied by

volume of the cell:

C ((),),

i

x i is d s¢ s= ∑�
� ��

 (11)

 so the actual centroid of the bubble is

C

.
()
x

x
v

s
s s

=
�

� (12)

 The ability to track a generalized-cell’s centroid is useful if we
need to pick a single reference point in the cell. In this example we
will remove bubbles whose centroids have x -coordinates greater
than a cutoff value.

 We will implement the Python script in four sections: (1) a
main script (Listing 11), which runs every MCS and calls the
steppables that (2) create bubbles at the left end of the cell lattice
(BubbleNucleator, Listing 12), (3) enlarge the target volume
of the bubble at the injector site (AirInjector, Listing 13)
and (4) set the target volume of bubbles at the right end of the cell
lattice to zero (BubbleCellRemover, Listing 14). We store
classes (2–4) in a separate file called “foamairSteppables.py”.

 The main script in Listing 11 builds on the template Python
code in Listing 7 ; we show changes in bold . The line

 Multicell Simulations of Development and Disease Using the CompuCell3D 401

 Listing 10. CC3DML configuration file for the foam-flow simulation. This file initializes needed plugins but all of the
interesting work is done in Python .

<CompuCell3D>

 <Potts>

 <Dimensions x="200" y="50" z="1"/>

 <Steps>10000</Steps>

 <Temperature>5</Temperature>

 <LatticeType>Hexagonal</LatticeType>

 </Potts>

 <Plugin Name="VolumeLocalFlex"/>

 <Plugin Name="CellType">

 <CellType TypeName="Medium" TypeId="0"/>

 <CellType TypeName="Foam" TypeId="1"/>

 </Plugin>

 <Plugin Name="Contact">

 <Energy Type1="Medium" Type2="Medium">5</Energy>

 <Energy Type1="Foam" Type2="Foam">5</Energy>

 <Energy Type1="Foam" Type2="Medium">5</Energy>

 <NeighborOrder>3</NeighborOrder>

 </Plugin>

 <Plugin Name="CenterOfMass"/>

</CompuCell3D>

 from foamairSteppables import BubbleNucleator

 tells Python to look for the BubbleNucleator class in the file
named “foamairSteppables.py”. The line

 bubbleNucleator=BubbleNucleator(sim, 20)

402 Swat et al.

 Listing 11. Main Python Script for foam-flow simulation. Changes to the template (Listing 7) are shown in bold .

import sys

from os import environ

import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#Create extra player fields here

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#Add Python steppables here

steppableRegistry=CompuCellSetup.getSteppableRegistry()

from foamairSteppables import BubbleNucleator

bubbleNucleator=BubbleNucleator(sim,20)

bubbleNucleator.setNumberOfNewBubbles(1)

bubbleNucleator.setInitialTargetVolume(25)

bubbleNucleator.setInitialLambdaVolume(2.0)

bubbleNucleator.setInitialCellType(1)

steppableRegistry.registerSteppable(bubbleNucleator)

from foamairSteppables import AirInjector

airInjector=AirInjector(sim,40)

airInjector.setVolumeIncrement(25)

airInjector.setInjectionPoint(50,25,0)

steppableRegistry.registerSteppable(airInjector)

from foamairSteppables import BubbleCellRemover

bubbleCellRemover=BubbleCellRemover(sim)

bubbleCellRemover.setCutoffValue(170)

steppableRegistry.registerSteppable(bubbleCellRemover)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

 creates the steppable BubbleNucleator that will run every
20 MCS. The next few lines in this section pass the number of
bubbles to create, which in our case is one:

 Multicell Simulations of Development and Disease Using the CompuCell3D 403

 bubbleNucleator.setNumberOfNewBubbles(1)

 Listing 12. Python code for the BubbleNucleator steppable, saved in the file “foamairSteppables.py.” This module
creates bubbles at points with random y coordinates and x coordinate of 3.

from CompuCell import Point3D
from random import randint

class BubbleNucleator(SteppablePy):
 def __init__(self,_simulator,_frequency=1):
 SteppablePy.__init__(self,_frequency)
 self.simulator=_simulator

 def start(self):
 self.Potts=self.simulator.getPotts()
 self.dim=self.Potts.getCellFieldG().getDim()

 def setNumberOfNewBubbles(self,_numNewBubbles):
 self.numNewBubbles=int(_numNewBubbles)

 def setInitialTargetVolume(self,_initTargetVolume):
 self.initTargetVolume=_initTargetVolume

 def setInitialLambdaVolume(self,_initLambdaVolume):
 self.initLambdaVolume=_initLambdaVolume

 def setInitialCellType(self,_initCellType):
 self.initCellType=_initCellType

 def createNewCell(self,pt):
 print "Nucleated bubble at ",pt
 cell=self.Potts.createCellG(pt)
 cell.targetVolume=self.initTargetVolume
 cell.type=self.initCellType
 cell.lambdaVolume=self.initLambdaVolume

 def nucleateBubble(self):
 pt=Point3D(0,0,0)
 pt.y=randint(0,self.dim.y-1)
 pt.x=3
 self.createNewCell(pt)

 def step(self,mcs):
 for i in xrange(self.numNewBubbles):
 self.nucleateBubble()

 the initial Vt for the new bubble, which is 25 pixels:

 bubbleNucleator.setInitialTargetVolume(25)

 the initial lvol for the bubble:

 bubbleNucleator.setInitialLambdaVolume(2.0)

 and the bubble’s type.id:

 bubbleNucleator.setInitialCellType(1)

 Finally, we register the steppable:

 steppableRegistry.registerSteppable(bubble \
Nucleator)

404 Swat et al.

 The next group of lines repeats the process for the AirInjector
steppable, reading it from the file “foamairSteppables.py”:

 and increases Vt by 25:

 from foamairSteppables import AirInjector
 airInjector=AirInjector(sim, 40)

 Listing 13. Python code for the AirInjector steppable which simulates air injection into the bubble currently
occupying the cell-lattice pixel at location (x , y , z). Air injection begins after 5,000 MCS to allow the channel to partially
fill with bubbles. The steppable is saved in file “foamairSteppables.py”.

class AirInjector(SteppablePy):

 def __init__(self,_simulator,_frequency=1):

 SteppablePy.__init__(self,_frequency)

 self.simulator=_simulator

 self.Potts=self.simulator.getPotts()

 self.cellField=self.Potts.getCellFieldG()

 def start(self): pass

 def setInjectionPoint(self,_x,_y,_z):

 self.injectionPoint=CompuCell.Point3D(int(_x),int(_y),int(_z))

 def setVolumeIncrement(self,_increment):

 self.volumeIncrement=_increment

 def step(self,mcs):

 if mcs <5000:

 return

 cell=self.cellField.get(self.injectionPoint)

 if cell:

 cell.targetVolume+=self.volumeIncrement

 airInjector.setVolumeIncrement(25)

 Multicell Simulations of Development and Disease Using the CompuCell3D 405

 Listing 14. Python code for the BubbleCellRemover steppable. This module removes cells once the x -coordi-
nates of their centroids > cutoffValue by setting their target volumes to zero and increasing their λvol to 10,000.
Like the other steppables in the foam-flow simulation, we save it in the file “foamairSteppables.py”.

class BubbleCellRemover(SteppablePy):

 def __init__(self,_simulator,_frequency=1):

 SteppablePy.__init__(self,_frequency)

 self.simulator=_simulator

 self.inventory=self.simulator.getPotts().getCellInventory()

 self.cellList=CellList(self.inventory)

 def start(self):

 self.Potts=self.simulator.getPotts()

 self.dim=self.Potts.getCellFieldG().getDim()

 def setCutoffValue(self,_cutoffValue):

 self.cutoffValue=_cutoffValue

 def step(self,mcs):

 for cell in self.cellList:

 if cell:

 if int(cell.xCM/float(cell.volume))>self.cutoffValue:

 cell.targetVolume=0

 cell.lambdaVolume=10000

 for the bubble occupying the pixel at the point (50, 25, 0) on the
cell lattice:

 airInjector.setInjectionPoint(50,25,0)

 As before, the final line registers the steppable:

 steppableRegistry.registerSteppable(airInjector)

 The final new section reads the BubbleCellRemover steppable
from the file “foamairSteppables.py”:

406 Swat et al.

 and invokes the steppable, telling it to run every MCS; note that
we have omitted the number after sim:

 from foamairSteppables import BubbleCellRemover

 bubbleCellRemover=BubbleCellRemover(sim)

 Next we set 170 as the x -coordinate at which we will destroy
bubbles:

 bubbleCellRemover.setCutoffValue(170)

 We must also write Python code to define the three steppables
BubbleNucleator, AirInjector, and BubbleCellRe-
mover and save them in the file “foamairSteppables.py”.

 Listing 12 shows the code for the BubbleNucleator
steppable.

 The first two lines import necessary modules, where the line

 from CompuCell import Point3D

 allows us to access points on the simulation cell lattice, and the
line

 from random import randint

 allows us to generate random integers.
 In the constructor of the BubbleNucleator steppable

class we assign to the variable self.simulator a reference to
the simulator object from the CompuCell3D kernel. In the
start(self) function, we assign a reference to the Potts object
from the CompuCell3D kernel to the variable self.Potts:

 self.Potts=self.simulator.getPotts()

 and assign the dimensions of the cell lattice to self.dim:

 self.dim=self.Potts.getCellFieldG().getDim()

 In addition to the four essential steppable member func-
tions (__init__(self, _simulator, _frequency),
start(self), step(self, mcs) and finish(self)),
BubbleNucleator includes several functions, some of which
set parameters and some of which perform necessary tasks. The
functions setNumberOfNewBubbles, setInitialTar-
getVolume, and setInitialLambdaVolume accept the val-
ues passed from the main Python script in Listing 11 .

 and, finally, register BubbleCellRemover:

 steppableRegistry.registerSteppable(bubble\
CellRemover)

 Multicell Simulations of Development and Disease Using the CompuCell3D 407

 The CreateNewCell function requires that we pass the
coordinates of the point, pt, at which to create a new bubble:

 def CreateNewCell (self,pt):

 Then we use a built-in CompuCell3D function to add a new
bubble at that location:

 cell=self.Potts.createCellG(pt)

 assigning the new cell a target volume Vt = target volume:

 cell.targetVolume=self.initTargetVolume

 type (t = type) :

 cell.type=self.initCellType

 and compressibility lvol= lambda Volume:

 cell.lambdaVolume=initLambdaVolume

 based on the values passed to the BubbleNucleator steppable
from the main script.

 The first three lines of the nucleateBubble function create
a reference to a point on the cell lattice (pt=Point3D(0,0,0)),
assign it a random y -coordinate between 0 and y_dim-1:

 pt.y=randint(0,self.dim.y-1)

 and an x -coordinate of 3:

 pt.x=3

 The line calls the createNewCell function and passes it
the point (pt) at which to create the new bubble:

 self.createNewCell(pt)

 Finally, the step(self,mcs) function calls the nucle-
ateBubble function self.numNewBubbles times per MCS.

 Listing 13 shows the code for the AirInjector steppable.
 The first three lines of the __init__(self,_simulator,_

frequency) function are identical to the same lines in the
BubbleNucleator steppable (Listing 12). The final line of the
function loads the cell-lattice parameters:

 self.cellField=self.Potts.getCellFieldG()

 The start(self) function in this steppable does not do any-
thing:

408 Swat et al.

 The next two functions read the injectionPoint and volu-
meIncrement passed to the AirInjector steppable by the main
Python script (Listing 11). The step function uses these values to
identify the bubble at the injection site, self.injectionPoint:

 def start(self): pass

 cell=self.cellField.get(self.injection\
Point)

 and then increments that bubble’s target volume, Vt , by self.
volumeIncrement:

 if cell:

 cell.targetVolume+=self.volumeIncrement

 Note the syntax:

 if cell:

 which we use to test whether a cell is Medium or not. Medium
in CompuCell3D is assigned a NULL pointer, which, in Python,
becomes a None object. Python evaluates the None object as
False and other objects (in our case, bubbles) as True, so the
task is only carried out on bubbles, not Medium.

 In the first two lines of the step(self,mcs) function, we tell
the function not to perform its task until 5,000 MCS have elapsed:

 if mcs <5000:

 return

 The 5,000-MCS delay allows the simulation to establish a
uniform flow of small bubbles throughout a large portion of the
cell lattice.

 Finally, we define the BubbleCellRemover steppable
(Listing 14).

 At each MCS we scan the cell inventory looking for cells whose
centroid has an x -coordinate close to the right end of the lattice
and remove these cells from the simulation by setting their target
volumes to zero and increasing λvol to 10,000.

 The first two lines of the __init__ (self,_simulator,_
frequency) function are identical to the corresponding lines
in the BubbleNucleator and AirInjector steppables (Listings
 12 and 13). In the third line of the function, we gain access to
the generalized-cell inventory:

 self.inventory=self.simulator.getPotts().\
getCellInventory()

 Multicell Simulations of Development and Disease Using the CompuCell3D 409

 and in the fourth line we make a list containing all of the general-
ized cells in the simulation:

 if cell:

 self.cellList=CellList(self.inventory)

 The start(self) function is identical to that of the Bub-
bleNucleator steppable (Listing 12), and performs the same
function.

 The next function reads the cutoffValue for the x -coor-
dinate that we passed to BubbleCellRemover from the main
Python script (Listing 11):

 setCutoffValue(self,_cutoffValue)

 Finally, the step(self, mcs) function iterates through
the cell inventory. We first check to make sure that the cell is not
Medium:

 For each non-Medium cell, we test whether the x -coordinate
of the cell’s centroid is greater than the cutoffValue:

 if int(cell.xCM/float(cell.volume))>self.cut-\
offValue:

 and, if it is, set that cell’s targetVolume, Vt , to zero:

 cell.targetVolume=0

 and its lvol to 10,000 :

 cell.lambdaVolume=10000

 Running the CC3DML file from Listing 10 and the main
Python script from Listing 11 (which loads the steppables in
 Listings 12 – 14 from the file “foamairSteppables.py”) produces
the snapshots shown in Fig. 15 .

 One of the most frequent uses of Python scripting in Compu-
Cell3D simulations is to modify cell behavior based on local field
concentrations. To demonstrate this use, we incorporate stem-
cell-like behavior into the cell-sorting simulation from Listing 1 .
This extension requires including relatively sophisticated interac-
tions between cells and a diffusing chemical, FGF (99) .

 We simulate a situation where NonCondensing cells secrete
FGF, which diffuses freely through the cell lattice and obeys:

6.5. Diffusing-Field-
Based Cell-Growth
Simulation

410 Swat et al.

 d t s
∂

= ∇ +
∂

�
� �

2[FGF]()
0.10 [FGF]() 0.05 ((()),),

i
i i

t
NonCondensing (13)

 Fig. 15 . Results of the foam-flow simulation on a 2D third-neighbor hexagonal lattice. Simulation code is given in List-
ings 10 – 14 .

 where [FGF] denotes the FGF concentration and Condensing
cells respond to the field by growing at a constant rate propor-
tional to the FGF concentration at their centroids:

 td ()
0.01[FGF]().

d
V

x
t s
s

= � (14)

 When they reach a threshold volume, the Condensing cells
undergo mitosis. One of the resulting daughter cells remains a
Condensing cell, while the other daughter cell has an equal prob-
ability of becoming either another Condensing cell or a Differ-
entiatedCondensing cell. DifferentiatedCondensing
cells do not divide.

 Multicell Simulations of Development and Disease Using the CompuCell3D 411

 Each generalized cell in CompuCell3D has a default list of
attributes, e.g. type, volume, surface (area), target volume, etc.
However, CompuCell3D allows users to add cell attributes during
execution of simulations. For example, in the current simulation, we
will record data on each cell division in a list attached to each cell.

 Note : Generalized cell attributes can be added using either
C+ or Python. However, attributes added using Python are not
accessible from C+ modules.

 As in the foam-flow simulation, we divide the necessary sim-
ulation tasks among different Python modules (or classes) which
we save in a file “cellsort_2D_field_modules.py” and call from
the main Python script. We reuse elements of the CC3DML files
we presented earlier to construct the CC3DML configuration
file, presented in Listing 15 .

 The CC3DML code is a slightly extended version of the
cell-sorting code in Listing 3 plus the FlexibleDiffusion-
SolverFE discussed in the bacterium-and-macrophage simulation
(see Listing 4). The initial cell lattice does not contain any Con-
densingDifferentiated cells. These cells appear only as the
result of mitosis. We use the VolumeLocalFlex plugin to allow
the target volume to vary individually for each cell, allowing cell
growth as discussed in the foam-flow simulation. We manage the
volume-constraint parameters using a Python script. The Center-
OfMass plugin provides a reference point in each cell at which we
measure the FGF concentration. We then adjust the cell’s target
volume accordingly.

 To build this simulation in CompuCell3D we need to write
several Python routines. We need (1) a steppable, Volume-
ConstraintSteppable, to initialize the volume-constraint
parameters for each cell and to simulate cell growth by periodi-
cally increasing Condensing cells’ target volumes in propor-
tion to the FGF concentration at their centroids; (2) a plugin,
CellsortMitosis, that runs the CompuCell3D mitosis algo-
rithm when any cell reaches a threshold volume and then adjusts
the parameters of the resulting parent and daughter cells, and also
appends information about the time and type of cell division
to a list attached to each cell; (3) a steppable, MitosisDat-
aPrinterSteppable, that prints the cell-division information
from the lists attached to each cell; (4) a class, MitosisData,
which MitosisDataPrinterSteppable uses to extract and
format the data it prints; and (5) a main Python script to call the
steppables and the CellsortMitosis plugin appropriately. We
store the source code for routines (1–4) in a separate file called
“cellsort_2D_field_modules.py.”

 Listing 16 shows the main Python script for the diffusing-
field-based cell-growth simulation, with changes to the template
(Listing 7) shown in bold .

412 Swat et al.

 Listing 15. CC3DML code for the diffusing-field-based cell-growth simulation.

<CompuCell3D>

 <Potts>

 <Dimensions x="200" y="200" z="1"/>

 <Steps>10000</Steps>

 <Temperature>10</Temperature>

 <NeighborOrder>2</NeighborOrder>

 </Potts>

 <Plugin Name="VolumeLocalFlex"/>

 <Plugin Name="CellType">

 <CellType TypeName="Medium" TypeId="0"/>

 <CellType TypeName="Condensing" TypeId="1"/>

 <CellType TypeName="NonCondensing" TypeId="2"/>

 <CellType TypeName="CondensingDifferentiated" TypeId="3"/>

 </Plugin>

 <Plugin Name="Contact">

 <Energy Type1="Medium" Type2="Medium">0</Energy>

 <Energy Type1="NonCondensing" Type2="NonCondensing">16</Energy>

 <Energy Type1="Condensing" Type2="Condensing">2</Energy>

 <Energy Type1="NonCondensing" Type2="Condensing">11</Energy>

 <Energy Type1="NonCondensing" Type2="Medium">16</Energy>

 <Energy Type1="Condensing" Type2="Medium">16</Energy>

 <Energy Type1="CondensingDifferentiated"

 Type2="CondensingDifferentiated">2</Energy>

 <Energy Type1="CondensingDifferentiated"

 Type2="Condensing">2</Energy>

 <Energy Type1="CondensingDifferentiated"

 Type2="NonCondensing">11</Energy>

 <Energy Type1="CondensingDifferentiated" Type2="Medium">16</Energy>

 <NeighborOrder>2</NeighborOrder>

 </Plugin>

 <Plugin Name="CenterOfMass"/>

 Multicell Simulations of Development and Disease Using the CompuCell3D 413

<Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.10</DiffusionConstant>

 <DecayConstant>0.00005</DecayConstant>

 </DiffusionData>

 <SecretionData>

 <Secretion Type="NonCondensing">0.05</Secretion>

 </SecretionData>

 </DiffusionField>

 </Steppable>

 <Steppable Type="BlobInitializer">

 <Region>

 <Gap>0</Gap>

 <Width>5</Width>

 <Radius>40</Radius>

 <Center x="100" y="100" z="0"/>

 <Types>Condensing,NonCondensing</Types>

 </Region>

 </Steppable>

</CompuCell3D>

 The first change to the template code (Listing 7) is

 pyAttributeAdder,listAdder=CompuCellSetup.\
attachListToCells(sim)

 which instructs the CompuCell3D kernel to attach a Python-
defined list to each cell when it creates it. This list serves as a
generic container which can store any set of Python objects and
hence any set of generalized-cell properties. In the current simu-
lation, we use the list to store objects of the class MitosisData,
which records the Monte Carlo Step at which each cell division
involving the current cell, or its parent, happened, as well as the
cell index and cell type of the parent and daughter cells.

414 Swat et al.

 Because one of our Python modules is a lattice monitor,
rather than a steppable, we need to create stepperRegistry
and changeWatcherRegistry objects, which store the two
types of lattice monitors:

 changeWatcherRegistry=CompuCellSetup.\
getChangeWatcherRegistry(sim)

 stepperRegistry=CompuCellSetup.\
getStepper Registry(sim)

 Listing 16. Main Python script for the diffusing-field-based cell-growth simulation. Changes to the template code
(Listing 7) shown in bold .

import sys
from os import environ
from os import getcwd
import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

#add additional attributes
pyAttributeAdder,listAdder=CompuCellSetup.attachListToCells(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

#notice importing CompuCell to main script has to be
#done after call to getCoreSimulationObjects()
import CompuCell
changeWatcherRegistry=CompuCellSetup.getChangeWatcherRegistry(sim)
stepperRegistry=CompuCellSetup.getStepperRegistry(sim)

from cellsort_2D_field_modules import CellsortMitosis
cellsortMitosis=CellsortMitosis(sim,changeWatcherRegistry,\
stepperRegistry)
cellsortMitosis.setDoublingVolume(50)

#Add Python steppables here
steppableRegistry=CompuCellSetup.getSteppableRegistry()

from cellsort_2D_field_modules import VolumeConstraintSteppable
volumeConstraint=VolumeConstraintSteppable(sim)
steppableRegistry.registerSteppable(volumeConstraint)

from cellsort_2D_field_modules import MitosisDataPrinterSteppable
mitosisDataPrinterSteppable=MitosisDataPrinterSteppable(sim)
steppableRegistry.registerSteppable(mitosisDataPrinterSteppable)

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

 Multicell Simulations of Development and Disease Using the CompuCell3D 415

 The CellsortMitosis plugin is a lattice monitor because
it acts in response to certain index-copy events; it is invoked
whenever a cell’s volume reaches the threshold volume for mito-
sis. The following lines create the CellsortMitosis lattice
monitor and register it with stepperRegistry and change-
WatcherRegistry:

 from cellsort_2D_field_modules import Cell\
sortMitosis

 cellsortMitosis = CellsortMitosis(sim,change\
WatcherRegistry, stepperRegistry)

 Because the base class inherited by CellsortMitosis,
unlike our steppables, handles registration internally, we do not
have to register CellsortMitosis explicitly. We can now set
the threshold volume at which Condensing cells divide:

 Next we import the VolumeConstraintSteppable step-
pable, which initializes cells’ target volumes and compressibilities
at the beginning of the simulation and also implements chemical-
dependent cell growth for Condensing cells, and register it:

 from cellsort_2D_field_modules import Vol\
umeConstraintSteppable

 volumeConstraint=VolumeConstraintSteppable(sim)

 steppableRegistry.registerSteppable(volumeCo
nstraint)

 Finally, we import, create and register the MitosisData-
PrinterSteppable steppable, which prints the content of
MitosisData objects for cells that have divided:

 from cellsort_2D_field_modules import\
MitosisDataPrinterSteppable

 mitosisDataPrinterSteppable=MitosisDataPrin\
terSteppable(sim)

 steppableRegistry.registerSteppable(mitosis\
DataPrinterSteppable)

 The number of MitosisData objects stored in each cell at
any given Monte Carlo Step depends on cell type (NonCondens-
ing cells do not divide, whereas Condensing cells can divide
multiple times) and how often a given cell has divided.

 cellsortMitosis.setDoublingVolume(50)

416 Swat et al.

 Moving on to the Python modules, we consider the Vol-
umeConstraintSteppable steppable shown in Listing 17 .

 The __init__ constructor looks very similar to the one in
 Listing 14 , with the difference that we pass _frequency=1 to
update the cell volumes once per MCS. We also request the field-
lattice dimensions and values from CompuCell3D:

 Listing 17. Python code for the VolumeConstraintSteppable, saved in the file “cellsort_2D_field_modules.
py,” for the diffusing-field-based cell-growth simulation. The VolumeConstraintSteppable provides dynamic
volume constraint parameters for each cell, which depend on the cell type and the chemical field concentration at the
cell’s centroid.

class VolumeConstraintSteppable(SteppablePy):

 def __init__(self,_simulator,_frequency=1):

 SteppablePy.__init__(self,_frequency)

 self.simulator=_simulator

 self.inventory=self.simulator.getPotts().getCellInventory()

 self.cellList=CellList(self.inventory)

 def start(self):

 for cell in self.cellList:

 cell.targetVolume=25

 cell.lambdaVolume=2.0

 def step(self,mcs):

 field=CompuCell.getConcentrationField(self.simulator,"FGF")

 comPt=CompuCell.Point3D()

 for cell in self.cellList:

 if cell.type==1: #Condensing cell

 comPt.x=int(round(cell.xCM/float(cell.volume)))

 comPt.y=int(round(cell.yCM/float(cell.volume)))

 comPt.z=int(round(cell.zCM/float(cell.volume)))

 concentration=field.get(comPt) # get concentration at comPt

 # and increase cell's target volume

 cell.targetVolume+=0.1*concentration

 Multicell Simulations of Development and Disease Using the CompuCell3D 417

 Listing 18 shows the code for the CellsortMitosis
plugin. The plugin divides the mitotic cell into two cells and
adjusts both cells’ attributes. It also initializes and appends Mito-

 self.dim=self.simulator.getPotts().get\
CellFieldG().getDim()

 and specify that we will work with a field named FGF:

 self.fieldName=”FGF”

 The script contains two functions: one that initializes the
cells’ volume-constraint parameters (start(self)) and one
that updates them (step(self, mcs)).

 The start(self) function executes only once, at the begin-
ning of the simulation. It iterates over each cell (for cell in
self.cellList:) and assigns the initial cells’ targetVolume
(Vt (s)= 25 pixels) and lambdaVolume (lvol (s) = 2.0) parameters
as the VolumeLocalFlex plugin requires.

 The first line of the step(self, mcs) function extracts
a reference to the FGF concentration field defined using the
FlexibleDiffusionSolverFE steppable in the CC3DML
file (each field created in a CompuCell3D simulation is regis-
tered and accessible by both C+ and Python). The function then
iterates over every cell in the simulation. If a cell is of cell.
type 1 (Condensing – see the CC3DML configuration file,
 Listing 15), we calculate its centroid:

 centerOfMassPoint.x=int(round(cell.xCM/\
float(cell.volume)))

 centerOfMassPoint.y=int(round(cell.yCM/\
float(cell.volume)))

 centerOfMassPoint.z=int(round(cell.zCM/\
float(cell.volume)))

 and retrieve the FGF concentration at that point:

 concentration=field.get(centerOfMassPoint)

 We then increase the target volume of the cell by 0.01 times
that concentration:

 cell.targetVolume+=0.01*concentration

 We must include the CenterOfMass plugin in the CC3DML
code. Otherwise the centroid (cell.xCM, cell.yCM, cell.
zCM) will have the default value (0,0,0).

418 Swat et al.

 from PyPluginsExamples import MitosisPyPlug\
inBase

 lets us access the CompuCell3D base class MitosisPyPlug-
inBase.

 Listing 18. Python code for the CellsortMitosis plugin for the diffusing-field-based cell-growth simulation, saved
in the file “cellsort_2D_field_modules.py.” The plugin handles division of cells when they reach a threshold volume.

class VolumeConstraintSteppable(SteppablePy):

 def __init__(self,_simulator,_frequency=1):

 SteppablePy.__init__(self,_frequency)

 self.simulator=_simulator

 self.inventory=self.simulator.getPotts().getCellInventory()

 self.cellList=CellList(self.inventory)

 def start(self):

 for cell in self.cellList:

 cell.targetVolume=25

 cell.lambdaVolume=2.0

 def step(self,mcs):

 field=CompuCell.getConcentrationField(self.simulator,"FGF")

 comPt=CompuCell.Point3D()

 for cell in self.cellList:

 if cell.type==1: #Condensing cell

 comPt.x=int(round(cell.xCM/float(cell.volume)))

 comPt.y=int(round(cell.yCM/float(cell.volume)))

 comPt.z=int(round(cell.zCM/float(cell.volume)))

 concentration=field.get(comPt) # get concentration at comPt

 # and increase cell's target volume

 cell.targetVolume+=0.1*concentration

sisData objects to the original cell’s (self.parentCell) and
daughter cell’s (self.childCell) attribute lists.

 The second line of Listing 18 :

 Multicell Simulations of Development and Disease Using the CompuCell3D 419

 MitosisPyPluginBase.__init__(self,_simulator,\

 _changeWatcherRegistry,_stepperRegistry)

 We also need to reimplement the function update-
Attributes(self), which is called by MitosisPyPlug-
inBase after mitosis takes place, to define the postdivision
cells’ parameters. The objects self.childCell and self.
parentCell that appear in the function are initialized and
managed by MitosisPyPluginBase. In the current simula-
tion, after division we set Vt for the parent and daughter cells to
half of the Vt of the parent just prior to cell division. lvol is left
unchanged for the parent cell and the same value is assigned to
the daughter cell:

 self.parentCell.targetVolume=self.parentCell.\
volume/2.0

 self.childCell.targetVolume=self.parentCell.\
targetVolume

 self.childCell.lambdaVolume=self.parentCell.\
lambdaVolume

 The cell type of one of the two daughter cells (childCell)
is randomly chosen to be either Condensing (i.e., the same as
the parent type) or CondensingDifferentiated, which we
have defined to be cell.type 3 (Listing 15):

 if (random()<0.5):

 self.childCell.type=self.parentCell.type

 else:

 self.childCell.type=3

 CellsortMitosis inherits the content of the Mito-
sisPyPluginBase class. MitosisPyPluginBase internally
accesses the CompuCell3D-provided Mitosis plugin, which is
written in C++ and handles the technicalities of plugin initializa-
tion behind the scenes. The MitosisPyPluginBase class pro-
vides a simple-to-use interface to this plugin. To create a customized
version of MitosisPyPluginBase, CellsortMitosis,
we must call the constructor of MitosisPyPluginBase from
the CellsortMitosis constructor:

420 Swat et al.

 parentCellList.append(mitData)

 childCellList.append(mitData)

 then we access the lists attached to the two cells:

 parentCellList=CompuCell.getPyAttrib(self.\
parentCell)

 childCellList=CompuCell.getPyAttrib(self.\
childCell)

 and append the new mitosis data to these lists:

 Listing 19. Python code for the MitosisData class for the diffusing-field-based cell-growth simulation, saved in
the file “cellsort_2D_field_modules.py.” MitosisData objects store information about cell divisions involving the
parent and daughter cells.

class MitosisData:

 def __init__(self,_MCS,_parentId,_parentType,_offspringId,\

_offspringType):

 self.MCS=_MCS

 self.parentId=_parentId

 self.parentType=_parentType

 self.offspringId=_offspringId

 self.offspringType=_offspringType

 def __str__(self):

 return "Mitosis time="+str(self.MCS)+"\

 parentId="+str(self.parentId)+"\

 offspringId="+str(self.offspringId)

 mcs=self.simulator.getStep()

 mitData=MitosisData(mcs,self.parentCell.\
id,self.parentCell.type,\

 self.childCell.id,self.childCell.type)

 The parent cell remains Condensing. We now add a descrip-
tion of this cell division to the lists attached to each cell. First, we
collect the data in a list called mitData:

 Multicell Simulations of Development and Disease Using the CompuCell3D 421

 Listing 20. The Python code for the MitosisDataPrinter steppable for the diffusing-field-based cell-growth
simulation, saved in the file “cellsort_2D_field_modules.py.” The steppable prints the cell-division history for dividing
cells (see Fig. 18).

class MitosisDataPrinterSteppable(SteppablePy):

 def __init__(self,_simulator,_frequency=100):

 SteppablePy.__init__(self,_frequency)

 self.simulator=_simulator

 self.inventory=self.simulator.getPotts().getCellInventory()

 self.cellList=CellList(self.inventory)

 def step(self,mcs):

 for cell in self.cellList:

 mitDataList=CompuCell.getPyAttrib(cell)

 if len(mitDataList) > 0:

 print "MITOSIS DATA FOR CELL ID",cell.id

 for mitData in mitDataList:

 print mitData

 Listing 19 shows the Python code for the MitosisData
class, which stores the data on the cell division that we append to
the cells’ attribute lists after each cell division.

 In the constructor of MitosisData, we read in the time
(in MCS) of the division, along with the parent and daughter
cell indices and types. The __str__(self) convenience func-
tion returns an ASCII string representation of the time and cell
indices only, to allow the Python print command to print out
this information.

 Listing 20 shows the Python code for the MitosisDat-
aPrinterSteppable steppable, which prints the mitosis data
to the user’s screen.

 The constructor is identical to that for the VolumeCon-
straintSteppable steppable (Listing 17). Within the
step(self,mcs) function, we iterate over each cell (for cell
in self.cellList:) and access the Python list attached to
the cell (mitDataList=CompuCell.getPyAttrib(cell)).

422 Swat et al.

 Figures 16 and 17 show snapshots of the diffusing-field-
based cell-growth simulation. Figure 18 shows a sample screen
output of the cell-division history.

 Fig. 16 . Snapshots of the diffusing-field-based cell-growth simulation obtained by running the CC3DML file in Listing
 15 in conjunction with the Python file in Listing 16 . As the simulation progresses, NonCondensing cells (light gray)
secrete diffusing chemical, FGF, which causes Condensing (dark gray) cells to proliferate. Some Condensing
cells differentiate to CondensingDifferentiated (white) cells .

 if len(mitDataList) > 0:

 print “MITOSIS DATA FOR CELL ID”,cell.id

 for mitData in mitDataList:

 print mitData

If a given cell has undergone mitosis, then the list will have entries,
and thus a nonzero length. If so, we print the MitosisData
objects stored in the list:

 Multicell Simulations of Development and Disease Using the CompuCell3D 423

 The diffusing-field-based cell-growth simulation includes
concepts that extend easily to simulate biological phenomena that
involve diffusants, cell growth, and mitosis, e.g., limb-bud devel-
opment (58, 59) , tumor growth (5– 9) , and Drosophila imaginal-
disc development.

 Fig. 17 . Snapshots of FGF concentration in the diffusing-field-based cell-growth simulation obtained by running the
CC3DML file in Listing 15 in conjunction with the Python files in Listings 16 – 20 . The bars at the bottom of the field
images show the concentration scales (white , low concentration; black , high concentration) .

424 Swat et al.

 In most cases, building a complex CompuCell3D simulation
requires writing Python modules, a main Python script, and a
CC3DML configuration file. While the effort to write this code
can be substantial, it is much less than that required to develop
custom simulations in lower-level languages. Working from the
substantial base of Python templates provided by CompuCell3D
further streamlines simulation development. Python programs are
fairly short, so simulations can be published in journal articles, greatly
facilitating simulation validation, reuse, and adaptation. Finally,
CompuCell3D’s modular structure allows new Python modules
to be reused from simulation to simulation. The CompuCell3D
Web site, http://www.compucell3d.org, allows users to archive
their modules and make them accessible to other users.

 We hope the examples we have shown will convince read-
ers to evaluate the suitability of GGH simulations using Compu-
Cell3D for their research.

 All the code examples presented in this chapter are availa-
ble from http://www.compucell3d.org. They will be curated to
ensure their correctness and compatibility with future versions of
CompuCell3D.

 7. Conclusion

 Fig. 18 . Sample output from the MitosisDataPrinterSteppable steppable in Listing 20 .

 Multicell Simulations of Development and Disease Using the CompuCell3D 425

 References

 1 . Bassingthwaighte , J. B. (2000) Strategies for
the Physiome project . Ann. Biomed. Eng. 28 ,
 1043 – 1058 .

 2 . Merks , R. M. H. , Newman , S. A. , and Glazier , J. A.
 (2004) Cell-oriented modeling of in vitro
capillary development . Lect. Notes Comp. Sci.
 3305 , 425 – 434 .

 3 . Turing , A. M. (1953) The chemical basis of
morphogenesis . Philos. Trans. R. Soc. B 237 ,
 37 – 72 .

 4 . Merks , R. M. H. and Glazier , J. A. (2005) A
cell-centered approach to developmental biol-
ogy . Phys. A 352 , 113 – 130 .

 5 . Dormann , S. and Deutsch , A. (2002) Mod-
eling of self-organized avascular tumor growth
with a hybrid cellular automaton . In Silico Biol.
 2 , 1 – 14 .

 6 . dos Reis , A. N. , Mombach , J. C. M. , Walter ,
 M. , and de Avila , L. F. (2003) The interplay
between cell adhesion and environment rigid-
ity in the morphology of tumors . Phys. A 322 ,
 546 – 554 .

 7 . Drasdo , D. and Hohme , S. (2003) Individ-
ual-based approaches to birth and death in
avascular tumors . Math. Comput. Model. 37 ,
 1163 – 1175 .

 8 . Holm , E. A. , Glazier , J. A. , Srolovitz , D. J. ,
and Grest , G. S. (1991) Effects of lattice ani-
sotropy and temperature on domain growth in
the two-dimensional Potts model . Phys. Rev. A
 43 , 2662 – 2669 .

 9 . Turner , S. and Sherratt , J. A. (2002) Intercel-
lular adhesion and cancer invasion: A discrete
simulation using the extended Potts model . J.
Theor. Biol. 216 , 85 – 100 .

 10 . Drasdo , D. and Forgacs , G. (2000) Modeling
the interplay of generic and genetic mecha-
nisms in cleavage, blastulation, and gastrula-
tion . Dev. Dynam. 219 , 182 – 191 .

 11 . Drasdo , D. , Kree , R. , and McCaskill , J. S.
 (1995) Monte-Carlo approach to tissue-cell
populations . Phys. Rev. E 52 , 6635 – 6657 .

 12 . Longo , D. , Peirce , S. M. , Skalak , T. C. , David-
son , L. , Marsden , M. , and Dzamba , B. (2004)
 Multicellular computer simulation of morpho-
genesis: Blastocoel roof thinning and matrix
assembly in Xenopus laevis . Dev. Biol. 271 ,
 210 – 222 .

 13 . Collier , J. R. , Monk , N. A. M. , Maini , P. K. ,
and Lewis , J. H. (1996) Pattern formation by
lateral inhibition with feedback: A mathemati-
cal model of Delta-Notch intercellular signal-
ing . J. Theor. Biol. 183 , 429 – 446 .

 14 . Honda , H. and Mochizuki , A. (2002) Forma-
tion and maintenance of distinctive cell pat-
terns by coexpression of membrane-bound
ligands and their receptors . Dev. Dynam. 223 ,
 180 – 192 .

 15 . Moreira , J. and Deutsch , A. (2005) Pigment
pattern formation in zebrafish during late lar-
val stages: A model based on local interactions .
 Dev. Dynam. 232 , 33 – 42 .

 We gratefully acknowledge support from the National Institutes
of Health, National Institute of General Medical Sciences, grants
1R01 GM077138–01A1 and 1R01 GM076692-01, and the
Office of Vice President for Research, the College of Arts and
Sciences, the Pervasive Technologies Laboratories and the Bio-
complexity Institute at Indiana University. Indiana University’s
University Information Technology Services provided time on
their BigRed clusters for simulation execution. Early versions of
CompuCell and CompuCell3D were developed at the University
of Notre Dame by J.A.G., Dr. Mark Alber and Dr. Jesus Izaguirre
and collaborators with the support of National Science Founda-
tion, Division of Integrative Biology, grant IBN-00836563. Since
the primary home of CompuCell3D moved to Indiana Univer-
sity in 2004, the Notre Dame team have continued to provide
important support for its development.

 Acknowledgments

426 Swat et al.

 16 . Wearing , H. J. , Owen , M. R. , and Sherratt , J. A.
 (2000) Mathematical modelling of juxtacrine
patterning . Bull. Math. Biol. 62 , 293 – 320 .

 17 . Zhdanov , V. P. and Kasemo , B. (2004) Simula-
tion of the growth of neurospheres . Europhys.
Lett. 68 , 134 – 140 .

 18 . Ambrosi , D. , Gamba , A. , and Serini , G. (2005)
 Cell directional persistence and chemotaxis in
vascular morphogenesis . Bull. Math. Biol. 67 ,
 195 – 195 .

 19 . Gamba , A. , Ambrosi , D. , Coniglio , A. , de Candia ,
 A. , di Talia , S. , Giraudo , E. , Serini , G. , Preziosi ,
 L. , and Bussolino , F. (2003) Percolation, mor-
phogenesis, and Burgers dynamics in blood ves-
sels formation . Phys. Rev. Lett. 90 , 118101 .

 20 . Novak , B. , Toth , A. , Csikasz-Nagy , A. , Gyorffy , B. ,
 Tyson , J. A. , and Nasmyth , K. (1999) Finish-
ing the cell cycle . J. Theor. Biol. 199 , 223 – 233 .

 21 . Peirce , S. M. , van Gieson , E. J. , and Skalak ,
 T. C. (2004) Multicellular simulation predicts
microvascular patterning and in silico tissue
assembly . FASEB J. 18 , 731 – 733 .

 22 . Merks , R. M. H. , Brodsky , S. V. , Goligorksy , M. S. ,
 Newman , S. A. , and Glazier , J. A. (2006) Cell
elongation is key to in silico replication of in
vitro vasculogenesis and subsequent remod-
eling . Dev. Biol. 289 , 44 – 54 .

 23 . Merks, R. M. H. and Glazier, J. A. (2005)
Contact-inhibited chemotactic motility can
drive both vasculogenesis and sprouting ang-
iogenesis. q-bio/0505033.

 24 . Kesmir , C. and de Boer , R. J. (2003) A spatial
model of germinal center reactions: Cellular adhe-
sion based sorting of B cells results in efficient
affinity maturation . J. Theor. Biol. 222 , 9 – 22 .

 25 . Meyer-Hermann , M. , Deutsch , A. , and Or-
Guil , M. (2001) Recycling probability and
dynamical properties of germinal center reac-
tions . J. Theor. Biol. 210 , 265 – 285 .

 26 . Nguyen , B. , Upadhyaya , A. , van Oudenaarden ,
 A. , and Brenner , M. P. (2004) Elastic instabil-
ity in growing yeast colonies . Biophys. J. 86 ,
 2740 – 2747 .

 27 . Walther , T. , Reinsch , H. , Grosse , A. , Oster-
mann , K. , Deutsch , A. , and Bley , T. (2004)
 Mathematical modeling of regulatory mecha-
nisms in yeast colony development . J. Theor.
Biol. 229 , 327 – 338 .

 28 . Borner , U. , Deutsch , A. , Reichenbach , H. ,
and Bar , M. (2002) Rippling patterns in
aggregates of myxobacteria arise from cell–cell
collisions . Phys. Rev. Lett. 89 , 078101 .

 29 . Bussemaker , H. J. , Deutsch , A. , and Geigant , E.
 (1997) Mean-field analysis of a dynamical phase
transition in a cellular automaton model for col-
lective motion . Phys. Rev. Lett. 78 , 5018 – 5021 .

 30 . Dormann , S. , Deutsch , A. , and Lawniczak , A. T.
 (2001) Fourier analysis of Turing-like pat-

tern formation in cellular automaton models .
 Future Gener. Comput. Syst. 17 , 901 – 909 .

 31 . Börner , U. , Deutsch , A. , Reichenbach , H. ,
and Bär , M. (2002) Rippling patterns in
aggregates of myxobacteria arise from cell–cell
collisions . Phys. Rev. Lett. 89 , 078101 .

 32 . Zhdanov , V. P. and Kasemo , B. (2004) Simula-
tion of the growth and differentiation of stem
cells on a heterogeneous scaffold . Phys. Chem.
Chem. Phys. 6 , 4347 – 4350 .

 33 . Knewitz , M. A. and Mombach , J. C. (2006)
 Computer simulation of the influence of cellu-
lar adhesion on the morphology of the interface
between tissues of proliferating and quiescent
cells . Comput. Biol. Med. 36 , 59 – 69 .

 34 . Marée , A. F. M. and Hogeweg , P. (2001) How
amoeboids self-organize into a fruiting body: Mul-
ticellular coordination in Dictyostelium discoideum .
 Proc. Natl Acad. Sci. USA 98 , 3879 – 3883 .

 35 . Marée , A. F. M. and Hogeweg , P. (2002) Mod-
elling Dictyostelium discoideum morphogenesis:
the culmination . Bull. Math. Biol. 64 , 327 – 353 .

 36 . Marée , A. F. M. , Panfilov , A. V. , and Hogeweg , P.
 (1999) Migration and thermotaxis of Dicty-
ostelium discoideum slugs, a model study . J.
Theor. Biol. 199 , 297 – 309 .

 37 . Savill , N. J. and Hogeweg , P. (1997) Mod-
elling morphogenesis: From single cells to
crawling slugs . J. Theor. Biol. 184 , 229 – 235 .

 38 . Hogeweg , P. (2000) Evolving mechanisms of
morphogenesis: On the interplay between dif-
ferential adhesion and cell differentiation . J.
Theor. Biol. 203 , 317 – 333 .

 39 . Johnston , D. A. (1998) Thin animals . J. Phys.
A 31 , 9405 – 9417 .

 40 . Groenenboom , M. A. and Hogeweg , P.
 (2002) Space and the persistence of male-kill-
ing endosymbionts in insect populations . Proc.
Biol. Sci. 269 , 2509 – 2518 .

 41 . Groenenboom , M. A. , Maree , A. F. , and
 Hogeweg , P. (2005) The RNA silencing path-
way: the bits and pieces that matter . PLoS
Comp. Biol. 1 , 155 – 165 .

 42 . Kesmir , C. , van Noort , V. , de Boer , R. J. , and
 Hogeweg , P. (2003) Bioinformatic analysis of
functional differences between the immuno-
proteasome and the constitutive proteasome .
 Immunogenetics 55 , 437 – 449 .

 43 . Pagie , L. and Hogeweg , P. (2000) Individual-
and population-based diversity in restriction-
modification systems . Bull. Math. Biol. 62 ,
 759 – 774 .

 44 . Silva , H. S. and Martins , M. L. (2003) A cel-
lular automata model for cell differentiation .
 Phys. A 322 , 555 – 566 .

 45 . Zajac , M. , Jones , G. L. , and Glazier , J. A. (2000)
 Model of convergent extension in animal mor-
phogenesis . Phys. Rev. Lett. 85 , 2022 – 2025 .

 Multicell Simulations of Development and Disease Using the CompuCell3D 427

 46 . Zajac , M. , Jones , G. L. , and Glazier , J. A.
 (2003) Simulating convergent extension by
way of anisotropic differential adhesion . J.
Theor. Biol. 222 , 247 – 259 .

 47 . Savill , N. J. and Sherratt , J. A. (2003) Control
of epidermal stem cell clusters by Notch-medi-
ated lateral induction . Dev. Biol. 258 , 141 – 153 .

 48 . Mombach , J. C. M. , de Almeida , R. M. C. ,
 Thomas , G. L. , Upadhyaya , A. , and Glazier , J.
A. (2001) Bursts and cavity formation in Hydra
cells aggregates: Experiments and simulations .
 Phys. A 297 , 495 – 508 .

 49 . Rieu , J. P. , Upadhyaya , A. , Glazier , J. A. ,
 Ouchi , N. B. , and Sawada , Y. (2000) Diffusion
and deformations of single hydra cells in cel-
lular aggregates . Biophys. J. 79 , 1903 – 1914 .

 50 . Mochizuki , A. (2002) Pattern formation of the
cone mosaic in the zebrafish retina: A cell rear-
rangement model . J. Theor. Biol. 215 , 345 – 361 .

 51 . Takesue , A. , Mochizuki , A. , and Iwasa , Y.
 (1998) Cell-differentiation rules that generate
regular mosaic patterns: Modelling motivated
by cone mosaic formation in fish retina . J.
Theor. Biol. 194 , 575 – 586 .

 52 . Dallon , J. , Sherratt , J. , Maini , P. K. , and Fer-
guson , M. (2000) Biological implications of a
discrete mathematical model for collagen dep-
osition and alignment in dermal wound repair .
 IMA J. Math. Appl. Med. Biol. 17 , 379 – 393 .

 53 . Maini , P. K. , Olsen , L. , and Sherratt , J. A.
 (2002) Mathematical models for cell–matrix
interactions during dermal wound healing .
 Int. J. Bifurcat. Chaos 12 , 2021 – 2029 .

 54 . Kreft , J. U. , Picioreanu , C. , Wimpenny , J. W.
T. , and van Loosdrecht , M. C. M. (2001) Indi-
vidual-based modelling of biofilms . Microbiology
 147 , 2897 – 2912 .

 55 . Picioreanu , C. , van Loosdrecht , M. C. M. , and
 Heijnen , J. J. (2001) Two-dimensional model
of biofilm detachment caused by internal stress
from liquid flow . Biotechnol. Bioeng. 72 , 205 –
 218 .

 56 . van Loosdrecht , M. C. M. , Heijnen , J. J. ,
 Eberl , H. , Kreft , J. , and Picioreanu , C. (2002)
 Mathematical modelling of biofilm structures .
 Antonie Van Leeuwenhoek Int. J. General Mol.
Microbiol. 81 , 245 – 256 .

 57 . Pop awski , N. J. , Shirinifard , A. , Swat , M. ,
and Glazier , J. A. (2008) Simulations of sin-
gle-species bacterial-biofilm growth using
the Glazier–Graner–Hogeweg model and the
CompuCell3D modeling environment . Math.
Biosci. Eng. 5 , 355 – 388 .

 58 . Chaturvedi , R. , Huang , C. , Izaguirre , J. A. ,
 Newman , S. A. , Glazier , J. A. , and Alber , M. S.
 (2004) A hybrid discrete-continuum model
for 3-D skeletogenesis of the vertebrate limb .
 Lect. Notes Comput. Sci. 3305 , 543 – 552 .

 59 . Pop awski , N. J. , Swat , M. , Gens , J. S. , and
 Glazier , J. A. (2007) Adhesion between cells,
diffusion of growth factors, and elasticity of
the AER produce the paddle shape of the
chick limb . Phys. A 373 , 521 – 532 .

 60 . Glazier , J. A. and Weaire , D. (1992) The
kinetics of cellular patterns . J. Phys.: Condens.
Matter 4 , 1867 – 1896 .

 61 . Glazier , J. A. (1993) Grain growth in three
dimensions depends on grain topology . Phys.
Rev. Lett. 70 , 2170 – 2173 .

 62 . Glazier, J. A., Grest, G. S., and Anderson, M.
P. (1990) Ideal two-dimensional grain growth,
in Simulation and Theory of Evolving Micro-
structures (Anderson, M. P. and Rollett, A.
D., eds.), The Minerals, Metals and Materials
Society, Warrendale, PA, pp. 41–54.

 63 . Glazier , J. A. , Anderson , M. P. , and Grest , G.
S. (1990) Coarsening in the two-dimensional
soap froth and the large-Q Potts model: a
detailed comparison . Philos. Mag. B 62 ,
 615 – 637 .

 64 . Grest , G. S. , Glazier , J. A. , Anderson , M.
P. , Holm , E. A. , and Srolovitz , D. J. (1992)
 Coarsening in two-dimensional soap froths
and the large-Q Potts model . Mater. Res. Soc.
Symp. 237 , 101 – 112 .

 65 . Jiang , Y. and Glazier , J. A. (1996) Extended
large-Q Potts model simulation of foam drain-
age . Philos. Mag. Lett. 74 , 119 – 128 .

 66 . Jiang , Y. , Levine , H. , and Glazier , J. A. (1998)
 Possible cooperation of differential adhesion
and chemotaxis in mound formation of Dicty-
ostelium . Biophys. J. 75 , 2615 – 2625 .

 67 . Jiang , Y. , Mombach , J. C. M. , and Glazier , J.
A. (1995) Grain growth from homogeneous
initial conditions: Anomalous grain growth
and special scaling states . Phys. Rev. E 52 ,
 3333 – 3336 .

 68 . Jiang , Y. , Swart , P. J. , Saxena , A. , Asipauskas ,
 M. , and Glazier , J. A. (1999) Hysteresis and ava-
lanches in two-dimensional foam rheology simu-
lations . Phys. Rev. E 59 , 5819 – 5832 .

 69 . Ling , S. , Anderson , M. P. , Grest , G. S. , and
 Glazier , J. A. (1992) Comparison of soap froth
and simulation of large-Q Potts model . Mater.
Sci. Forum 94–96 , 39 – 47 .

 70 . Mombach , J. C. M. (2000) Universality of the
threshold in the dynamics of biological cell
sorting . Phys. A 276 , 391 – 400 .

 71 . Weaire , D. and Glazier , J. A. (1992) Model-
ling grain growth and soap froth coarsening:
Past, present and future . Mater. Sci. Forum
 94–96 , 27 – 39 .

 72 . Weaire , D. , Bolton , F. , Molho , P. , and Glazier ,
 J. A. (1991) Investigation of an elementary
model for magnetic froth . J. Phys.: Condens.
Matter 3 , 2101 – 2113 .

428 Swat et al.

 73 . Glazer, J. A., Balter, A., and Pop awski, N.
(2007) Magnetization to morphogenesis: A
brief history of the Glazier–Graner–Hogeweg
model, in Single-Cell-Based Models in Biology
and Medicine (Anderson, A. R. A., Chaplain,
M. A. J., and Rejniak, K. A., eds.), Birkhauser
Verlag, Basel, pp. 79–106.

 74 . Walther , T. , Reinsch , H. , Ostermann , K. ,
 Deutsch , A. , and Bley , T. (2005) Coordinated
growth of yeast colonies: Experimental and
mathematical analysis of possible regulatory
mechanisms . Eng. Life Sci. 5 , 115 – 133 .

 75 . Keller , E. F. and Segel , L. A. (1971) Model for
chemotaxis . J. Theor. Biol. 30 , 225 – 234 .

 76 . Glazier, J. A. and Upadhyaya, A. (1998) First
steps towards a comprehensive model of tis-
sues, or: A physicist looks at development, in
Dynamical Networks in Physics and Biology:
At the Frontier of Physics and Biology (Bey-
sens, D. and Forgacs, G., eds.), EDP Sciences,
Berlin, pp. 149–160.

 77 . Glazier , J. A. and Graner , F. (1993) Simula-
tion of the differential adhesion driven rear-
rangement of biological cells . Phys. Rev. E 47 ,
 2128 – 2154 .

 78 . Glazier , J. A. (1993) Cellular patterns . Bussei
Kenkyu 58 , 608 – 612 .

 79. Glazier , J. A. (1996) Thermodynamics of cell
sorting . Bussei Kenkyu 65 , 691 – 700 .

 80 . Glazier, J. A., Raphael, R. C., Graner, F.,
and Sawada, Y. (1995) The energetics of cell
sorting in three dimensions, in Interplay of
Genetic and Physical Processes in the Devel-
opment of Biological Form (Beysens, D., For-
gacs, G., and Gaill, F., eds.), World Scientific,
Singapore, pp. 54–66.

 81 . Graner , F. and Glazier , J. A. (1992) Simula-
tion of biological cell sorting using a 2-dimen-
sional extended Potts model . Phys. Rev. Lett.
 69 , 2013 – 2016 .

 82 . Mombach , J. C. M. and Glazier , J. A. (1996)
 Single cell motion in aggregates of embryonic
cells . Phys. Rev. Lett. 76 , 3032 – 3035 .

 83 . Mombach , J. C. M. , Glazier , J. A. , Raphael , R. C. ,
and Zajac , M. (1995) Quantitative comparison
between differential adhesion models and cell
sorting in the presence and absence of fluctua-
tions . Phys. Rev. Lett. 75 , 2244 – 2247 .

 84 . Cipra , B. A. (1987) An introduction to the
Ising-model . Am. Math. Monthly 94 , 937 – 959 .

 85 . Metropolis , N. , Rosenbluth , A. , Rosenbluth ,
 M. N. , Teller , A. H. , and Teller , E. (1953)
 Equation of state calculations by fast comput-
ing machines . J. Chem. Phys. 21 , 1087 – 1092 .

 86 . Forgacs , G. and Newman , S. A. (2005) . Bio-
logical Physics of the Developing Embryo . Cam-
bridge University Press , Cambridge .

 87 . Alber, M. S., Kiskowski, M. A., Glazier, J. A.,
and Jiang, Y. (2002) On cellular automation
approaches to modeling biological cells, in
 Mathematical Systems Theory in Biology, Com-
munication and Finance (Rosenthal, J. and
Gilliam, D. S., eds.), Springer, New York, NY,
pp. 1–40.

 88 . Alber , M. S. , Jiang , Y. , and Kiskowski , M. A.
 (2004) Lattice gas cellular automation model
for rippling and aggregation in myxobacteria .
 Phys. D 191 , 343 – 358 .

 89 . Upadhyaya , A. , Rieu , J. P. , Glazier , J. A. , and
 Sawada , Y. (2001) Anomalous diffusion in
two-dimensional Hydra cell aggregates . Phys. A
 293 , 549 – 558 .

 90 . Cickovski , T. , Aras , K. , Alber , M. S. , Izaguirre ,
 J. A. , Swat , M. , Glazier , J. A. , Merks , R. M. H. ,
 Glimm , T. , Hentschel , H. G. E. , and Newman ,
 S. A. (2007) From genes to organisms via the
cell: A problem-solving environment for mul-
ticellular development . Comput. Sci. Eng. 9 ,
 50 – 60 .

 91 . Izaguirre , J. A. , Chaturvedi , R. , Huang , C. ,
 Cickovski , T. , Coffland , J. , Thomas , G. , For-
gacs , G. , Alber , M. , Hentschel , G. , Newman ,
 S. A. , and Glazier , J. A. (2004) CompuCell, a
multi-model framework for simulation of mor-
phogenesis . Bioinformatics 20 , 1129 – 1137 .

 92 . Armstrong , P. B. and Armstrong , M. T.
 (1984) A role for fibronectin in cell sorting
out . J. Cell Sci. 69 , 179 – 197 .

 93 . Armstrong , P. B. and Parenti , D. (1972) Cell
sorting in the presence of cytochalasin B . J.
Cell Sci. 55 , 542 – 553 .

 94 . Glazier , J. A. and Graner , F. (1993) Simula-
tion of the differential adhesion driven rear-
rangement of biological cells . Phys. Rev. E 47 ,
 2128 – 2154 .

 95 . Glazier , J. A. and Graner , F. (1992) Simula-
tion of biological cell sorting using a two-
dimensional extended Potts model . Phys. Rev.
Lett. 69 , 2013 – 2016 .

 96 . Ward , P. A. , Lepow , I. H. , and Newman , L. J.
 (1968) Bacterial factors chemotactic for poly-
morphonuclear leukocytes . Am. J. Pathol. 52 ,
 725 – 736 .

 97 . Lutz , M. (1999) Learning Python . O’Reilly &
Associates , Sebastopol, CA .

 98 . Balter , A. I. , Glazier , J. A. , and Perry , R.
 (2008) Probing soap-film friction with
two-phase foam flow . Philos. Mag. Lett. 88 ,
 679 – 691 .

 99 . Dvorak , P. , Dvorakova , D. , and Hampl , A.
 (2006) Fibroblast growth factor signaling in
embryonic and cancer stem cells . FEBS Lett.
 580 , 2869 – 2287 .

 Chapter 14

 BioLogic: A Mathematical Modeling
Framework for Immunologists

 Shlomo Ta’asan and Rima Gandlin

 Summary

 The immune response to pathogens is a result of complex interactions among many cell types and a large
number of molecular processes. As such it poses numerous challenges for modeling, simulation, and analy-
sis. In this work we aim at addressing major issues regarding modeling of large biological systems with a
special focus on the immune system. We address (1) the hierarchy in the system, from genes to organelles to
cells to organs to organism, (2) the high variability due to experimentation, (3) the high variability among
organisms, and (4) the need to bridge between immunologists/experimentalists and mathematicians/
modelers. We provide an intuitive syntax to describe biological knowledge in terms of interactions (reac-
tions) and objects (cells, organs, etc.) and illustrate how to use it in describing very complex systems. We
describe the main elements of a simulation program that use that syntax to define models and to automati-
cally simulate them. We restrict our discussion to modeling using logical network, although other modeling
techniques, for example, differential equations and probabilistic/stochastic modeling, are also possible.
Examples demonstrating the different features of the framework are given throughout the chapter.

 Key words: BioLogic , Biological systems , Modeling , Simulation .

 Mathematical modeling and simulation technique are common
in most areas of science and engineering. They assist in gaining
deeper insights into physical phenomena; they help in estimating
unknown parameters, and they help performing design tasks and
more. Experimentalists in numerous areas such as materials sci-
ence and engineering, civil engineering, aerospace engineering,
etc. use mathematical models routinely. In biology, in contrast,

 1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_14

429

430 Ta’asan and Gandlin

we encounter mostly statistical methods that are used to handle
noisy measurements and for hypotheses testing. Mathematical
modeling for gaining insight into how biological systems work
and evolve is hardly used. Yet in biology the problems are more
complex and the need for exploring mathematical techniques is
essential. An example is an immune response to pathogens, which
is a result of complex interactions among many cell types and
a large number of molecular processes – a grand challenge for
modeling simulation as well as analysis and interpretation.

 Advances in experimental techniques in biology over the
last decade allow the interrogation of systems at multiple levels
yielding abundant data that call for new tools for its understand-
ing. These experimental techniques include gene microarrays,
high-dimensional flow cytometry, multiplex assays, and more.
The information processing involved in an immune response is
becoming progressively available through the use of these multi-
ple techniques. Thus, advances in experimentation make it necessary
to use modeling and simulation techniques for interpreting and
analyzing these data due to their large scale.

 This work aimed at answering some aspects of the grand chal-
lenge of modeling the immune system. Our study here is focused
toward developing a general framework and toolbox for mathe-
matical modeling of the immune system that is targeted toward
immunologists. The rationale behind this is that the vast amount of
information in immunology is known only to expert immunologists
and it is best if we can supply them with a tool for modeling, rather
than have a mathematician learn all the details of the immune sys-
tem. Our framework is based on a few important observations. First,
the large number of interactions and processing that take place in an
immune response call for a new paradigm to capture the complex
behavior of the system. The system is multiscale in nature, compris-
ing genes, proteins, organelles, cells, and organs. Second, there is a
high variability among genetically identical organisms in expression
level of mRNA, receptors, and secreted cytokines. Similarly, reac-
tions rates (on rate, off rate) are not known for most processes, and
probably have high variability as well even among genetically identi-
cal organisms. Third, there is a large body of knowledge regarding
molecular interactions in immune response, and this knowledge is
rapidly growing, reflecting that a lot is still unknown.

 Our modeling and simulation framework includes three
components. The first is syntax for expressing experimental setups,
data, and knowledge regarding states and interactions in the system.
This part can be regarded as a bridge between immunologists
and mathematicians as it is intuitive and can be understood eas-
ily by immunologists, yet it is formal enough so it defines the
system precisely. This syntax also answers the challenge of the
rapid growth in immunological knowledge since it allows for easy
updates of hypothesis and knowledge. The second component
of this framework is a database for storing such knowledge and

 BioLogic 431

information. This allows for reuse of previously defined objects or
systems. The third component is a computer simulation environ-
ment that uses the aforementioned syntax to define realization of
models and to simulate them. The framework addresses limitations
in available measurements and in their high variability by using
logical networks, in which molecular abundance and reaction
rates are described qualitatively using just a few levels, denoted
by 0, 1, 2, etc. The use of the logical network paradigm removes
the need for detailed parameter estimation, such as association/
dissociation constants.

 Subheadings 2 and 3 are written for a potential user of this
framework, a person with immunology background. Part of
 Subheading 4 includes some mathematical arguments that can
be skipped without hurting the ability to use the framework. The
mathematical arguments are intended for readers with mathemat-
ical background who may question the relation of our approach
to the classical approach using differential equations.

 The complex and dynamic nature of the immune system has stim-
ulated many mathematicians and modelers to use mathematical
modeling to gain an understanding of its functioning and regula-
tion. Indeed several mathematical models of different aspects of the
immune system have been developed (1) . Mathematical models
have proved very useful in the study of some aspects of the dynam-
ics of HIV infection and progression to AIDS (2) , particularly in
relation to the development of novel treatment regimens (3– 5)
and the latent phase (6) . The study of T-cell activation and the
cognate interaction with peptide/MHC complexes (7, 8) has ben-
efited from the use of mathematical models (9– 11) . They are more
quantitative and as a result allow for a more precise and refined
analysis of how the dynamics of receptor interaction leads to activa-
tion of the cells of the immune system (12– 14) . Simple mathemati-
cal models were used to discuss the immune memory (15) .

 None of the aforementioned approaches were designed to
model the immune response in a biologically realistic manner.
Computer-based approaches such as cellular automata or com-
plex system modeling have been used in attempting to describe
adequately such complex processes. Seiden and Celada have used
cellular automata to model the immune system (15– 19) . Further
development in this direction was carried out in (20 – 21) , includ-
ing parallel implementation and the capability to simulate both
humoral and cellular responses. The package PARIMM is one of
the most complete simulators of the immune system developed.
These approaches are, however, too rigid in the sense that if the

 2. Mathematical
Approaches and
Models

432 Ta’asan and Gandlin

model needs to be updated due to new immunological data, it
has to be done at the software level, which can be cumbersome
and time consuming.

 More flexible approaches, yet in different areas, have been
developed to modeling biology. In these approaches a simula-
tion environment is created, rather than a particular model. We
cite a few examples only. In (22) , an automation-based semantic
of temporal evolution of complex biochemical reactions is used
starting from the representation of the system as given as a set
of differential algebraic equations (DAE). Reasoning about the
system is done using temporal logic. The software package for
this approach is Simpathica/xssys. Another approach (23) for a
rigorous formalism in modeling biological systems involves Petri
nets. This is a mathematical formalism developed by computer
scientists that allows biologists to focus on the content of their
model rather than on the implementation. A software package
UltraSAN is dedicated to this approach. In this approach one
obtains probability distributions for molecular species; thus, it
addresses low-abundance molecular species, where differential
equations are not appropriate. Addressing the hierarchy in bio-
logical systems and building complex objects have been done
 (24) . This involves continuous system modeling, and it produces
a self-contained independently executable model, which allows
for multimodel multicomponent hierarchy. An attempt to cre-
ate logic for biological systems (25) involves a language together
with hybrid projection temporal logic of modeling, analyzing,
and verifying biological systems, and deals with nontrivial mix-
ture of discrete and continuous systems. That approach is too
mathematical to be useful for immunologists.

 In designing our framework we have focused on (1) modu-
larity, (2) ease of understanding and use by immunologists, (3) a
simple approach to modeling hierarchical structure, (4) address-
ing the high variability in experimental data, and (4) the insuf-
ficient information regarding reaction rates.

 Our framework describes the immune system structure and function
by defining the space (which may include multiple compartments),
the objects (which may be hierarchical), and the interaction rules
among them. We begin by discussing objects and interactions
without specifying concentration or cell count. This will make the
presentation easier to follow. We adopt a free style in defining
concepts instead of using precise mathematical definition in order
to make the material accessible for nonmathematicians.

 3. BioLogic:
A Modeling
Framework

 BioLogic 433

 Immunology deals with different types of objects such as cells
and organs whose interactions are facilitated through molecu-
lar mediators. Our modeling approach will mimic this and will
therefore be very intuitive for immunologists. At the abstract
mathematical level we deal with objects , which may represent
molecules, cells, organs, etc. However, we distinguish between
simple objects and complex objects.

 Simple objects are used to model biological entities whose
internal structure is not needed for the specific modeling. Bio-
logically these may include description cytokines, chemokines,
genes, etc. However, in simplified models, even a cell may be
modeled as a simple object as we see later. To allow the flexibil-
ity of modeling from the gene level all the way to the organism
level using a simple syntax, we have introduced three types of
simple objects, which we refer to by their biological significance:
 genes , molecules , and transporters . Genes can be either up (1)
or down (0). Molecules and transporters can have arbitrary levels.
Names for objects can include characters a–z, A–Z, numbers, and
the symbols: − (minus) and _ (underscore). They cannot include
other characters. Simple objects in our frameworks are the ones
that perform actions (interactions).

 Complex objects are containers for simple objects and addi-
tional complex objects, and the hierarchy is limitless. The syntaxes
for describing complex objects are the square brackets []. For
example, the object [] is the empty object, i.e., it contains no sim-
ple objects and is of only mathematical interest (there is no biology
for it to represent). We move to more interesting objects.

 Example I : The object depicted in Fig. 1 and having the syntax

 X = [A,B,C, [D E]]

 3.1. Syntax for Objects

 Fig. 1 . A complex object .

434 Ta’asan and Gandlin

 is a complex object that contains three simple objects A, B, and C,
and one complex object [D,E] consisting of two simple objects
D and E.

 Some terminology : An important concept is that of parents and
 children in these hierarchical structures. In the last example we may
think of the object [D,E] as a child of the object that contains it,
which we call the parent . We may need to refer to a grandparent
later on, so keep this in mind as well. Disjoint objects are objects
such that none contains the other. In the case of [[A,B],[C,[D,E]],
the objects [A,B] and [C,[D,E]] are disjoint. The innermost con-
tainer for an object, X, is the container, [], that contains X and
no child of this container contains X. For example, in the object
[[A,B],[C,[D,E]], the outermost brackets belong to the innermost
container for both objects [A,B] and [C,[D,E]], but it is not the
innermost container for [D,E] that is contained in a child, which
contains both the simple object C and [D,E].

 Example II . Suppose that we want to model the interaction
between a macrophage (M) and a natural killer (NK) cell, but we
do not want to go into description of signaling. This is an exam-
ple in which we use simple objects of our framework to model
complex biological objects. The model is defined as

 Model = [M, NK],
 which includes a description of structure but not of any interac-
tion. We need to supply also a set of interaction rules that follow
the biology and that would make this model interesting. As it is,
it cannot evolve or perform any action. Before going to describ-
ing interaction we give some more examples.

 Example III: A complex object describing a macrophage is
shown in Fig. 2 . In our syntax it is written as

 Macrophage = [TLR4, TNF-R, IFNg-R, IL12-R,
 [TLR3, TLR9, Phagosome,
 [geneTNF, geneIL-6
]
]
].

 We have used here indentation to show the beginning, [, and end,
], of each compartment. In this object we distinguish three levels.
The outer level contains the simple objects TLR4, TNF-R, IFNg-
R, and IL12-R – all known receptors of a macrophage at its naive
state. This outer level may be regarded as the membrane. In the
next inner level we find TLR3, TLR9, and phagosome. In real-
ity a phagosome is a complex object consisting of a membrane,
receptors, and molecules in its interior; here, it is modeled as a
simple object. The object containing TLR3, TLR9, and phago-
some is the parent of the object [geneTNF, geneIL-6], while the
top-level object containing TLR-4, etc., is the grandparent.

 BioLogic 435

 The object that contains the whole model is called the space .
It may contain simple objects, complex objects, or both. It has a
single copy of itself, and all interactions are within this object. In
the last example Model is the parent object and thus defines the
space for our simulation.

 In the current version of our framework, interactions happen
between simple objects only. We use the following syntax:

 {reactants} {speed} {products} ,
 where {reactants} and {products} contain lists of simple objects
separated by the symbol +. For now, we will assume that speed is
represented by the symbol ->. Later when we discuss logical vari-
ables we will extend this to include symbols such as ->>, ->>>,
->>>>, etc. We list a few examples of interactions (left) and their
interpretation (right):

 TNFaR + TNFa -> TNFa: TNFaR receptor ligand binding
 Caspase3 -> Apoptosis molecule initiating

a process
 ProInflammatoryResponse ->TNFa process results in
 cytokine production
 Inflammation -> Cancer one complex process

initiates another

 Note the use of names to represent real molecules and the results
of their binding (first reaction); molecules that result in a complex
biological process, such as apoptosis (second reaction); processes
that result in production of cytokines (third reaction); a com-
plex biological process that results in another complex biological
process, both modeled as simple objects (fourth reaction).

 3.2. Syntax and Rules
for Interactions

 Fig. 2 . A macrophage: graphical representation .

436 Ta’asan and Gandlin

 The use of a hierarchical structure limits the possible interac-
tions between simple objects. For example, simple objects that
reside in disjoint objects may not be able to interact since they
are meant to model physically different regions in the organism.
We define the allowable interactions across compartments using
the following rules:
 Rule 1 : Simple objects that belong to the same innermost con-
tainer can interact.
 Rule 2 : Simple objects can interact with other simple objects of
the parent’s outermost level.
 Rule 3 : Simple objects in the outermost level of two disjoint objects
that belong to the same innermost container can interact.

 These rules are based on the intuitive idea of proximity in
hierarchical structures. Rule 1 is obvious, implying that simple
objects residing in different compartment may not be able to
interact unless they obey rules 2 and 3. Rule 2 allows us to model
signaling, as it mimics the situation in biology where molecules
in the membrane can interact with molecules in the cytosol or
molecules outside the cell. Rule 3 will allow us to model cell–cell
interactions through surface molecules. We give an example to
illustrate the rules.

 Example IV: Consider the complex object that is shown in
 Fig. 3 . The syntax for it is

 Object = [[A,B,C, [D,E]], [F,G, [H, [K,L,M]]]].

 In this example, A, B, and C are in the same container, and D and
E are in another container, etc. From rule 1, the simple objects A,
B, and C can interact; D and E can interact; F and G can interact;
and K, L, and M can interact. From rule 2 we conclude that D
and E can interact with A, B, and C but not with others; K, L,
and M can interact with H. In addition, H can interact also with
F and G. From rule 3 we have that A, B, and C can interact with
F and G.

 Fig. 3 . A complex object containing two (children) complex objects .

 BioLogic 437

 Example V: Macrophage activation by bacteria. In this example
we demonstrate the use of simple objects alone in modeling a
biological scenario: the activation of a macrophage by bacteria.
We start by defining the initial objects, bacteria (Bac), macro-
phage (M), and natural killer (NK),

 Model = [Bac, M, NK],

 together with all the possible interactions in the system,

 R1: M + Bac -> paM + Bac + Bac
 R2: paM -> paM + IL-12
 R3: NK + IL-12 -> aNK
 R4: aNK -> aNK + IFNg
 R5: paM + IFNg -> aM
 R6: aM + Bac -> aM

 The first reaction, M + Bac -> paM + Bac + Bac, indicates that a
macrophage (M), when interacting with bacteria (Bac), becomes
a partially activated macrophage (paM), and the bacteria multiply
(it appears twice on the right and only once on the left). The
second reaction, paM -> paM + IL-12, describes the action of a
partially active macrophage: it secretes IL-12. The fact that paM
appears on both sides of the reaction means that the active mac-
rophage does not change its state as a result of this secretion.
Note that this is not the case in the first reaction: the naive mac-
rophage (M) does not appear in the right hand side – it changed
into a partially active macrophage (paM). The third reaction, NK
+ IL-12 -> aNK, means that a natural killer cell in the presence of
IL-12 becomes activated, and the IL-12 is consumed. The fourth
reaction, aNK -> aNK + IFNg, describes the action of an active
natural killer: it secretes IFNg and does not change its state. The
fifth reaction, paM + IFNg -> aM, indicates that a partially active
macrophage (paM) becomes fully activated (aM) in the presence
of IFNg. The last reaction, aM + Bac -> aM, describes the killing
of bacteria by an active macrophage. Note that the object Bac
appears on the left but not in the right-hand side of the reaction.
This indicates that it disappears at the end of this reaction.

 Our model can evolve only in accordance with the possible
reactions available to it. The following is the evolution of the
model, where we have indicated the reaction (R1–R6) that is
responsible for each change:

 [Bac, M, NK] (R1) ⇒ [Bac, paM, NK] (R2) ⇒ [Bac, paM,
IL-12, NK] (R3) ⇒ [Bac, paM, IL-12, aNK] (R4) ⇒ [Bac, paM,
aNK, IFNg] (R5) ⇒ [Bac, aNK, aM] (R6) ⇒ [aNK, aM].

 In this sequence of events we assumed that there is a single mac-
rophage, a single NK, and a single bacterium. In reality there is a
population of each, and the reaction M + Bac -> aM + Bac does
not change all macrophages but only those that encounter bacteria.

438 Ta’asan and Gandlin

The sequence of states of the system will have the objects M, NK,
etc. during the whole progression.

 Syntax for transporter interactions . To allow for secretion
of molecules and complex interaction such as phagocytosis, we
introduced a special type of reactions, which we refer to as trans-
porter reaction. It has the syntax

{transporter}:: {simpleObject} @ {origin} {speed} {sim-
pleObject} @ {destination},

 where {transporter} is a simple object, and {origin} and {des-
tination} are one of the following keywords: SELF, PARENT,
GPARENT (for grandparent). The origin and destination are
with reference to the location of the transporter. The convention
is to put the transporter in the innermost object involved, since
the parent and grandparent are unique while an object may have
several children. An example will clarify this. Consider again the
case of a macrophage that was partially activated, by LPS, for
example, and has produced IL-12 but not secreted it yet. The
secretion can be facilitated using a transporter object, which is
placed in the container of the IL-12. Let the object be

 [[TLR4, [Tr, IL-12]]],

 and the transporter reaction,

 Tr :: IL-12 @ SELF -> IL-12 @ GPARENT.

 This transporter reaction is read as “the transporter (Tr) takes (::)
IL-12 molecules from its own compartment (SELF) and to the
grandparent compartment (GPARENT).” It results in the fol-
lowing transformation of our object:

 [[TLR4, [Tr, IL-12]]] ⇒ [IL-12 [TLR4, [Tr]]].

 This example shows the reason for introducing GPARENT; the
parent compartment here, containing the TLR4, is viewed as the
membrane, and the secretion of the IL-12 needs to be done into
the extracellular region.

 The syntax introduced so far does not specify how to model
the system. It describes only the structure and its logic. Certain
things can happen while others cannot, etc. The actual dynamical
modeling of systems described with the syntax explained here can
be implemented in a variety of ways. One possibility is to use differ-
ential equations by translating all reactions into dynamical equations
using the law of mass action. Another possibility is to use proba-
bilistic models where each interaction happens only with a certain
probability (also following the law of mass action). We will adopt
a third approach that uses logical networks. We start with a brief
description of what the logical variables are and how we add and
subtract them, followed by their use in modeling interactions.

 BioLogic 439

 As we have outlined in the introduction, a robust modeling
approach to the immune system must address the high vari-
ability in molecular abundance and reaction rates. The system is
robust and shows the same qualitative behavior even if the actual
measurements differ from one organism to another. This suggest
that instead of using real numbers to describe quantities such
as molecular concentration, cell number, and reaction rates we
might as well reduce the complexity by considering a few levels in
each of these quantities. This is not a foreign idea to experimen-
tal immunologists. When discussing the results of an experiment
they often use statements such as “the response was strong,” “the
number of cells was low,” and “TNF-R level was high.” These
statements are not a use of an imprecise language by the immu-
nologist. They reflect something very fundamental about the sys-
tem; because of high variability across experiments and organisms
we cannot use a more precise language.

 The mathematical concept of logical variables seems to fit the vari-
ability and the inability to be precise quite well. The simplest case
is that of Boolean variables, which attain only two values, 0 and 1,
referred to also as false and true, or in our case may represent high
and low or fast and slow; the interpretation is up to us. A richer
case that is more appropriate for modeling immunology would use
a few such levels describing molecular abundance. For example,
0 would represent no expression, 1 – low expression, 2 – high
expression, etc. Similarly, reaction rates will use the same numbers
and 0 would mean slow rate, 1 – moderate, 2 – fast rate, etc.

 Since molecular abundance may change during an immune
response we may also need to define how to add and subtract
logical variables. For example, suppose that we had two popula-
tions of the same cell type, and we have combined them. What is
the size of the new combined population? If we follow our intui-
tion from biology we know that if we add two small quantities
we get a new quantity that is small, and by adding a small and a
high quantity get a high quantity, etc. This is summarized in the
following rules for addition.

 None + None = None 0 + 0 = 0
 Low + None = Low 1 + 0 = 1
 Low + Low = Low 1 + 1 = 1
 Low + High = High 1 + 2 = 2
 High + High = High 2 + 2 = 2

 The table on the right may look strange since we know that
1 + 1 = 2; nevertheless in modeling with logical variables the
aforementioned has to be kept in mind.

 4. Implementation
Using Logical
Variables

 4.1. Nonstandard
Arithmetic

440 Ta’asan and Gandlin

 The problem with the arithmetic described earlier is that it
does not allow for the following: Low + Low +… + Low = High,
i.e., adding a small quantity many times results in a large quantity.
To fix this we change the aforementioned arithmetic by making it
probabilistic. That is, 1 + 1 = 1 most of the time, but with a small
probability it is 2; for example, one of ten times it is 2, and in the
other nine times it is 1. Of course, we do not want to determine
in advance in which of the ten times it is 2, so we introduce a
random element into our addition. The probabilities involved in
the outcome of addition should be related to our interpretation
of the logical variables in terms of real abundance. If we decide
that 2 represents abundance that is 10 times larger than the abun-
dance represented by 1, then the probability of 1 + 1 = 2 should
be 0.1, and the probability of 1 + 1 = 1 should be 0.9. We can
generalize this idea and consider the logical variables, 0,…, N ,
assuming that successive numbers represent abundances that dif-
fer by a factor of β (in the earlier example β = 10). If we also agree
that the number 0 represents negligible amount and not really 0,
it makes the addition more uniform, i.e., 0 + 0 + 0 +… + 0 = 1 in
small probability. In summary, we will use the following general
rule, using the notation a ∨ b ≡ max(a , b) and a ∧ b ≡ min(a , b):

 () 1 for a ,P a N N N+ = = ≤

 and

∧ − ∨ −+ = ∨ = − <1() 1 for , ,a b a bP a b a b a b Nb

 1(1) for , ,a b a bP a b a b a b Nb ∧ − ∨ −+ = ∨ + = <

 where the symbol P stands for probability. A definition of subtrac-
tion follows from the relation c – a = b being equivalent to a + b = c ,
and we have for given a and c with a ≤ c ,

() () / (),

x
P c a b P a b c P a x c− = = + = + =∑

 where ∑ x denotes sum over all possible values of x . Note that
with this definition ∑ b P (c − a = b) = 1, which is necessary for the
definition to make sense. Note that we do not deal here with
negative numbers; we did not define 1 − 2, for example. Our syn-
tax uses the following symbols to distinguish among reaction
rates: -> (0), ->> (1) , ->>> (2) , ->>>> (3) , etc.

 To specify the number of objects of each type we use the
brackets, (), and enclose in it both name and numbers. For example,
(M,2) will represent macrophage at a high concentration.

 To motivate our approach for modeling interactions with logical
variables, it is useful to keep in mind their intuitive relation to the
real quantities. The most natural way to do it is to say that logical
variables are proportional to the logarithm of the concentration
(or number). We will obey the law of mass action translated into
logical variables. We will explain it for three reaction types.

 4.2. Modeling
of Interactions with
Logical Variables

 BioLogic 441

 I. Production at a constant rate : -> A. The law of mass action
here is simple, d A /d t = c , where c is some constant. Since
our logical variable is ln(A) (natural logarithm of A) and not
 A itself, we need to construct an equation for ln(A). We will
use natural logarithm, although any other base is suitable as
well, and denote it by ln(A). Since d ln(A)/d t = (1/ A) d A /
d t we have d ln(A)/d t = c / A = c /e ln(A) . This shows that as A
increases, its rate of change decreases. This is quite intuitive.

 II. Unary interaction : A -> B . Here, the law of mass action is
simple as well, d A /d t = −d B /d t = cA . Translating this into
logical variables that are proportional to ln(A) and ln(B) we
have d ln(A)/d t = c , d ln(B)/d t = − c . That is per unit of
time our logical variable in unary reaction changes by a fixed
amount.

 III. Binary interaction : A + B -> C . This is slightly more complex.
According to the law of mass action we have d A /d t = − cAB ,
d B /d t = − cAB , d C /d t = cAB . In translating these into log
quantities we get d ln(A)/d t = − cB = − c e ln(B) ; d ln(B) = − cA =
− c e ln(A) ; d ln(C) = cAB / C = c e ln(A) + ln(B) − ln(C) . The quantities
ln(A), ln(B), and ln(C) are the logical variables and their rate
of change according to the earlier equation follows the law
of mass action.

 A small difficulty arises here since ln(A) may not be an integer,
or may even be negative, and we need to define what exactly
we do in these cases. The idea is simple: simulations are done
with a given time step, Δ t , and all changes are proportional to Δ t .
We accept only changes by integer values, so if a change is as a
fractional part, we perform the fractional part in probability. For
example, suppose that we need to make a change of 1.5, we make
a change of 1, the integral part of 1.5, and we implement an addi-
tional change of ½ as a change of 1 but in probability ½.

 Our framework allows modeling of a biological system using dif-
ferent levels of resolutions. The coarsest description is in terms of
the simple objects only and it is the closest to ordinary differential
equation models. In this case there is usually one compartment
only and all objects reside in it. This level of modeling is recom-
mended as an initial step. It is done in order to gain an insight
into the dynamical features of the system. Once the dominant
aspects of the model are identified, a more refined model can be
constructed. This process should continue as long as there are
experimental data to back it up. When done in conjunction with
experimental data, it can provide a feedback to experiments and

 5. Discussion

442 Ta’asan and Gandlin

in turn more experimental data to refine the model. The modeling
framework described here allows us to combine elements that are
represented crudely, using simple objects, together with elements
that are represented with indefinite hierarchy. This allows accom-
modating existing gaps in knowledge. The modularity allows
changing a model very easily; making updates as new information
is becoming available is a straightforward task.

 A web-based interface (http://www.math.cmu.edu/~shlomo/
BioLogic.html) that implements the ideas described here, and gives
additional details that have been omitted here, will be available by
June 2008.

 References

 1. Morel , P. A. (1998) Mathematical modeling
of immunological reactions . Front. Biosci. 3 ,
 d338 – d347 .

 2. Blower , S. , Schwartz , E. J. , and Mills , J. (2003)
 Forecasting the future of HIV epidemics: the
impact of antiretroviral therapies and imperfect
vaccines . AIDS Rev. 5 , 113 – 125 .

 3 . Ho , D. D. , Neumann , A. U. , Perelson , A. S. ,
 Chen , W. , Leonard , J. M. , and Markowitz , M. M.
 (1995) Rapid turnover of plasma virions and
CD4 lymphocytes in HIV-1 infection . Nature
 373 , 123 – 126 .

 4 . Perelson , A. S. , Essunger , P. , Cao , Y. , Vesanen ,
 M. , Hurley , A. , Saksela , K. , Markowitz , M. ,
and Ho , D. D. (1997) Decay characteristics of
HIV-1-infected compartments during combi-
nation therapy . Nature 387 , 188 – 191 .

 5 . Wei , X. , Ghosh , S. K. , Taylor , M. E. , Johnson , V. A. ,
 Emini , E. A. , Deutsch , P. , Lifson , J. D. , Bon-
hoeffer , S. , Nowak , M. A. , Hahn , B. H. , Saag ,
 M. S. , and Shaw , G. M. (1995) Viral dynamics
in human immunodeficiency virus type 1 infec-
tion . Nature 373 , 117 – 122 .

 6. Nowak , M. A. , May , R. M. , and Sigmund , K.
 (1995) Immune responses against multiple
epitopes . J. Theor. Biol. 175 , 325 – 353 .

 7 . Rabinowitz , J. D. , Beeson , C. , Lyons , D. S. ,
 Davis , M. M. , and McConnell , H. M. (1996)
 Kinetic discrimination in T-cell activation . Proc.
Natl. Acad. Sci. USA 93 , 1401 – 1405 .

 8 . Wülfing , C. , Rabinowitz , J. D. , Beeson , C. ,
 Sjaastad , M. D. , McConnell , H. M. , and Davis ,
 M. M. (1997) Kinetics and extent of T cell acti-
vation as measured with the calcium signal . J.
Exp. Med. 185 , 1815 – 1825 .

 9 . Agrawal , N. G. and Linderman , J. J. (1996)
 Mathematical modeling of helper T lymphocyte/
antigen-presenting cell interactions: analysis of
methods for modifying antigen processing and
presentation . J. Theor. Biol. 182 , 487 – 504 .

 10 . De Boer , R. J. and Perelson , A. S. (1995)
 Towards a general function describing T cell
proliferation . J. Theor. Biol. 175 , 567 – 576 .

 11 . McKeithan , T. W. (1995) Kinetic proofread-
ing in T-cell receptor signal transduction .
 Proc. Natl. Acad. Sci. USA 92 , 5042 – 5046 .

 12 . Burke , M. A. , Morel , B. F. , Oriss , T. B. , Bray , J. ,
 McCarthy , S. A. , and Morel , P. A. (1997)
 Modeling the proliferative response of T cells
to IL-2 and IL-4 . Cell. Immunol. 178 , 42 – 52 .

 13 . Faeder , J. R. , Hlavacek , W. S. , Reischl , I. ,
 Blinov , M. L. , Metzger , H. , Redondo , A. ,
 Wofsy , C. , and Goldstein , B. (2003) Investi-
gation of early events in Fc epsilon RI-medi-
ated signaling using a detailed mathematical
model . J. Immunol. 170 , 3769 – 3781 .

 14 . Morel , B. F. , Burke , M. A. , Kalagnanam , J. ,
 McCarthy , S. A. , Tweardy , D. J. , and Morel , P. A.
 (1996) Making sense of the combined effect
of interleukin-2 and interleukin-4 on lym-
phocytes using a mathematical model . Bull.
Math. Biol. 58 , 569 – 594 .

 15 . Antia , R. , Pilyugin , S. S. , and Ahmed , R. (1998)
 Models of immune memory: on the role of
cross-reactive stimulation, competition, and
homeostasis in maintaining immune memory .
 Proc. Natl. Acad. Sci. USA 95 , 14926 – 14931 .

 16 . Celada , F. and Seiden , P. E. (1992) A com-
puter model of cellular interactions in the
immune system . Immunol. Today 13 , 56 – 62 .

 17. Celada , F. and Seiden , P. E. (1996) Affinity
maturation and hypermutation in a simula-
tion of the humoral immune response . Eur. J.
Immunol. 26 , 1350 – 1358 .

 18. Morpurgo , D. , Serenthà , R. , Seiden , P. E. , and
 Celada , F. (1995) Modelling thymic functions in
a cellular automaton . Int. Immunol. 7 , 505 – 516 .

 19. Seiden , P. E. and Celada , F. (1992) A model for
simulating cognate recognition and response in
the immune system . J. Theor. Biol. 158 , 329 – 357 .

 BioLogic 443

 20 . Bernaschi , M. , Succi , S. , and Castiglione , F.
 (2000) Large-scale cellular automata simula-
tions of the immune system response . Phys.
Rev. E Stat. Phys. Plasmas Fluids Relat. Inter-
discip. Topics 61 , 1851 – 1854 .

 21 . Bernaschi , M. and Castiglione , F. (2001) Design
and implementation of an immune system sim-
ulator . Comput. Biol. Med. 31 , 303 – 331 .

 22. Antoniotti , M. , Policriti , A. , Ugel , N. , and
 Mishra , B. (2003) Model building and model
checking for biochemical processes . Cell Bio-
chem. Biophys. 38 , 271 – 286 .

 23 . Goss , P. J. and Peccoud , J. (1998) Quan-
titative modeling of stochastic systems
in molecular biology by using stochastic
Petri nets . Proc. Natl. Acad. Sci. USA 95 ,
 6750 – 6755 .

 24. Hakman , M. and Groth , T. (1999) Object-
oriented biomedical system modelling – the
language . Comput. Methods Programs Biomed.
 60 , 153 – 181 .

 25 . Duan , Z. , Holcombe , M. , and Bell , A. (2000)
 A logic for biological systems . Biosystems 55 ,
 93 – 105 .

 Chapter 15

 Dynamic Knowledge Representation Using
Agent-Based Modeling: Ontology Instantiation
and Verification of Conceptual Models

 Gary An

 Summary

 The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively
process this information. Adding to this challenge is the multiscale nature of both biological systems and
the research community as a whole. Given this volume and rate of generation of biomedical informa-
tion, the research community must develop methods for robust representation of knowledge in order
for individuals, and the community as a whole, to “know what they know.” Despite increasing empha-
sis on “data-driven” research, the fact remains that researchers guide their research using intuitively
constructed conceptual models derived from knowledge extracted from publications, knowledge that
is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a compu-
tational modeling method that is suited to translating the knowledge expressed in biomedical texts into
dynamic representations of the conceptual models generated by researchers. The hierarchical object-class
orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontolo-
gies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that
often “break” conceptual models. Verification in this context is focused at determining the plausibility of
a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal.
Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods
within the research process, as well as providing a metamodeling framework to enhance the evolution of
biomedical ontologies.

 Key words: Agent-based modeling , Individual-based modeling , Mathematical models , Systems
biology , Computational biology , Translational systems biology , Translational research , Knowledge
representation , Biomedical ontology , Inflammation , Complexity , Complex systems , Metamodels ,
 Model verification , Computer simulation .

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_15

445

446 An

 The biomedical research community today faces a challenge that
has paradoxically arisen from its own success: as greater amounts
of information become available at increasingly finer levels of bio-
logical mechanism it is also progressively difficult for individual
researchers to effectively survey and integrate information even
within their own area of expertise. While technology, via tools
such as PubMED, the introduction of new publication formats
like open-access journals, and the development of a whole slew of
bioinformatics tools, has aided the distribution and availability of
biomedical information, it still falls upon the individual researcher
to concatenate that information into a conceptual mental model
that represents that knowledge. These mental models guide the
direction of their individual research and, in aggregate, they form
the components of the evolving structure of community knowl-
edge. However, the formal expression of mental models remains
poorly defined, leading to limitations in the ability to share, cri-
tique, and evolve the knowledge represented in these conceptual
models, particularly across disciplines. As a result it is increas-
ingly difficult for both the individual researcher, and the commu-
nity as a whole, to “know what it knows.” Effective translational
methodologies for knowledge representation need to move both
“vertically” from the bench to the bedside, and be able to link
“horizontally” across multiple researchers focused on different
diseases. Information is generated by research endeavors at multi-
ple scales and hierarchies of organization: gene ⇒ protein/enzyme
⇒ cell ⇒ tissue ⇒ organ ⇒ organism. The mirroring of these
multiple levels in the organization of biomedical research has led
to a disparate and compartmentalized research community and
resulting organization of information. Recognition of this organ-
izational challenge has led to extensive work in the area of devel-
oping biomedical ontological structures. These are classification
systems, often hierarchical and “tree-like” in structure, to group
biological objects together based on the rules of the particular
ontology. However, while useful, these ontological structures are
by and large static representations of knowledge, and do not help
to address the “intuitive limit” in attempts to parse out cause and
effect in complex, multiscale systems. The consequences of this
intuitive limit are seen primarily in attempts to develop effective
therapies for diseases resulting from disorders of internal reg-
ulatory processes, when the integration of knowledge requires
crossing the multiple scales of organization (seen in Fig. 1A–C)
to determine the organ and organism level consequences of
molecular level manipulations (1) . Examples of such diseases are
cancer, autoimmune disorders, and sepsis, all of which demonstrate
 complex, nonlinear behavior.

 1. Introduction:
The Need for
Dynamic
Representation
of Biomedical
Knowledge

 Dynamic Knowledge Representation Using Agent-Based Modeling 447

 These limitations can be potentially overcome by developing
methods of dynamically instantiating knowledge to allow research-
ers to express and evaluate conceptual models more effectively.
Computer modeling can be seen as a means of dynamic knowledge
representation to form a basis for formal means of testing, evalu-
ating, and comparing what is currently known within the research
community. To be able to “see” the consequences of a particular
hypothesis structure/conceptual model, the formally represented
knowledge is moved from a static depiction of relationships (as
depicted in a flowchart or state diagram, similar to those seen in
 Fig. 1C) to a dynamic model in which the mechanistic conse-
quences of each hypothesis can be observed and evaluated. This
process can be termed Conceptual Model Verification: dynamic
representation of a conceptual model is a means of its verification ,
analogous to model checking in computer science, i.e., does the
model perform as expected based on its construction? It should
be noted that verification in this context is distinct from valida-
tion , which can be considered the fidelity of a particular model
to observed reality. For purposes of this discussion, validation is
a process applied to the computational model, which in turn is
used to verify the plausibility of a conceptual model.

 Agent-based modeling (ABM) is an object-oriented compu-
tational modeling technique that is centered on the behaviors
and interactions of the individual components of a system, and
has been used to demonstrate the potential benefit of conceptual
model verification (2) . ABM is a discrete event modeling system,
meaning that the model cycles through a series of steps/loops/
ticks during its execution. It has characteristics that make it well
suited for creating aggregated modular multiscale models (3, 4) .
ABM focuses on the rules and interactions between the indi-

 1.1. A Possible
Solution: Dynamic
Knowledge
Representation via
Agent-Based Modeling

 Fig. 1 . Abstract demonstration of the expansion of information resulting from reductionist investigation of multiscale
biological systems. (A) The highest level of clinically observed phenomenon at the organ level. (B) The mechanistic knowledge
that organ function results from the interactions of multiple cells and types of cells. (C) What a conceptual mechanistic
model would look like when a further finer grained level of resolution is used. This is where the overwhelming bulk of
biomedical research is currently being conducted, particularly with respect to the search for drug candidates and mecha-
nisms of disease. Note that the “indistinctness” of the last panel is intentional: attempts to “zoom in” on the figure may
increase local clarity, but at the loss of being able to see the range of potential consequences to a particular manipulation.
This figure is reproduced with the author’s permission from ref. 1 under the terms of Creative Commons License .

448 An

vidual components of a system, generating populations of those
components and simulating their interactions in a “virtual world” to
create an in silico experimental model (2, 5– 8) . With its emphasis
on parsing a system into groups or “classes” of system components
ABM essentially requires the formulation of an ontological structure
in order for its construction. As such, agent-based models are well
suited to translating existing biomedical ontologies into a dynamic
model. Furthermore, ABM rules are often expressed as condi-
tional statements (“if–then” statements), which makes agent-based
model suited to translating the hypotheses (expressed in natural
language) that are generated from basic science research. There are
three characteristics of ABM that deserve particular emphasis:
 1. ABM is spatial . ABM has its origins in two-dimensional cellu-

lar automata, and as such many agent-based models are “grid-
based.” This spatial legacy makes ABM suited to representing
structural relationships in a system under study. Nonmathemati-
cians can model fairly complex topologies with greater ease and
flexibility than may be possible with partial differential equations,
leading to more intuitive knowledge translation into a model.
The spatial nature of ABM also allows for modeling agents with
“limited knowledge,” i.e., input constrained by locality rules that
determine its immediate environment. This property emphasiz-
ing local interactions also matches closely with the mechanisms
of stimulus and response observed in biology.

 2. ABM utilizes parallelism . This property of ABM sets it apart
from other object-oriented modeling methods such as Petri
nets or finite state machine models. In ABM each agent class has
multiple instances within the model, forming a population of
agents that interact in an emulated (usually) parallel processing
environment. Within the execution of an agent-based model,
heterogeneous individual agent behavior within a population
of agents results in systemic dynamics that result in observable
output that mirrors the behavior at the higher hierarchical level.
A classic example of this is how relatively simple interaction
rules among birds can lead to sophisticated flocking patterns.

 3. ABM utilizes stochasticity . Many systems, particularly biologi-
cal ones, include behaviors that appear to be random. “Appear
to” is an important distinction, since what may appear to be
random is actually deterministic from a mathematical stand-
point. However, from a practical point of view, despite the fact
that a particular system may follow the rules of deterministic
chaos, at a higher-order observational level it is impossible to
actually define the initial conditions from whence its behavior
evolves. ABM addresses this issue via the generation of popu-
lations of agents. Once one is dealing with populations then
it is possible to establish probabilities of a particular behavior
for the population as a whole, and therefore also a probability

 Dynamic Knowledge Representation Using Agent-Based Modeling 449

function for the behavior of a single agent. This probability
function is incorporated into the agent’s rules. When instanti-
ated and run in parallel with other agents, each agent follows a
particular trajectory of behavior as probabilities of its behavior
rules “collapse” with each step of the model’s run. In this
fashion it is possible to generate a “population” of behavioral
outputs from a single agent-based model, and move beyond the
“behavior curves” seen in differential equation models toward
“behavior spaces” more consistent with biological observation.

 4. ABM reproduces emergent properties . Because of the parallelism,
intrinsic stochasticity, and enforcement of locality resulting
from its spatial architecture, a central hallmark of agent-based
models is the fact that they generate systemic dynamics that
often could not have been reasonably inferred from examina-
tion of the rules of the agents, resulting in so-called emergent
behavior. To return to the example of the bird flock, superfi-
cial observation would seem to suggest the need for an overall
“leader” to generate flock behavior, and therefore rules would
seem to need to include a means of determining rules for flock-
wide command and control communication. This, however, is
not true; birds function via a series of locally constrained inter-
action rules and the flocking behavior emerges from the aggre-
gate of these interactions. The capacity to generate emergent
behavior is a vital advantage of using ABM for conceptual model
verification, as it is often the paradoxical, nonintuitive nature of
emergent behavior that “breaks” a conceptual model.

 Although the use of ABM was pioneered in the areas of ecology,
social science, and economics, it has been used to study biomedical
processes such as sepsis (2, 7) , cancer (4, 9) , inflammatory cell traf-
ficking (10, 11) , wound healing (12) , and intracellular structure
and signaling (13– 15) . In general, most biomedical ABM focuses
on cells as the primary agent level (with notable exceptions from
earlier refs. 13–15). Cells are a natural agent level dictated by the
organizational structure of biology, and from a knowledge transla-
tion standpoint, form a ready level of “encapsulated complexity”
that can be addressed with relatively straightforward input–output
rules. Furthermore, while the number of cells present in an organ-
ism is considerable, it is still magnitudes less than the number of
molecules involved in intracellular signaling. Because of their spa-
tial and structural relationships cellular populations are less amena-
ble to the application of the mean field approximations and mass
action kinetics that provide the basis for effective ordinary differen-
tial equation models. Equation-based modeling is generally consid-
ered to be the method of choice when dealing with interactions at
the molecular level, where molecule populations can be considered
to be well mixed and homogeneous. However, in circumstances
where those approximations break down [such as in control of

450 An

gene expression (13) or molecular crowding (15)] , ABM becomes
a useful modeling option. The following sections will outline the
steps in constructing an agent-based model, using as an example
a previously published component agent-based model that repre-
sents relatively direct knowledge translation from an in vitro cell
culture model to an agent-based model (1) .

 Many of the basic principles for developing a biomedical com-
putational model are applicable to the construction and use of
ABM. These steps typically involve (1) delineation of the sys-
tem being modeled, (2) determination of the intended use of
the model, and (3) the suitability of the modeling method in
question to the answers to the aforementioned steps 1 and 2. As
mentioned earlier, the structure of agent-based model facilitates
its translational use for modeling both ontological structures and
mechanistic information expressed in natural language, and as
such is often more intuitive for nonmathematicians to grasp.

 An agent-based model based on an in vitro cell model is presented
as an example of how knowledge generated from a basic science
model/experiment can be effectively translated and dynamically
represented. The ABM rule system focuses on particular molecular
pathways in a specific cell type: tight junction protein metabolism
and proinflammatory signaling as pertaining to gut epithelial bar-
rier function seen in the enterocyte component of the gut. This
model, then, will be called a gut epithelial barrier agent-based
model (GEBABM). Calibration and validation follow the estab-
lished pattern-oriented method well described for ABM (2, 7,
 16, 17) . Pattern-oriented modeling suggests that models should
be designed such that their properties and behaviors reflect those
aspects of the system under study. Pattern-oriented modeling there-
fore consists of a “front-end” component: translating as directly as
possible an accepted conceptual model of the mechanisms associ-
ated with enterocyte tight junction metabolism and inflammatory
signaling, and a “back-end” component: comparing the behavior
of the model with the in vitro reference model data.

 This is a very basic, but often overlooked aspect of model con-
struction. The question serves to remind us that models should
not be created just because they can be; the justification of their
development must be framed as to serve some particular purpose,
even if that purpose is merely to demonstrate the capability of a
particular type of model construction. Answering this question

 2. Steps in the
Development and
Use of an Agent-
Based Model: An
Example Agent-
Based Model of an
In Vitro Model of
Enterocyte
Barrier

 2.1. Example

 2.2. What Is the Purpose
of the Model?

 Dynamic Knowledge Representation Using Agent-Based Modeling 451

explicitly sets the groundwork for expectations with respect to
interpretations of the model’s output, and any conclusions that
can be drawn from its behavior.

 In this case, the GEBABM is intended to serve two purposes.
First, it is a method demonstration model to transparently illus-
trate the process of translating the basic science knowledge into
an agent-based model. As such, it is a relatively direct and linear
model, referenced to a tightly constrained in vitro preparation
and therefore not expected or intended to vividly demonstrate
the capacity of agent-based models to produce unexpected and
paradoxical behavior. Second, the GEBABM is intended to be an
example of a modular component in a cell-level, multiscale inflam-
matory modeling architecture (18, 19) (a more detailed descrip-
tion of this architecture is beyond the scope of this chapter).

 The reference model defines the informational basis of the agent-
based model: its topology, the agents, and a starting point for
identifying the literature-basis of the agent rules. Note that the
reference model may be a particular experimental preparation (as
is the case of the GEBABM) or an aggregated conceptual model
in the mind of the researcher. If the latter is the case, then it is
important to define as explicitly as possible the knowledge foun-
dation of the conceptual model, particularly with respect to capa-
bilities and limitations of the wet lab experiments that provide the
basis of the conceptual model.

 The reference model for the GEBABM is a well-described human
cultured enterocyte model (Caco-2) and its responses to inflam-
matory mediators including nitric oxide (NO) and a proinflam-
matory cytokine mix (“cytomix”) that includes tumor necrosis
factor (TNF), interleukin-1 (IL-1), and interferon-gamma (IFN-g)
 (20– 22) . Integrating the information in these publications results
in a conceptual model where enterocyte tight junction (TJ) pro-
teins are involved in the integrity of gut epithelial barrier func-
tion, and where the production and localization of TJ proteins
are impaired in a proinflammatory cytokine milieu.

 As mentioned earlier, many agent-based models are based
on two-dimensional grids in which the edges “wrap” to form
toruses. Other potential topologies include three-dimensional,
cube-based structures and various network structures (such as
scale-free, giant component or small-world configurations). In
general, two-dimensional grids are sufficient to represent systems
in which there is primarily one plane of agent interactions (along
the surface of the grid), though it is possible to model multiple
“layers” of data at a particular grid square [akin to the data struc-
tures of Geographical Information Systems (GIS)].

 2.2.1. Example

 2.3. What Is the
Reference Model?

 2.3.1. Example

 2.4. What Is the
Topology of the
Model?

452 An

 The in vitro reference model consists of a monolayer of Caco-2
gut epithelial cells grown in a well with a chamber above the
monolayer representing the luminal aspect of the enterocytes,
and the chamber below representing the tissue interaction side of
the enterocyte. Therefore, the GEBABM is modeled with a two-
dimensional grid, with three “layers” per grid space: a central
layer that holds the gut epithelial agent, one layer representing
the apical extracellular space (from which the diffusate originates),
and another layer representing the basal extracellular space (into
which the diffusate flows if there is permeability failure).

 This is often the critical question and decision when constructing
an agent-based model. Agents need to be a well-circumscribed
group of components that can be treated as input–ouput devices
(essentially finite state machines) following similar (if not identi-
cal) state-transition rules. The state of an agent is determined by a
series of state variables internal to the agent, which are then mod-
ified based on external state variables in some spatially defined
interaction environment for the agent. Therefore, selection of an
agent level necessarily leads to some “compression of complexity”
of the internal workings of the agent; an assumption implies that
the informational basis of the input–output rules is valid irrespec-
tive of the particular mechanisms internal to the agent (the “black
box” phenomenon). This is a critical point in determining the
agent level. In general, the intended use of the model, vis-a-vis a
planned intervention or particular targeted mechanism for study,
will determine the resolution or granularity of the agent-based
model. At the granularity chosen there needs to be a fairly certain
linear approximation of mechanistic causality: i.e., how certain are
you that state variable a goes to state variable a` with mechanism
 b ? Explicit delineation of the granularity of the model and the
corresponding assumptions are critical in avoiding petito principii ,
or “programming the proof.” This can manifest as either treating
the agent as a “black box” and focusing purely on its response as
an input–ouput object, or, more commonly, with some degree
of abstraction with respect to the progression of its internal state
variables, such as by abstracting signaling and synthetic pathways.

 The GEBABM includes a single agent class that represents Caco-2
gut epithelial cells.

 Once the agent level has been selected, attention is then turned
to examination of the literature concerning the potential mech-
anisms to be modeled, and determining an interaction scheme
between those mechanisms. It is often useful to express the latter
goal in the form of a state or influence diagram that can be used to
guide the actual coding of the agent-based model. The determina-
tion of the agent rules forms the primary translational step in ABM.

 2.4.1. Example

 2.5. What Are the
Agents?

 2.5.1. Example

 2.6. What Are the
Agent Rules?
Knowledge
Translation and
“Front-End” Validation

 Dynamic Knowledge Representation Using Agent-Based Modeling 453

A qualitative approach is recommended at the outset in order
to maintain a clear mapping between the basis of the reference/
conceptual model and the ABM computer code; too great an
attention to specific details with respect to kinetic rate constants
(for instance) in the initial translation phase can prove to be over-
whelming in terms of how complicated the model appears to need
to be. Therefore, it is useful to classify processes into relatively gen-
eral groups of magnitude. For instance, with respect to determin-
ing the “time” it takes for a particular process it is usually sufficient
to classify processes as “very fast (order of seconds),” “fast (order
of minutes),” slow (order of hours),” and “very slow (order of days
to weeks).” It should be acknowledged that this grouping is highly
subjective; the overall subjectivity of the divisions is less important
than (1) consistency within a particular agent-based model, (2) an
awareness of the assumptions implicit upon the choice of the level
of granularity, and (3) making this explicit and transparent when
communicating the model.

 The GEBABM models the metabolism of TJ proteins, occludin,
claudin-1, ZO-1, and ZO-3, involved in barrier function and
their intersection with inflammatory signaling pathways. Acti-
vation of nuclear factor kappa-B (NF-kB) by proinflammatory
cytokines leads to activation of inducible nitric oxide synthetase
(iNOS). The nitric oxide (NO) produced inhibits synthesis of
occludin, ZO-1, and ZO-3, while increasing production of clau-
din-1. Furthermore, NO impairs localization to the cell wall of
synthesized occludin, claudin-1, and ZO-1. This appears to be
due to the interference of NO with N -ethylmaleimide-sensitive
factor (NSF), a molecule needed for localization of TJ proteins
to the cell membrane (23) . These effects are seen with adminis-
tration of both exogenous NO and intrinsic production of NO
via the cytomix-NF-kB-iNOS pathway. These papers go on to
investigate the effects of certain blocking agents. Addition of a
NO scavenger (22) eliminates the effects of exogenous NO and
cytomix. Administration of ethyl pyruvate (20) and nicotina-
mide adenine dinucleotide (NAD+) (21) both thought to inhibit
NF-kB also attenuate the effects of cytomix. Data points for levels of
NO, TJ protein expression and permeability were at 12, 24, and
48 h in all the experiments. Figure 2 demonstrates a graphical
representation of the general control logic underlying the agent
rule systems based on the knowledge translated from the follow-
ing references (20– 23) .

 There are two primary options when it comes time to write the code
for an agent-based model: (1) a stand-alone program can be written
in a basic computer language, such as C, or (2) a program can be
written using an established ABM toolkit. Option 2 has the advan-
tage that many of the programming underpinnings of ABM,

 2.6.1. Example

 2.7. Putting It Together:
Programming the
Model

454 An

such as object-class definition, emulated parallelization, creation
of a graphical user interface, and data collection tools, are not
trivial programming tasks, and having these issues preaddressed
in an established ABM toolkit allows a researcher to focus on
the modeling aspect of the project rather than on the program-
ming aspect. A list of available ABM toolkits/modeling environ-
ments can be seen in Subheading 4 . Since ABM is a discrete
event modeling system and the program progresses in a stepwise
fashion, there must be a selection of the base time interval for
each step. This selection is based upon the qualitative process-time
course determined in the previous Subheading 2.5 . Mechanisms
to be translated into agent rules are broken into steps based on
the duration of those mechanisms, and further translated into
program code. It is important to keep in mind that a particular
code block will run sequentially (even in an emulated parallel
environment); therefore, the order or schedule of process events
needs to free of inadvertent internal feedback loops. For instance,
if a particular agent has a rule where it produces an external state
variable that in turn affects the agent’s subsequent production
of that same external state variable, then placing the production
code at the beginning of the code block will lead to an artifactual
enhancement of any forward feedback effects of that particular
rule.

 The GEBABM was constructed using the freeware software
toolkit Netlogo (24) . The entire model, along with extensive
documentation, is available on the Netlogo Community Models
Website (http://ccl.northwestern.edu/netlogo/models/com-
munity/Shock2004_Gut_Epithelial_Barrier). The code for the

 2.7.1. Example

 Fig. 2 . Graphical representation of the control logic extracted from the basic science (20, 22, 23) on gut epithelial barrier
function. General flowchart of the components and mechanisms of TJ protein synthesis and localization, the effects of
proinflammatory stimulation, and the effects of interventions with ethyl pyruvate and NAD+. All labeled boxes corre-
spond to agent or environment state variables within the GEBABM. In the actual code of the GEBABM there are distinct
pathways for the different TJ proteins (not shown here for clarity purposes). This figure is reproduced with the author’s
permission from ref. 1 under the terms of Creative Commons License .

 Dynamic Knowledge Representation Using Agent-Based Modeling 455

model is included in Subheading 3.5 . The GEBABM is a two-
dimensional square grid, 21 × 21 cells, in each of which there
is a gut epithelial cell agent (“epi-cell”). The size of this grid
was arbitrarily chosen. A screenshot of the GEBABM during an
experimental run can be seen in Fig. 3 . Each epi-cell has eight
immediate neighbors, and at each contact point there is a simu-
lated tight junction (TJ). The integrity of the TJ requires both
epi-cells opposite to have adequate production and localization
of TJ proteins. The epi-cell agent class contains variables that
represent the precursors, cytoplasmic levels, and cell wall levels of
the TJ proteins, as well as intracellular levels of activated NF-kB
and iNOS mRNA. Furthermore, there are “milieu” variables that
represent NO, cytomix, and the diffusate. Algorithmic commands
were written for the synthesis of TJ proteins as well as the pathway

 Fig. 3 . Screen shot of the graphical user interface of the GEBABM. Control buttons are on the left; graphical output of the
simulation is in the center. Graphs of variables corresponding to levels of mediators and tight junction proteins are at the
bottom and right. In the graphical output Caco-2 agents are seen as squares ; those with intact tight junctions are bordered in
light color (letter A); those with failed tight junctions are bordered in dark color (letter B). This particular run is with the addi-
tion of cytomix (letter C), seen after 12 h of incubation (letter D). The heterogeneous pattern of tight junction failure can be
seen in the graphical output. Levels of Caco-2 iNOS activation can be seen in graph’s letter E, and produced nitric oxide (NO)
can be seen in graph’s letter F. Of note, the total amount of tight junction protein occludin does decrease slightly (graph’s
letter G), but the amount of occludin localized in the cell membrane drops much more rapidly (graph’s letter H), reflecting the
impairment of occludin transport due to NO interference with NSF and subsequent loss of tight junction integrity. This figure
is reproduced with the author’s permission from ref. 1 under the terms of Creative Commons License .

456 An

for NO induction (see Subheading 3.5). The time courses for
these processes are primarily in the minutes to hours range, and
therefore the program iterates with each step representing 5 min
of simulated time. Since the reference data sets extend out to
48 h of observation, the simulation runs will terminate at that
period of simulated time.

 Once the general control logic of the rule systems has been
extracted from the reference texts, then the specifics of the rule
algorithms need to be determined. Thus far, there has been a
primarily qualitative translation of the mechanistic hypotheses
derived from the reference literature into an abstracted influence
diagram (Fig. 2) and then into conditional statements within the
computer code (see Subheading 3.5). Running the agent-based
model at this point will generate a set of behaviors that may have
some qualitative utility, but in all likelihood will not be able to
be matched to experimental data. Therefore, the qualitative rep-
resentation of the modeled mechanisms must be calibrated to
existing experimental reference data to produce, at least, a semi-
quantitative model that can be more closely linked to the real
world. This is done by “tuning” the stepwise rules that update
the various state variables, usually via the addition of various con-
stants and/or adjusting the algebraic relationships between the
variables. Since these rules can be considered as computational
equivalents to difference equations, changing a constant is akin
to changing the slope of a particular kinetic curve, while changing
the algebraic relationship from summation to multiplication will
change the kinetic curve from linear to exponential. Care must
be taken, however, not to change the actual variables associated
with each rule in order to get a better “fit.” Doing so constitutes
rewriting the underlying knowledge representation of the agent-
based model to match the observable; resorting to this in order to
match real world observables is to deny the verity of the conceptual
model being represented. Calibration, then, is done to establish
the fidelity of baseline behavior of the model compared with the
real-world data in order for additional interventions to be simu-
lated. Inability to effectively calibrate a model at this point suggests
an intrinsic flaw in the underlying conceptual model. A common
challenge to calibration is the lack of sufficient experimental data
against which to “fit” the model; not enough reference points exist
to refine the agent-based model to a particular level of confidence.
In these cases one must fall back upon qualitative interpretation
of the agent-based model’s behavior, making sure to be explicit
with respect to that limitation when conclusions are drawn and
communicated. Another challenge to calibration, which is actu-
ally more common in equation-based models, is overfitting the
model to data, leading to “brittle” models with little applicabil-
ity to additional conditions. This problem is relatively rare with

 2.8. Calibration

 Dynamic Knowledge Representation Using Agent-Based Modeling 457

ABM, since due to the parallelism of agent-based models the
direct predictability of the effect of rule adjustment to model
output is less direct.

 Calibration of the GEBABM was done at three command points
each with a different data set. The first calibration was for the
basal diffusion rate. The diffusion coefficient in the unperturbed
system was adjusted to match the rate of diffusion in the refer-
ence data set at times 12, 24, and 48 h. This established the
baseline control permeability. The second calibration was done
to reproduce the levels of administered cytomix and NO. The
reference data sets were the levels of measured NO in both the
exogenous NO donor arm and the cytomix administration arm
(as seen in Fig. 1 from ref. 22). Calibration occurred by modi-
fying the coefficients of the NO induction pathway algorithm.
The third calibration was done with respect to the TJ protein
synthesis/breakdown algorithms. Steady state TJ protein levels
were established using the inhibition data extrapolated from the
western blot results from ref. 22 . In silico experiments were run
using these interventions with data points at 12, 24, and 48 h
as per the reference papers. Data collection looked at permea-
bility reflecting TJ integrity, levels of TJ proteins, and localiza-
tion of TJ proteins. The results of the calibration runs of the
GEBABM can be seen in Figs. 4 and 5 . Note that the values of
the in silico experiments are unitless, but the results qualitatively
mirror the reference data set. Both of these figures include runs
with exogenous NO, cytomix, and cytomix in the presence of a
NO scavenger. The NO scavenger was simply modeled by reducing
the level of the NO milieu variable after production. Figure 4
demonstrates the calibrated levels of NO production, while
Fig. 5 demonstrates the permeability calibration results. These
figures essentially reproduce the data generated in ref. 22 . These
three levels of calibration established the baseline GEBABM.
Note that this includes the GEBABM perturbed with both NO
and cytomix. The next step is to perform “back-end” validation
through the simulation of additional experimental interventions
– ethyl pyruvate and NAD +.

 By now it should be evident that agent-based models are relatively
“complex” models, in so much that they derive a great deal of their
behavior through parallel interactions that result in behaviors and
dynamics that often cannot be completely described via a series of
equations that can be subjected to formal mathematical analysis or
proof. There is a paradox in that the need to build increasingly
complex models to effectively represent complex systems results in
models that may be too complex for analysis, or even to formally
validate. With respect to ABM, pattern-oriented modeling has been
proposed as a solution to this problem (16, 17) . Pattern-oriented

 2.8.1. Example

 2.9. “Back-End”
Validation: Making
Predictions with In
Silico Experiments

458 An

modeling has already been utilized in both the transparent transla-
tion of biomedical knowledge into agent rules (“front-end” valida-
tion) and in the calibration process in order to “tune” the model.
However, the true test of the validity of a model is its ability to
 predict a behavior that has not already been used in the construc-
tion of the model. This is accomplished by performing “in silico”
experiments in a fashion similar to performing experiments in the
basic science lab: a particular intervention is planned based on a par-

 Fig. 4 . Simulated nitrogen oxide (NO) production and response to NO scavenger. (A) Calibration data are seen in the black
bars (cytomix) and the gray bars (NO) with respect to simulation rules for NO production. The NO data match the liter-
ature-reported levels of exogenous NO added in the experiments from ref. 22 in order to establish baseline responses
of the epi-cell agent’s TJ protein synthesis/localization algorithms and link them to the permeability data seen in the
corresponding bars in Fig. 5 . The Cytomix bars in panel (A) are used to calibrate the iNOS-NO production algorithms
within the epi-cell agents. The middle data set (bars = cytomix + NO scavenger) shows the effect of exogenous NO
reduction/elimination on the generated levels of NO in the face of cytomix. Panel (B) shows the literature-reported data
from the upper portion of Fig. 1 from ref. 22 (reproduced with permission from Lippincott Williams & Wilkins, © 2003).
This demonstrates levels of NO in the control (“Cont”), cytomix of proinflammatory cytokines (“CM”), cytomix with the
addition of a NO scavenger (“Cyto + PTIO”) and with a free NO donor (“DETA”). Panel (A) of this figure is reproduced with
the author’s permission from ref. 1 under the terms of Common Creative License .

 Dynamic Knowledge Representation Using Agent-Based Modeling 459

ticular mechanism of action within the experimental model, and the
behavior of the model after the intervention is examined to see if
a significant difference in the model’s behavior arises. Agent-based
models, as relatively direct translations of basic science hypotheses,
can be treated as experimental templates in a similar fashion. Pro-
gramming a particular intervention and its effect on the existing
code represents the translation of a particular conceptual model of
how that mechanism will affect the system as a whole. Notably, it
does not (necessarily) address issues as to whether the physical com-
pound that would be used in the real-world lab actually does what
it is intended to do; rather the agent-based model tests the concep-
tual basis or justification for why that intervention should work.
Therefore, ABM can be considered a “test of proof-of-concept”
for a particular experiment. Matching the output of a proposed

 Fig. 5 . Simulated permeability to NO, cytomix, and cytomix + NO scavenger. (A) Graph of calibration data of the perme-
ability effects of NO and cytomix, representing the diffusion rate through a failed epithelial barrier and the effect of NO
on the algorithms for epi-cell TJ protein synthesis/localization. As with Fig. 4 , the black bars (cytomix) and gray bars
(exogenous NO) are the calibration arms. This graph can be compared with panel (B), which is the lower panel of Fig. 1
in ref. 22 (reproduced with permission from Lippincott Williams & Wilkins, © 2003). Panel (B) demonstrates permeability
under the following conditions: control (“Cont”), cytomix of proinflammatory cytokines (“CM”), cytomix with the addition
of a NO scavenger (“Cyto + PTIO”) and with a free NO donor (“DETA”). Panel (A) of this figure is reproduced with the
author’s permission from ref. 1 under the terms of Creative Commons License

460 An

mechanism of intervention instantiated in the agent-based model
with the results of a similarly designed wet lab experiment is thus
evidence of the predictive capacity and robustness of the agent-
based model, and enhances its claim toward being a valid model.

 As mentioned earlier, the reference papers (20, 21, 25) suggest
that administration of both ethyl pyruvate (20) and nicotinamide
adenine dinucleotide (NAD+) (21) inhibits NF-kB as a mechanism
for their attenuation of the effects of cytomix. Of note, neither of
these compounds or their presumptive effects was included in the
development of the GEBABM. For the in silico experiments both
NAD+ and ethyl pyruvate were modeled using their presumptive
mechanisms of NF-kB inhibition by their insertion as negative
influences in the NO induction pathway algorithm. No further
modifications were done to the internal metabolism algorithms
of the epi-cell class. For the complete code see Subheading 3.5 .

 In-silico experiments were run using these interventions
with data points at 12, 24, and 48 h as per the reference papers.
Data collection looked at permeability reflecting TJ integrity,
levels of TJ proteins, and localization of TJ proteins. The results
of these in silico interventions on the GEBABM can be seen in
 Figs. 6–8 . Again, note that the values of the in silico experiments
are unitless, but the results qualitatively mirror the reference
data set. Figure 6 demonstrates the effects of ethyl pyruvate
and NAD+ on permeability, with the data in Fig. 5 represent-
ing the control arm. The reference data for the effect of these
interventions on the permeability changes with cytomix admin-
istration can be seen in Fig. 1 from ref. 20 with ethyl pyruvate
at 1.0-mM dose, and Fig. 1A from ref. 21 with NAD+ at 100-
mcM dose. Figures 7 and 8 reproduce the results seen extrapo-
lated from the western blot data on the effect of ethyl pyruvate
and NAD+ administration on TJ proteins, specifically ZO-1 and
occludin (Fig. 6 from ref. 20 and Fig. 2 from ref. 21). ZO-1 is
significantly decreased at 48 h, while occludin starts to drop at
24 h with the cytomix and continues to decrease at 48 h, but has
a profile more similar to ZO-1 when run with the exogenous
NO only. The simulation of adding both ethyl pyruvate and
NAD+ obviated the effects of both exogenous NO and cytomix
on both ZO-1 and occludin.

 Many of the points described later have been alluded to in the pre-
ceding text. However, the following sections provide summaries
of the key aspects of ABM with respect to design and utilization.

 2.9.1. Example

 3. Notes

 Fig. 6 . Simulated permeability effects of ethyl pyruvate and NAD+ compared to literature-reported experimental exper-
iments. Graph (A) demonstrating the effects of simulated addition of ethyl pyruvate and NAD+ on the proinflamma-
tory algorithms within the epi-cell agents. Both of these substances interfere with NF-kB localization, and therefore are
“upstream” from the iNOS-NO pathways as represented in those rules. This graph can be compared to panel (B): Fig. 1
from ref. 20 with ethyl pyruvate at 1.0-mM dose, and panel (C): Fig. 1a from ref. 21 with NAD+ at 100-mcM dose (“CYM”
= addition of cytomix). Panel (A) of this figure is reproduced with the author’s permission from ref. 1 under the terms of
Creative Commons License, and panels (B , C) are reproduced with permission from the American Society for Pharmacology
and Experimental Therapeutics, © 2003 .

462 An

 The strengths of ABM as a modeling method have been empha-
sized in the preceding text: intuitive structure facilitating knowl-
edge translation and representation, intrinsic management of
spatial issues, the ability to capture complex behavior, and simi-
larity in behavior and output to traditional wet lab experiments.
These benefits would seem to suggest a fairly generous application
of ABM in the biomedical arena. However, there are significant
limitations to ABM, as with all modeling methods. These include
high computational requirements for large-scale models, inability
to “formally” analyze the inner workings of the model, difficulty
in calibration due to the nonlinear relationships between agent
rules and behavior, and difficulty in matching a specific run of
a model’s evolving conditions with a real-world reference (such
as the case of attempting to predict the outcome of a specific
patient). In the discussion of when one should use ABM it may
be more useful to determine those instances where ABM does
not suit the modeling problem at hand and the limitations listed
aforementioned factor into that determination. These instances

 3.1. Deciding When
to Use ABM:
Strengths and
Weaknesses of ABM

 Fig. 7 . Simulated levels of ZO-1 expression. (A) Graph demonstrating the levels of simulated ZO-1 expression in control,
exogenous NO, cytomix, cytomix with NO scavenger, cytomix with ethyl pyruvate, and cytomix with NAD+ at 12, 24, and
48 h. Compare with (B): Fig. 6a from ref. 20 (reproduced with permission from the American Society for Pharmacology
and Experimental Therapeutics, © 2003). Also compare with (C): data extrapolated from western blot analysis seen in
 Fig. 2 from ref. 21 . Panel (A) of this figure is reproduced with the author’s permission from ref. 1 under the terms of
Creative Commons License .

 Dynamic Knowledge Representation Using Agent-Based Modeling 463

can mostly be expressed in terms of the suitability of using equa-
tion-based modeling, which remains the default method of math-
ematical modeling of dynamic system behavior:
 1. Ordinary differential equation (ODE) modeling is preferable if

the system can be characterized by well-mixed compartments/
populations. In these situations mean field approximations will
hold, and mass action kinetics approaches can be utilized.

 2. Equation-based modeling is preferable if it appears possible to
derive “formal” insights into the system’s behavior. Systems
whose behavior can be characterized with relatively simple
order ordinary differential equations may be analyzed math-
ematically, leading to more comprehensive and general under-
standing of their dynamics.

 3. Equation-based modeling is preferable if the development
and calibration reference data already exists in equation form.
This is particularly true when calibration is to be performed
using an optimization algorithm. Again, in this situation the

 Fig. 8 . Simulated level of occludin expression. (A) Graph demonstrating the levels of simulated occludin expression in
control, exogenous NO, cytomix, cytomix with NO scavenger, cytomix with ethyl pyruvate, and cytomix with NAD+ at 12,
24, and 48 h. Compare with (B): Fig. 6b from ref. 20 (reproduced with permission from the American Society for Phar-
macology and Experimental Therapeutics, © 2003). Also compare with (C): data extrapolated from western blot analysis
seen in Fig. 2 from ref. 21 . Panel (A) of this figure is reproduced with the author’s permission from ref. 1 under terms
of the Creative Commons License .

464 An

nonlinearities between rule modification and model behavior
make this extremely challenging.

 4. Equation-based modeling is preferable when the number of
agents needed to be modeled is extremely high. The compu-
tational demands of ABM when the number of agents reaches
millions and billions are prohibitive.

 In general, equation-based modeling remains the initial approach
to modeling dynamic systems (including biological ones) and is
well suited to modeling processes such as molecular kinetics, bio-
chemical reactions, and gross physiologic behavior. However, if
the criteria mentioned earlier do not hold, ABM can offer an
advantageous modeling approach.

 Most of the construction pitfalls have been mentioned earlier
in Subheading 2.1 (identifying the purpose of the agent-based
model), Subheading 2.2 (linking the agent-based model to its
reference experimental/conceptual model), Subheading 2.5
(agent level/class selection), and Subheading 2.6 (agent rule
determination). When trying to address these challenges, it is
recommended to keep two goals in mind:
 1. Minimize assumptions. It is important to remember the old

computer programming adage: “Garbage in, garbage out.”
Agent rules should be tied as closely as possible to causal mech-
anisms defined by experiment. When generating state or influ-
ence diagrams, each individual step should be identified, and if
there is not sufficient data or an intermediate step is unknown,
this should be explicitly noted (see later). Recognize that each
assumption made raises the risk of petito principii.

 2. Be explicit, in both defining rules and their underlying justifi-
cation and assumptions involved. Not only does this avoid the
programming issues noted earlier, it also rigorously forces an
objective assessment of a particular conceptual model. Many
researchers are unpleasantly surprised when concepts that are
taken as “given” are dissected in this fashion. This process is,
of itself, beneficial in determining where the next set of wet lab
experiments may need to be done. But it is also critical in being
able to assess why a model has been “broken.” An explicit rep-
resentation of the underpinnings of a model provides a guide
to where adjustments need to be made for improvement in the
next generation. Finally, explicitness in model description is a
vital component of being able to effectively communicate a
model to other researchers. Transparent explicitness facilitates
the evaluation, understanding, and eventual acceptance of a
particular model in the research community at large.

 Perhaps the greatest danger in interpreting the behavior of an
agent-based model (or any model, for that matter) is assuming
that the model represents some sort of objective truth. In other

 3.2. Construction
Pitfalls

 3.3. Interpretation
Pitfalls

 Dynamic Knowledge Representation Using Agent-Based Modeling 465

words, a model that appears to match the behavior seen in the
real world is possibly only one of many plausible models that fit
the data. Therein lies the key to using ABM as a test of the verity
of a conceptual model: only a negative result can provide defini-
tive information, i.e., the conceptual model is incorrect, whereas
a positive result can only suggest that the conceptual model may
be correct. The goal of model interpretation, then, is to develop
models that, when broken, can provide some insight as to why
they are broken, and the process of model utilization is to sequen-
tially generate models, break them through falsification, and use
that information to generate the next model.

 Given the strengths and weaknesses of ABM as a method, it is
possible to give some general suggestions for situations in which
ABM can be effectively utilized. In addition to situations that do
not suit equation-based modeling (see Subheading 3.2), the
following areas deserve mention:
 1. ABM is suited to modeling the behavior of cellular populations.

As mentioned earlier, biology has provided a natural agent level
in cells. Cells exhibit many of the preferable characteristics of a
good agent level: there are readily defined classes; their aggre-
gate behavior is relatively accessible for measurement; their
behavior can be characterized in population-derived probability
functions, and a great many conceptual models of the biologi-
cal behavior are derived at the cellular level. Cells occupy the
“middle ground” that appears to be an optimal resolution for
effective modeling of biomedical systems (8, 15, 16, 26, 27) ,
and are suited as a translational level at the center of multiscale
models (27– 29) . Therefore, projects that involve representing
cellular populations are suited to modeling with ABM.

 2. Multiscale problems . Two aspects of ABM facilitate multiscale
modeling. The first is their ability to generate emergent behav-
ior, and therefore translate the complexity of structure and
mechanism at a lower level into the behavior at a higher one.
Second, agent-based models are intrinsically modular, so much
that they can be organized and combined based on their spatial
architecture and can communicate via commonalities in their
constituent agent classes. For an example, see the multiscale,
multiorgan architectures described in (18, 19) , of which the
GEBABM is a component. However, it bears noting that due
to computational limitations “pure” agent-based models of
true multiscale processes are unlikely. Rather, drawing on the
suitability of certain methods to modeling certain levels of bio-
logical organization (28) these multiscale models will almost
certainly be “hybrid” models incorporating multiple different
modeling methods (15, 30) .

 3. Biomedical ontology representation and evolution . One of the
most exciting possible applications for ABM architecture is

 3.4. Suggested
Applications

466 An

in being able to map directly to biomedical ontologies in an
automated fashion, and thereby enhance the use, communi-
cation, and evolution of biomedical ontologies. It is in this
area that meta-ABM methods hold great promise. Meta-ABM
methods are attempts to create a general modeling interface
that consists of representing the “essential” components of
an agent-based model and allowing the metarepresentation
to be instantiated via a series of different ABM toolkits. There
is a marked similarity between this goal and the concept of a
general-purpose biomedical ontology: both need to be gen-
eral and robust enough to fit yet unspecified systems, but need
to be specific enough to be of practical use. The likelihood is
that a perfectly general ontology does not exist; however, as
with the scientific process in general the important goal is to
develop a developmental structure that facilitates an evolu-
tionary process. Since the structure of ABM maps so well to
ontological structure it would seem a natural fit for evolving
meta-ABM architectures and their ability to instantiate bio-
medical ontologies to provide a means of conceptual model
verification that will form the basis for the selection pressure
on competing ontologies within the biomedical community.

 The following code is in Netlogo language, a programming lan-
guage specific to Netlogo. Of note, copying this code directly
into a blank Netlogo file will not result in a functioning model,
as Interface control commands are expressed directly through
the graphical user interface. This code is made available so that
interested individuals can examine the specific logic in the model
and see the relationship between the code and the interpreted
knowledge from the reference papers. This is done in the interest
of complete transparency, as the interpretation of the knowledge
into the code is inevitably subjective to some degree, and this
degree of transparency is necessary for the appropriate evaluation
and acceptance (either yea or nay) of the validity of the modeling
assumptions. The entire model can be accessed and downloaded from
 http://ccl.northwestern.edu/netlogo/models/community/
Shock2004_Gut_Epithelial_Barrier.

 It is recommended to use existing general purpose ABM toolkits
for at least the initial attempts in constructing a biomedical
agent-based model. Even if the researcher/modeler is an experi-
enced computer programmer and wants to write a special purpose
agent-based model, developing a familiarity with existing meth-

 3.5. Code for the
GEBABM

 4. Software
Resources

 Dynamic Knowledge Representation Using Agent-Based Modeling 467

ods of implementing an agent-based model will aid in addressing
some specific programming challenges involved (i.e., object class
definition, emulated parallel actions, spatial topography devel-
opment, etc). One of those toolkits, Netlogo (24) , was used to
create the GEBABM. Netlogo was originally designed to teach
primary and secondary school students the dynamics of complex
systems such as bird flocking, fish schooling, traffic, and ant col-
ony behavior, and as such is very amenable to novices to computer
programming. It has subsequently evolved into a very powerful
modeling environment, particularly for developing the qualita-
tive/semiquantitative knowledge translation models described in
this chapter. Netlogo is freely available for download at http://ccl.
northwestern.edu/netlogo/, and is available for Windows, Mac-
intosh, and Linux. The GEBABM itself is available for download
at http://ccl.northwestern.edu/netlogo/models/community/
Shock2004_Gut_Epithelial_Barrier. Netlogo is also closely related
to another introductory ABM toolkit called Starlogo, which is
available for download at http://education.mit.edu/starlogo/.

 Perhaps the prototypical ABM development tool is Swarm,
an open source ABM platform originally developed at the Santa
Fe Institute. Information on Swarm, and the ABM community
in general, is available at http://www.swarm.org/wiki. Swarm
spawned a series of open source ABM toolkits, such as Repast
(http://repast.sourceforge.net/index.html), JAS (http://jasli-
brary.sourceforge.net/index.html), Ascape (http://ascape.source-
forge.net/), and Mason (http://cs.gmu.edu/~ eclab/projects/
mason/), all of which have their own active development com-
munities (a more comprehensive list of resources can be found on
the Swarmwiki site). Finally, there is a strong trend toward “meta-
modeling” in the ABM community, reflected by the recent release
of meta-ABM (http://www.metascapeabm.com/), and reflected
in an active research and development community that can be fol-
lowed at http://www.openabm.org/site/.

 References

 1 . An , G. (2008) Introduction of an agent-based
multi-scale modular architecture for dynamic
knowledge representation of acute inflamma-
tion . Theor. Biol. Med. Model. 5 , 11 .

 2 . An , G. (2004) In silico experiments of exist-
ing and hypothetical cytokine-directed clinical
trials using agent-based modeling . Crit. Care
Med. 32 , 2050 – 2060 .

 3 . An , G. (2006) Concepts for developing a
collaborative in silico model of the acute
inflammatory response using agent-based
modeling . J. Crit. Care 21 , 105 – 110 ; discussion
110–111 .

 4 . Zhang , L. , Athale , C. A. , and Deisboeck , T. S.
 (2007) Development of a three-dimensional
multiscale agent-based tumor model: simu-
lating gene–protein interaction profiles, cell
phenotypes and multicellular patterns in brain
cancer . J. Theor. Biol. 244 , 96 – 107 .

 5 . Bonabeau , E. (2002) Agent-based modeling:
methods and techniques for simulating human
systems . Proc. Natl. Acad. Sci. USA 99 Suppl
3 , 7280 – 7287 .

 6 . Bankes , S. C. (2002) Agent-based modeling:
a revolution? Proc. Natl. Acad. Sci. USA 99
 Suppl 3 , 7199 – 7200 .

468 An

 7 . An , G. (2001) Agent-based computer simula-
tion and sirs: building a bridge between basic
science and clinical trials . Shock 16 , 266 – 273 .

 8 . Thorne , B. C. , Bailey , A. M. , and Peirce , S. M.
 (2007) Combining experiments with multi-cell
agent-based modeling to study biological tissue
patterning . Brief. Bioinform. 8 , 245 – 257 .

 9 . Mansury , Y. , Diggory , M. , and Deisboeck , T. S.
 (2006) Evolutionary game theory in an agent-
based brain tumor model: exploring the
‘genotype–phenotype’ link . J. Theor. Biol. 238 ,
 146 – 156 .

 10 . Bailey , A. M. , Thorne , B. C. , and Peirce , S. M.
 (2007) Multi-cell agent-based simulation of
the microvasculature to study the dynamics of
circulating inflammatory cell trafficking . Ann.
Biomed. Eng. 35 , 916 – 936 .

 11 . Tang , J. , Ley , K. F. , and Hunt , C. A. (2007)
 Dynamics of in silico leukocyte rolling, activa-
tion, and adhesion . BMC Syst. Biol. 1 , 14 .

 12 . Walker , D. C. , Hill , G. , Wood , S. M. , Small-
wood , R. H. , and Southgate , J. (2004) Agent-
based computational modeling of wounded
epithelial cell monolayers . IEEE Trans. Nano-
biosci. 3 , 153 – 163 .

 13 . Pogson , M. , Smallwood , R. , Qwarnstrom , E. ,
and Holcombe , M. (2006) Formal agent-
based modelling of intracellular chemical
interactions . Biosystems 85 , 37 – 45 .

 14 . Broderick , G. , Ru’aini , M. , Chan , E. , and Elli-
son , M. J. (2005) A life-like virtual cell mem-
brane using discrete automata . In Silico Biol.
 5 , 163 – 178 .

 15 . Ridgway , D. , Broderick , G. , and Ellison , M. J.
 (2006) Accommodating space, time and ran-
domness in network simulation . Curr. Opin.
Biotechnol. 17 , 493 – 498 .

 16 . Grimm , V. , Revilla , E. , Berger , U. , Jeltsch , F. ,
 Mooij , W. , Railsback , S. , Thulke , H.-H. , Weiner , J. ,
and Wiegand , T. (2005) Pattern-oriented
modeling of agent-based complex systems: les-
sons from ecology . Science 310 , 987 – 991 .

 17 . Grimm , V. and Railsback , S. F. (2005) Indi-
vidual-Based Modeling and Ecology . Princ-
eton University Press , Princeton, NJ .

 18 . An , G. (2005) Multi-hierarchical agent-based
modeling of the inflammatory aspects of the
gut . J. Crit. Care 20 , 383 .

 19 . An , G. (2006) Integrative modeling of inflam-
mation and organ function using agent based
modeling . Shock 26 , 2 .

 20 . Sappington , P. L. , Han , X. , Yang , R. , Delude , R. L. ,
and Fink , M. P. (2003) Ethyl pyruvate ameliorates

intestinal epithelial barrier dysfunction in endo-
toxemic mice and immunostimulated caco-2
enterocytic monolayers . J. Pharmacol. Exp. Ther.
 304 , 464 – 476 .

 21 . Han , X. , Uchiyama , T. , Sappington , P. L. ,
 Yaguchi , A. , Yang , R. , Fink , M. P. , and Delude , R. L.
 (2003) NAD+ ameliorates inflammation-
induced epithelial barrier dysfunction in
cultured enterocytes and mouse ileal mucosa .
 J. Pharmacol. Exp. Ther. 307 , 443 – 449 .

 22 . Han , X. , Fink , M. P. , and Delude , R. L. (2003)
 Proinflammatory cytokines cause NO*-depend-
ent and -independent changes in expression
and localization of tight junction proteins in
intestinal epithelial cells . Shock 19 , 229 – 237 .

 23 . Matsushita , K. , Morrell , C. N. , Cambien , B. ,
 Yang , S. X. , Yamakuchi , M. , Bao , C. , Hara , M. R. ,
Quick , R. A. , Cao , W. , O’Rourke , B. , Lowen-
stein , J. M. , Pevsner , J. , Wagner , D. D. , and
 Lowenstein , C. J. (2003) Nitric oxide regulates
exocytosis by S -nitrosylation of N -ethylmaleimide-
sensitive factor . Cell 115 , 139 – 150 .

 24 . Wilensky , U. (1999) NetLogo: http://ccl.north-
western.edu/netlogo . Center for Connected
Learning and Computer-Based Modeling of
Northwestern University , Evanston, IL .

 25 . Han , Y. , Englert , J. A. , Yang , R. , Delude , R. L. ,
and Fink , M. P. (2005) Ethyl pyruvate inhib-
its nuclear factor-kappaB-dependent signaling
by directly targeting p65 . J. Pharmacol. Exp.
Ther. 312 , 1097 – 1105 .

 26 . Tang , J. , Hunt , C. A. , Mellein , J. , and Ley , K.
 (2004) Simulating leukocyte-venule interactions
– a novel agent-oriented approach . Conf. Proc.
IEEE Eng. Med. Biol. Soc. 7 , 4978 – 4981 .

 27 . Hunt , C. A. , Ropella , G. E. , Yan , L. , Hung , D. Y. ,
and Roberts , M. S. (2006) , Physiologically
based synthetic models of hepatic disposition .
 J. Pharmacokinet. Pharmacodyn. 33 , 737 – 772 .

 28 . Kirschner , D. E. , Chang , S. T. , Riggs , T. W. ,
 Perry , N. , and Linderman , J. J. (2007) Toward
a multiscale model of antigen presentation in
immunity . Immunol. Rev. 216 , 93 – 118 .

 29 . Yan , L. , Hunt , C. A. , Ropella , G. E. , and
 Roberts , M. S. (2004) In silico representation
of the liver-connecting function to anatomy,
physiology and heterogeneous microenviron-
ments . Conf. Proc. IEEE Eng. Med. Biol. Soc.
 2 , 853 – 856 .

 30 . Wakeland , W. , Macovsky , L. , and An , G.
 (2007) A hybrid simulation for studying the
acute inflammatory response . Proc. 2007
Spring Simulat. Multiconf. (Agent Directed
Simulation Symposium) 1 , 39 – 46 .

 Chapter 16

 Systems Biology of Microbial Communities

 Ali Navid , Cheol-Min Ghim , Andrew T. Fenley , Sooyeon Yoon ,
 Sungmin Lee , and Eivind Almaas

 Summary

 Microbes exist naturally in a wide range of environments in communities where their interactions are sig-
nificant, spanning the extremes of high acidity and high temperature environments to soil and the ocean.
We present a practical discussion of three different approaches for modeling microbial communities:
rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with
detailed examples. Each approach is best fit to different levels of system representation, and they have
different needs for detailed biological input. Thus, this set of approaches is able to address the operation
and function of microbial communities on a wide range of organizational levels.

 Key words : Microbial community , Rate equation , Agent-based modeling , Population dynamics ,
 Quorum sensing , Biofilm .

 Microorganisms contribute a considerable fraction of the living
biomass on Earth. While traditional studies of microbes have been
based on the isolation and laboratory cultivation of pure species,
relatively little is known about an estimated >99% of environmental
microbes due to their difficulty of cultivation under standard labo-
ratory conditions. In fact, the vast majority of microbes naturally
only occurs and thrives when in microbial communities : there is
frequently a synergistic partitioning of metabolic function between
different microbial species (1) . The recent development of tech-
niques to probe microorganisms in their natural environments,
such as metagenomic sequencing, has uncovered an unanticipated

1. Introduction

Ivan V. Maly (ed.) Methods in Molecular Biology, Systems Biology, vol. 500
© Humana Press, a part of Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-1-59745-525-1_16

469

470 Navid et al.

level of phylogenetic diversity and valuable insights into lifestyle
and metabolic capabilities of microbial communities occupying a
broad range of environmental niches (2– 4) .

 The function and operation of microbial communities has
received significant interest with the introduction of these new
technologies. There is also a growing realization that microbes
contribute extensively to important environmental questions
such as carbon sequestration and nitrogen cycling. It has been
proposed that microbes and microbial communities may provide
novel avenues for the degradation of lignocellulosic material and,
thus, the generation of biofuels. Recently, new findings indicate
that the activity and composition of microbial communities in,
e.g., the intestine is of direct relevance to human obesity (5) , and
revisiting the activity of pathogens, such as Vibrio cholerae , from
the community context has revealed surprising insight with imme-
diate consequences for generating clean drinking water (6) . Ques-
tions related to the function and interaction of microbial consortia
has therefore taken a place of prominence in the current science
literature.

 In this chapter, we will address three methods that have
proven useful in modeling the behavior of microbial communities.
These methods have different requirements for the level of detail
needed to model a multicellular microbial system. The first
method we will discuss is based on representing a microbe by rate
equations, requiring the highest level of detail. Not surprisingly,
this approach has been limited in applicability due to the lack
of measured kinetic parameters. However, it seems plausible
that this drawback will be significantly tempered in the near
future. We will then describe individual-based approaches (often
called agent-based modeling (ABM)) capable of simulating the
interaction of multiple microbes with a relatively narrow set of
variables. While the focus is still on the individual microbes, this
method is capable of addressing the spatial aggregation of large
populations. We will complete this chapter with a discussion of
population dynamics modeling, a method for which the species is
the focal point. This class of approaches has become well known
through the Lotka–Volterra representation of a predator–prey
system (7, 8) .

 For good reasons, all developed genome-level models of micro-
bial metabolism are based on the assumption that the system is
at steady state (see Chapter “Flux-Balance Analysis: Interrogat-
ing Genome-Scale Metabolic Networks”). Although steady-state

2. Rate-Equation
Models

 2.1. Background

 Systems Biology of Microbial Communities 471

models (SSM) have shown great utility for assessing the metabolic
capabilities of an organism, they ignore a number of crucial
details needed to attain greater insights into the dynamics of a cell.
For example:
 • After an environmental or genetic perturbation, SSM only

characterize the new steady state. SSM do not calculate how
long it will take for the system to reach the new steady state
and visited intermediary states.

 • SSM ignore enzymatic capacity and thus cannot identify rate-
limiting steps and metabolic bottlenecks.

 • SSM do not account for the concentration of intermediates and
thus cannot predict deleterious buildup of toxic metabolites.

 Development of genome-scale kinetic models can overcome
these failings; however, currently such undertakings are impracti-
cal. In order to develop a kinetic model of cellular metabolism,
we must account for the time-dependent changes in metabolite
concentrations. This requires the knowledge of a large number
of kinetic parameters. Unfortunately, while recently developed
analytical tools have accelerated genetic and proteomic analyses
immensely, measurements of enzymatic kinetic parameters are
still tedious and time consuming.

 Kinetic models are usually developed only for well-studied
pathways, such as central carbon metabolism in Escherichia coli (9) ,
urea cycle in Rattus norvegicus (10) , and glycolysis in a variety of
organisms ranging from single cell organisms such as Saccharomyces
cerevisiae (e.g. refs. 11– 13 , for a review see ref. 14) and Trypanosoma
brucei (15, 16) to cells from organs such as skeletal muscle (17) and
pancreatic b -cells (18) . Despite their limited metabolic scope, these
models have been invaluable in enhancing our understanding of the
complex collective dynamics of cellular groupings.

 Perhaps the most important question that one should consider
prior to developing a kinetic model is: “How detailed should
the model be?” The answer to this question is directly related to
other questions that have to be answered early in the modeling
process. For example:
 • What kinetic parameters are available?
 • Is it possible to bypass or generalize certain details of a pathway

and still develop a sufficiently predictive model (see ref. 19) ?
 • Which reactions are reversible and which are irreversible?
 • Which metabolites can be transported across the cellular mem-

brane? Are these processes passive or active (i.e., require energy
expenditure)? Are they facilitated by (transporters) chaperones
or are they nonfacilitated?

 • What is the volume and surface area of a cell, and should the
model account for changes to these physical characteristics?

 2.2. Theory
and Methodology

472 Navid et al.

 These questions can be answered through a thorough exami-
nation of the available literature, and searching through databases
such as BRENDA (http://www.brenda-enzymes.info). These
answers will also determine how the dynamics of metabolic reac-
tions are formulated.

 Developing kinetic models of metabolic pathways involves
writing the concentration changes of each metabolite as ordinary
differential equations (ODEs). For example, given the two meta-
bolic reactions:

 2C and ,kQA B C D+ ←⎯⎯→ ⎯⎯→

 where Q is the equilibrium constant equal to the ratio of forward
and reverse reaction coefficients (k 1 /k −1), the change in concen-
tration of the metabolites is written as:

1 1

1 1

1 1 2

2

d[]
[][] []

d
d[]

[][] []
d

d[]
[][] ()[]

d
d[]

[].
d

A
k A B k C

t
B

k A B k C
t
C

k A B k k C
t
D

k C
t

−

−

−

= − +

= − +

= − +

=

 By thus writing and solving similar ODEs for all metabolites,
we may monitor the dynamic changes that occur in a microbe.

 One of the most studied problems of cellular nonlinear dynamics
has been the coupling and synchronization of metabolic oscilla-
tors, such as baker’s (or brewer’s) yeast, S. cerevisiae . The initial
reports of glycolytic oscillation with a frequency of several minutes
in cell-free extracts of yeasts date back to 1964 (20– 22) . Prolonged
oscillations in biochemical systems require that at least one of the
reactions obey nonlinear kinetics. Thus, it is not surprising that
asynchronous (23, 24) and even chaotic (25– 27) dynamics have
been proposed. A large number of theoretical studies have exam-
ined oscillatory behavior in glycolysis, particularly in yeasts (for a
review see ref. 28) . The majority of theoretical studies involve the
coupling of only a few metabolic pathways (24, 29, 30) , and the
interaction is mediated through a common extracellular pool of
metabolites that can be imported to and/or exported from differ-
ent cells. In the case of S. cerevisiae suspensions, acetaldehyde (Acld)
has been identified as the primary coupling metabolite (31) .

 The model of glycolysis in yeast (32) was designed with the
criterion that it should describe the observed experimental
observations (31, 33) . A schematic of the modeled system is
presented in Fig. 1 . The characteristics of the model are:

 2.3. Examples

2.3.1. Coupling
of Glycolytic Oscillations
in Saccharomyces
cerevisiae

 Glycolysis Oscillations and
Synchronization

 Systems Biology of Microbial Communities 473

 • Several chemical steps are lumped together, such as reactions
catalyzed by hexokinase and phosphofructokinase (PFK) (v 1)
and multistep conversions of dihydroxyacetone phosphate to
glycerol (Gly) (v 3) and 3-phosphoglycerate (3PG) to pyruvate
(Pyr) (v 7).

 • Simulation is for anaerobic conditions with ethanol (Etoh) as
the major product.

 • Concentrations of Gly and Etoh are considered constant
(reservoir). Import of glucose and export of Acld are the only
modeled extracellular fluxes: Import of glucose (I) is assumed
constant, and transport of Acld (X) is modeled as passive
diffusion dependent on the concentration gradient of Acld
across the membrane:

 ()[Acld()] [Acld()] ,
AJ

X c m
V

= −

 where A and V are the surface area and volume of the cell,
respectively. J is the coefficient of permeability of the cellular
membrane for Acld. c and m denote cytosolic and medium
concentrations.
 • Consumption of ATP by the cell is accounted for by an ATPase

reaction. Intracellular pools of adenine nucleotides (ATP and
ADP) and nicotinamide adenine dinucleotides (NAD + and
NADH) are conserved:

 Total Total[ATP] [ADP] and [NAD] [NADH] .A N++ = + =

• All reactions are considered irreversible, except for glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) (v 4) and phos-
phoglycerate kinase (PGK) (v 5).

 • Reactions catalyzed by GAPDH and PGK are near equilib-
rium (Q GAPDH = 0.0056, Q PGK = 3,225, (34)), justifying a

 Fig. 1 . Schematic diagram of anaerobic glycolysis. Glc Glucose; TRP Triose-phosphates; v 1 Hexokinase and PFK; v 2 Aldo-
lase; v 3 Glycerol-3-phosphate dehydrogenase and glycerol kinase; v 4 GAPDH; v 5 PGK; v 6 ATPase; v 7 Phosphoglycerate
mutase, enolase, and pyruvate kinase; v 8 Pyruvate decarboxylase; v 9 Alcohol dehydrogenase; v 10 Degradation of Acld .

474 Navid et al.

quasi-steady-state approximation for 1,3-bisphosphoglycerate
(13BPG), thus d[13BPG]

0.
dt

=
 And since,

4 5

4 4 4

5 5 5

d[13BPG]
,

d
[TRP][NAD] [13BPG][NADH],
[13BPG][ADP] [3PG][ATP],

v v
t

v k k
v k k

+
−

−

= −

= −
= −

 we can write the equation for concentration of 13BPG as

 4 5

4 5

[TRP][NAD] [3PG][ATP]
[13BPG] .

[NADH] [ADP]
k k

k k

+
−

−

+
=

+

 Thus, the reaction equation for v 4 and v 5 becomes

()()
()

4 5 Total Total 4 5
4 5

4 5 Total
&

[TRP] [NADH] [ATP] [3PG][ATP][NADH]
.

[NADH] [ATP]
k k N A k k

v
k k A

− −

−

− − −
=

+ −
• Simple rate laws are used for all enzymatic reactions (see

Table 1).
 • The only regulatory behavior that is accounted for is the

inhibitory effect of ATP on the hexokinase-PFK reaction (v 1)
using K and n as the inhibition constant and cooperativity
coefficient for ATP, respectively

1
[ATP]

(ATP) 1 .
n

f
K

−
⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 Metabolites are distributed homogenously in the cytosolic
and external medium.

 The model can be used to study the mechanism of intracellular
propagation of nonlinear dynamics. It is reasonable to assume that
when nonlinear dynamics are transmitted down the main back-
bone of the glycolytic pathway, the amplitude of substrates should
be greater than that of the products it produces (33) , i.e., each
enzymatic step dampens the oscillations. Not surprisingly, a series
of simulations has shown that oscillations in glycolysis can be
transmitted throughout the cell via the cofactors ADP and NAD.

 As a follow up, Wolf and coworkers (32) examined whether
it is possible for cells to synchronize their oscillating dynamics if
oscillations are not propagated through the backbone of the gly-
colytic pathway. To this end, cells of yeast with identical kinetic
capabilities, but different concentrations of metabolites, were
coupled together via a shared extracellular Acld pool. In Fig. 2 ,
we have simulated the coupled dynamics of three such cells. As
it can be seen in Fig. 2a , the cells oscillate at the same frequency
but with different amplitudes and phases. Gradually, the phase

Transduction of
Oscillations

 Systems Biology of Microbial Communities 475

shift disappeared, and in less than 20 min the dynamics of the
cells were completely synchronized (Fig. 2b).

 Many bacteria synchronize the activation of particular functions
by communicating their local cell density to each other through
autoinducer (AI) molecules, an effect called “quorum sensing”
 (35) . As the cell population increases, the AIs accumulate in the
surroundings, eventually reaching a critical concentration caus-
ing the differential expression of certain sets of genes, e.g., genes
involved in bioluminescence. Experiments have shown that sev-
eral necessary processes to bacterial colonization and virulence

 2.3.2. Quorum Sensing

 Table 1
 List of differential equations for a simplified model of glycoly-
sis (32)

 V m , Volume of the medium

 Model differential equations

1

d[Glc]
[ATP][Glc] (ATP)

d
I k f

t
= −

1 2

d[FBP]
[ATP][Glc] (ATP) [FBP]

d
k f k

t
= −

2 4 5 3&

d[TRP]
2 [FBP] [TRP][NADH]

d
k v k

t
= − −

()4 5 7 Tota& l

d[3PG]
= [3PG] [ATP]

d
v k A

t
− −

7 8

d[Pyr]
= [3PG] [Pyr]

d
k k

t
−

8 9

d[Acld(c)]
= [Pyr] [NADH][Acld(c) X

dt
k k− −

10
m

d[Acld(m)]
= [Acld(m)]

d
V

X k
t V

−

()4 5 1& 6 7 Total

d[ATP]
= -2 [ATP][Glc] (ATP) [ATP]+ [3PG] [ATP]

d
v k f k k A

t
−−

5 3 &4 9

d[NADH]
[TRP][NADH] [NADH][Acld(c)]

d
v k k

t
= − −

476 Navid et al.

such as biofilm formation, bioluminescence, type III secretion,
and secretion of virulence factors are regulated via quorum sens-
ing (36– 41) .

 The machinery of the gene regulatory networks that produce
the AIs, detect the AIs, and respond to the changes in AI con-
centration differs depending on the bacteria. Vibrio harveyi and
 V. cholerae use sensors at the membrane to track changes in the
AI concentration (38, 42– 45) , while the AIs diffuse through the
membrane and form a complex with a particular protein neces-
sary for gene activation in Vibrio fischeri and Pseudomonas aerugi-
nosa (35, 36, 46– 49) . The latter type of quorum sensing bacteria
will be the focus of this instructional example.

 Fig. 2. Coupled dynamics of glycolysis in three cells with identical kinetic capabilities but
different starting metabolite concentrations. (A) Oscillating concentration of NADH. The
oscillation frequency is the same for all three cells while the starting amplitudes (Am)
and phases differ (Am A > Am B > Am C). (B) Amplitude differences in NADH oscillations
between two pairs of cells (A−B and B−C). Time course is represented by shading (early
= white, late = black) .

 Systems Biology of Microbial Communities 477

 We present a model of quorum sensing in V. fischeri introduced
by James et al. (50) . V. fischeri is a gram-negative bioluminescent
marine bacterium that uses acyl-homoserine lactones as its AIs
to directly control the luminescence (lux) operon (51– 54) . The
model tracks the concentration of AIs (A), the concentration of
the protein LuxR that the AI forms a complex with (R), and the
concentration of the AI–protein complex (C) (see Fig. 3). The
first interaction, AI forming a complex with LuxR, is described
by the binding rate constant k 1 , and the complex can break apart
with dissociation rate constant k 2 , giving the reactions:

1 2and .k kA R C C A R+ ⎯⎯→ ⎯⎯→ +

 The resulting three differential equations for A , R , and C are

2 1 2 1 1 2

d d d
, , .

d d d
A R C

k C k AR k C k AR k AR k C
t t t

= − = − = −

 Through binding to the lux box, the complex (C) is respon-
sible for promoting the production of the lux operons, which
include the genes responsible for light production, luxCDABEG ,
the gene responsible for producing the AI, luxI , and the gene
that translates into the protein AI complexes with luxR . When
the concentration of the complex is low (high), the lux box is
predominantly unoccupied (occupied). This is accounted for by
including a term

Quorum Sensing Model
for Vibrio fi scheri

 Fig. 3. Schematic of quorum sensing network used by Vibrio fischeri to regulate lumi-
nescence. AI (A) binds the protein LuxR (R) to form complex (C) with a forward rate of
 k 1 and a dissociation rate of k 2 , and diffusion of AI through cellular membrane with con-
stant n . LuxR is degraded at a rate b . The C complex occupies the lux box proportional
to fC /(1 + fC) and promotes the transcription of luxR , luxI , and luxCDABEG with rate q .
AI is produced at rate p from LuxI .

478 Navid et al.

box occupancy ,

1
fC

lux
fC

=
+

 where f is a proportionality constant.
 Since the complex promotes the transcription of luxI and

 luxR , the rates of transcription are proportional to the lux box
occupancy time. The model does not explicitly include the trans-
lation step of luxI and luxR into LuxI and LuxR, or the direct
synthesis of the AI from LuxI. Instead, it is assumes these reac-
tions to be integrated into an additional proportionality constant
times the occupancy of the lux box.

LuxR synthesis rate , AI synthesis rate .

1 1
fC fC

q p
fC fC

= =
+ +

 The differential equations for A and R are thus updated to be

2 1

d
,

d 1
fCA

k C p k AR
t fC

= + −
+

2 1

d
,

d 1
fCR

k C q k AR
t fC

= + −
+

1 2

d
.

d
C

k AR k C
t

= −

 The LuxR protein concentration is naturally reduced via
enzymatic degradation and cellular volume changes from cell
replication at a rate proportional to the LuxR concentration, and
the chemically stable AIs freely diffuse through the cell mem-
brane into the surrounding environment at a rate assumed to be
proportional to the cellular AI concentration:

 Degradation rate of LuxR= bR , Diffusion rate of AI= nA
 Including this effect, the differential equations for A , R , and

 C then become:

2 1

d
,

d 1
fCA

k C p k AR nA
t fC

= + − −
+

2 1

d
,

d 1
fCR

k C q k AR bR
t fC

= + − −
+

1 2

d
.

d
C

k AR k C
t

= −

 Finally, an external concentration of AI (A ex) generated
by a colony of bacteria can be added to the model by includ-
ing a forward rate of diffusion of AI proportional to the
external concentration. This only modifies the equation for
 A by adding nA ex :

 Systems Biology of Microbial Communities 479

2 1 ex

d
().

d 1
fCA

k C p k AR n A A
t fC

= + − − −
+

 To illustrate how the system of three coupled differential equa-
tions can exhibit quorum sensing behavior, we solve for the time
series solutions of the differential equations for two values of A ex
(A ex = 1 nM and A ex = 50 nM; see figure captions for parameter
choices). Note that the model formulation in itself does not dic-
tate a particular choice of units. The low value of A ex corresponds
to the low cell-density limit where the external concentration of
AIs from surrounding bacteria is minimal. Figure 4 shows the
cellular concentrations of AI (dashed line) and the LuxR–AI com-
plex (sold line). Both molecules are given initial concentrations of
1 nM. The system quickly reaches steady-state conditions where
the internal AI concentration matches the external one, and the
concentration of the LuxR–AI complex drops to a minimal value.
Since the LuxR–AI complex is responsible for activating lumines-
cence, this situation corresponds to a dark colony. Upon increas-
ing the concentration of external AI (corresponding to high cell
density), the LuxR–AI complex is able to reach a considerably
larger steady-state concentration. Since the threshold concentra-
tion of the LuxR–AI complex necessary for light production is
not known, the results in Fig. 5 serve as an illustration of the
cell’s response to a large increase in external AI concentration.

 Using the model for quorum sensing in V. fischeri proposed
by James et al. (50) , it is clear that this relatively simple set of
coupled differential equations is capable of exhibiting a quorum
sensing-like response when the concentration of external AI is
changed. Other models exist that include more interactions in
the genetic regulatory network (55, 56) . There are also models
of P. aeruginosa , a similar quorum-sensing bacteria to V. fischeri
 (57, 58) .

Model Analysis

 Fig. 4. Low cell density response of
LuxR–AI complex (solid line) and AI
(dotted line) concentrations. Starting
concentrations are 1 nM for LuxR–AI, AI,
and AI ext . The system quickly reaches its
steady-state values where LuxR–AI com-
plex concentration is minimal and the AI
concentration matches AI ext . The other
parameters are k 1 = 25 nM –1 min −1 , k 2
= 10 min −1 , n = 10 min −1 , b = 10 min −1 ,
 p = 5 nM/min, q = 2.5 nM/min, and f =
0.25 nM −1 .

480 Navid et al.

 ODEs can easily be solved by general scientific and engineering
software such as Matlab (Mathworks, Natick, MA, http://www.
mathworks.com) and Mathematica (Wolfram Research, Cham-
paign, IL, http://www.wolfram.com). Many programs have
been developed primarily to facilitate the modeling of dynamical
systems:
 • Virtual cell (http://www.vcell.org)
 • E Cell (http://www.e-cell.org)
 • CellDesigner (http://www.celldesigner.org)
 • Karyote (biodynamics.indiana.edu/CellModeling)
 • MathSBML (http://www.sbml.org/Software/MathSBML).

 There are also a number of databases, such as http://www.
siliconcell.net, where metabolic models are stored.

 The history of individual-based modeling, also often called agent-
based modeling (ABM), goes back to the late 1940s and early
1950s work by John von Neumann where he invented cellular
automata (CA). CA are most frequently simulated on finite grids,
and the state of a grid cell’s neighbors is used to determine its
state for the next time step. In a simple one-dimensional exam-
ple, only two states (0 or 1) are available per cell and only nearest
neighbors, and the CA update rules would then determine for
which of the 2 3 = 8 possible states (the cell itself and its two near-
est neighbors) a cell would change its value. An example set of
rules could be that a cell should only switch state if both of the

2.4. Tools

 3. Individual-
Based Modeling

3.1. Background

 Fig. 5. High cell density response of
LuxR–AI complex (solid line) and AI (dotted
line). Starting concentrations are 1 nM for
LuxR–AI, AI, and 50 nM for AI ext . The system
quickly reaches its steady-state values
where LuxR–AI complex concentration can
initiate light production and the AI concen-
tration matches AI ext . The other parameters
are as in Fig. 4

 Systems Biology of Microbial Communities 481

neighbors are in an opposite state (majority rule): 101→111, and
010→000.

 Individual-based models (IbMs) were suggested in the 1980s
as a possible method for studying social systems on a computer.
Differently from the CA, the IbMs are typically not occupying
all available grid cells and, in fact, need not be based on a grid
at all. However, similarly to the CA, each entity carries with it
a predestined set of rules that it acts upon after polling its local
environment. Due to the rapid increase in computational power
for desktop PCs, IbMs started receiving serious attention in the
1990s (59– 61) .

 In the following, we will enlist the IbM framework to model
microbial communities, and the agents will represent individual
cells, being either bacteria, archaea, or single-cell eukaryotes.
Contrasting the IbM framework with that of the rate equation
approach, we quickly see that the chasm in representation can
be bridged. For instance, one can imagine that the internal rule-
set for an agent is based on monitoring the output of a set of
rate equations, such as growth, internal ATP concentration, or
autoinducer concentration in quorum sensing. However, the
computational cost of including a highly detailed internal descrip-
tion should be measured carefully against the feasible number of
simultaneous agents and the duration of the simulation.

 When a system is comprised of many agents whose interactions
generate system-level dynamics that cannot be explained by their
individual properties (emergent behavior), individual-based mod-
eling is well suited for simulating the system function. Typically,
IbMs of microbial communities are simulated on two-dimen-
sional or three-dimensional grids where a single entity occupies a
grid cell. Before taking on the task of designing or implementing
an IbM, it is necessary to clearly define the contents and scope of
the project. Important questions to clarify include:
 • How many species will exist in the system?
 • Will the microbes be allowed to move?
 • What will be the inputs and outputs of each microbe?
 • How much will a microbe eat before it divides?
 • After cell division, how will the two cells be placed?
 • Which boundary conditions will be chosen (e.g., hard walls,

nutrient reservoir)?
 • Which metabolic strategies, e.g., dormant or growing maxi-

mally, may be used?
 • How will the microbes interact; through competition for

nutrients or through more direct channels, e.g., quorum sensing,
physical contact, or production of toxins?

 3.2. Theory and
Methodology

482 Navid et al.

 Additionally, it is necessary to decide how nutrients and
other chemicals will move in the system, as well as the shape and
function of the system boundaries. In the modeling of biofilms,
nutrient levels are sometimes chosen to be fixed along one of the
system boundaries to simulate the presence of a reservoir, while
a different boundary is chosen to be impermeable to both nutri-
ents and cells, emulating a hard surface such as a wall.

 The basis for any IbM is the set of “behavioral” rules that
each microbe may follow. For every time increment, each microbe
is visited and taken through the list of possible rules. In simple
cases the rule set is deterministic: whenever the local conditions
are identical, a given outcome is repeated. For more sophisticated
models, the microbe may choose among the available strategies
with a probability that depends on past history, the local environ-
ment, or both. While implemented behavioral rules frequently
have been discrete in nature, this is not a requirement of the
modeling approach. For instance, a common choice in calculat-
ing the growth of a microbe from one time-point to the next is
to increment an “energy storage” variable with a fixed amount.
However, one may alternatively describe the growth (rate) using
Michaelis–Menten, or even double-saturation kinetics (62) .

 It is in the selection of behavioral rules that IbM intersects
with game theory. In simple IbMs, the rule set only allows for
interactions through the use of nutrients or occupation of space
(e.g., a microbe is not allowed to grow when adjacent grid cells
are occupied). However, microbes may cooperate or compete
through the production of chemical signals (quorum sensing)
and toxins (63) . It is relatively straightforward to include a wide
variety of competitive or cooperative behaviors in the behavioral
rules. For instance, we can generate a class of cooperative microbes
simply by lowering their possible growth rate while they produce
a beneficial byproduct, such as extracellular polymeric substance
(EPS) or a molecule that aids the function of a different micro-
bial species. The competing behavioral class of “cheaters” will be
allowed to avoid this burden (e.g., no EPS production) and can
grow at the maximal rate. In such a scenario, it is possible either
for the cooperators or for the cheaters to have the highest fitness,
depending on the growth conditions and the structure of the
environment (62, 64) .

 When designing an IbM, it is also necessary to carefully con-
sider how the nutrients are distributed. In the simplest models,
nutrient concentrations are chosen to be constant, while more
complex realizations include discretized differential equations for
the diffusive nutrient transport. These hybrid methods, combining
IbM dynamics for the microbes with differential equations for
the nutrients, have given highly detailed insights into the dynamics
of biofilms (see ref. 65 for an example of three-dimensional
simulation). In these approaches, it is beneficial to utilize the

 Systems Biology of Microbial Communities 483

difference in time scales between diffusion (fast process) and
microbial activities (slow process) such as growth. The follow-
ing two-step iterative process is frequently used (1) calculate the
quasi-steady-state solution for the diffusive molecules and (2)
use the identified local concentrations as input for the micro-
bial IbM dynamics. Assuming that both microbial locations and
their uptake and production rates are fixed, we may easily find the
steady-state solution of the diffusion equations of, e.g., oxygen,
glucose, and an autoinducer. Note that the microbes may act as
both sinks (consumption of nutrient) and sources (production of
signaling molecules).

 Alternatively, we may consider the nutrients and other chemi-
cals as discrete particles that conduct independent random walks.
For instance, the nutrient particles may move with equal probabil-
ity to an adjacent site, and multiple nutrient particles are allowed
to occupy the same grid site. In this representation, the effective
diffusion coefficient is determined by the number of steps in the
walk. Fluid flow may be incorporated by biasing the direction of
the random walk. Note that one must conduct the random walk
step for all particles before updating the microbial states.

 In a simple, deterministic two-dimensional system where the only
interaction between the microbes is competition over nutrients
and available space, the rule set is:
 1. Nutrient uptake:

 (a) If amount of nutrient E > e is available in current and adja-
cent grid cells, eat amount e . Add to internal energy storage:
 w → w + e (and appropriately subtract from E).

 (b) If not, maintenance cost m < e is deducted: w → w − m
 2. Duplication or sporulation:

 (a) If at least one adjacent grid cell is empty and internal
energy storage w > W (the duplication threshold) generate
copy and set w →(w − W)/2 in both microbes.

 (b) If internal energy storage w < T , the sporulation threshold,
microbe is inactive until nutrient level in current grid cell
is E > e .

 Naturally, we choose T W� . In this simple example, we are
inhibiting the movement of nutrient particles, similar to micro-
bial growth on an agar plate. By allowing for the movement of
nutrients, either as a random walk of discrete particles or by dif-
ferential equations (diffusion), this simple IbM can be changed to
describe biofilm growth in a liquid medium. Typical initial condi-
tions start from either a single or multiple identical microbes in
the middle of the grid or along a boundary. Multiple species are
simply included by, e.g., changing the uptake amount from being
a global constant e , to become species-dependent e s .

 3.3. Example

484 Navid et al.

 We can create cooperative behavior by modifying, e.g., behavioral
rule 1.a as follows:

 (1.a) If amount of nutrient E > e is available in current and
adjacent grid cells and majority of adjacent grid cells are occu-
pied, eat amount e ¢ = e − d (d > 0). If majority of adjacent grid cells
are empty, eat e ¢ = e . Add to internal energy storage: w → w + e ¢
(and appropriately subtract from E).

 This straightforward rule change forces microbes to behave
altruistically by taking less of the nutrients when in a dense neigh-
borhood, and thus, improve sharing of resources.

 Figure 6 shows a snapshot of a biofilm simulation of two
species competing over the same food source. In addition to rules
1 and 2, we have included nutrient diffusion using the random
walk approach and cellular death instead of sporulation. It is not
surprising that the fast growing species (dark gray) is dominating
over the slower growing species (light gray) in the major bloom:
the further away from the bottom layer (the wall) an individual is,
the more nutrients are available and it can grow faster.

 Several consortia have made available general-purpose IbM mod-
els. The most popular open-source implementations are Swarm
(http://www.swarm.org) and Netlogo (http://ccl.northwestern.
edu/netlogo). A listing of available IbM software packages is
available at http://www.swarm.org/index.php?title=Tools_for_
Agent-Based_Modelling. Programs specifically tailored to micro-
bial communities include BacSim (59) , which is based on the
Swarm toolkit, and BacLAB (66) .

 3.4. Tools

 Fig. 6. Simulated biofilm of two competing species
growing on an impermeable boundary. Substrate
gradients are generated by random walks of
discrete nutrient packets. Fast growing (dark gray)
microbes dominate over slower growing ones
(light gray) .

 Systems Biology of Microbial Communities 485

 Population dynamics in community-level modeling comprises a
coarse-grained approach compared to the two previous sections,
where the focus has shifted from individual microbe to the spe-
cies as basic unit. Population-level interactions between differ-
ent species (macroscopic) can naturally be considered as effective
per-capita rates resulting from the interacting individuals (micro-
scopic). Thus, population interactions naturally arise from shared
ecological niches and diverse metabolic capabilities of the con-
stituent microbes.

 A conventional way of classifying pair-wise population inter-
actions is based on their effects on growth (see Table 2). The
presence of one species may be beneficial [+], detrimental [−],
or neutral [0] to the other. In fact, all possible combinations
of effects are observed in nature, both the symmetric (recipro-
cal) interactions of mutualism [++] and competition [−−], and
the asymmetric cases of ammensalism [0−], commensalism [0+],
predator–prey or parasitism [+−]. However, this scheme does
not reflect the microscopic origin of interactions. Simple abstrac-
tions of an interaction may be insufficient to quantitative analyses,
and it is important to carefully consider the microscopic origin
of interactions. We also note that these classification schemes
constitute an idealization: In practice, the behavior of a mixed
community is likely the combination of multiple interactions,
often with opposing effects. A situation that is common to micro-
bial communities consists of two (or more) species in a mixed
population that compete for the same nutrient source while, at
the same time, being physiologically coupled in a commensal way.

 4. Population
Dynamics

 4.1. Background

 Table 2
 Overview of species-level interaction classes in population-
based modeling

 Interaction mode Reciprocity
 Cell–cell
direct contact Sign of interactions

 Mutualism Y N [++]

 Competition Y N [−−]

 Commensalism N N [+0]

 Ammensalism N N [−0]

 Predator–prey,
parasitism

 N Y [+−]

486 Navid et al.

Thus, we should not expect that the resulting dynamics will be predict-
able by “effective” interaction models where the complex (competing)
interactions are combined into one average contribution.

 Population-level descriptions provide insights that are other-
wise overlooked in microscopic studies. Microbial communities
from compost, the bovine rumen, acid mine drainage, and hot
springs are just a few among recently studied systems that will
benefit from quantitative modeling.

 Since the early modeling of the predator–prey ecosystem, the
Lotka–Volterra (LV) model (7, 8) has been the de facto standard
template for modeling mixed populations. Though LV had origi-
nally aimed at modeling the specific case of predator–prey system,
its current usage has been expanded past the predator–prey set-
ting to include positive interactions. In its simplest version, the
population size of a prey (n 1) and its predator (n 2) satisfy the fol-
lowing set of nonlinear differential equations

1 1 1 2 2 1 2 2

d
() ; () .

d d
d

n t n n n n t n n n
t t

a b g d= − = −

 Here α and δ are the growth and decay rates for the prey
and predator populations, unaffected by the negative (predation)
interspecies interaction. The coefficients b and g represents the
strength of the detrimental and the beneficial effects on prey and
predator population owing to the predation. Due to the par-
ticular functional form of these equations, the Jacobian of this
system has purely imaginary eigenvalues, regardless of the param-
eter combinations. Consequently, the two-species LV system has
sustained oscillatory behavior with a characteristic frequency of

/ 2ad p .
 The exponential growth of prey population has been a target

for modifications. The original LV assumes no resource limits,
which oftentimes is unrealistic. To include the resource-mediated
intraspecies competition, we require a negative term that would
counterbalance exponential growth. Thus introduced is the logis-
tic growth rate, a n (1– n/k) where K is the carrying capacity of the
ecosystem for the species involved. The modified LV with the
logistic growth with finite carrying capacity for the prey popula-
tion is now

1
1 1 1 2 2 1 2 2

d d
() 1 ; () ,

d d
n

n t n n n n t n n n
t K t

a b g d⎛ ⎞= − − = −⎜ ⎟⎝ ⎠
 which has the two nontrivial (excluding n 1 = n 2 = 0) steady states
(Fig. 7)

1 2(,) (,0) or , 1 .n n K

K
d a d
g b g

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 4.2. Theory and
Methodology

 4.2.1. Lotka–Volterra
Model and its Determinis-
tic Variations

 Systems Biology of Microbial Communities 487

 The first solution corresponds to predator extinction and
prey proliferation, which is stable as long as K < Kc ≡ d/g (the
extinction threshold). Stable population coexistence (second
solution) is possible only when K > K c . Linear stability analysis
further shows that coexistence is either a stable node or a focus,
and no oscillatory behavior is expected unless the carrying capac-
ity diverges (67) .

 We may generalize the LV population model (which we
will refer to as GLV) to include competitive interactions among
species by adding an extra, negative term following the spirit of
mass-action:

 1

d
() ; 1,2,..., ,

d

d

i i i ij j
j

n t n A n i d
t

a
=

⎛ ⎞
= − =⎜ ⎟⎝ ⎠

∑

 where d is the total number of interacting species. The diagonal
elements A ii > 0 can be identified (to a multiplicative constant)
with the inverse of the carrying capacity of species i . The off-diagonal
elements A ij > 0 represent the strength of j ’s negative effect on i ,
which is related to the distance between the two species in niche
space.

 Finally, a unified scheme for the community interactions is
obtained by removing the positivity constraint on the off-diag-
onal elements A ij in GLV. The majority of studies on mutualis-
tic interactions have been using this representation as a template

 Fig. 7. Competitive Lotka–Volterra (LV) dynamics. (A) Time evolution of the population size from LV with logistic growth
modification. All the systems start with n 1 (0) = n 2 (0) = 0.1 (arbitrary units) and the time scale is set in units of 1/ d
(~ predator’s lifespan). Rate parameters a = 2.3, b = 3.1, g = 1.2, and the carrying capacity K is varied from 0.8 to 20 (K c
= 0.833). The mixed population state is stable for K > K c . (B) Trajectories in n 1 − n 2 space shows the attractor for different
carrying capacities .

488 Navid et al.

framework. However, all eigenvalues of the interaction matrix
must have positive real parts for the system to be stable. High-
diversity communities tend to become unstable as the interac-
tion network becomes more complex, reminiscent of the work by
Robert May in the 1970s (68, 69) . Recent studies have revisited
this problem and found potential positive effects of complexity:
High-diversity, stable LV systems arise if the interaction network
evolves flexibility through adaptive behavior (70, 71) .

 In general, microbial populations are spatially heterogeneous
and not well-stirred “bioreactors” as assumed in the original LV
work. Even marine microbes aggregate in the search for food
using chemotaxis. We may introduce spatial structure into the
deterministic framework by using an embedding space, where the
individuals move around in the search for food and shelter. Now,
interaction effects are no longer instantaneous but must propa-
gate across the space, leading to time delays that stabilizes the
community (72, 73) . A natural extension of LV to allow for the
random movement of cells is by way of diffusion terms, turning
the LV into the coupled partial differential equations

∂⎧ = ∇ + −⎪⎪ ∂
⎨∂⎪ = ∇ + −⎪ ∂⎩

21
1 1 1 1 2

22
2 2 1 2 2

(,)
(,) (,) (,) (,),

(,)
(,) (,) (,) (,),

n t
D n t n t n t n t

t
n t

D n t n t n t n t
t

a b

g d

x x x x

x x x x

x

x

 where D i is the diffusion coefficient of species i . For the case
of two-species competition, this coupled reaction-diffusion sys-
tem is known to contain propagating wave-front solutions in one
dimension, of the form n i (t) = f (x−v i t) that interpolate between
the two steady states identified above. Convergence to the steady
state monotonically or with oscillations depends on the choice of
rate parameters (72) .

 Randomness is a defining character of population processes, often
diverting the dynamics from deterministic predictions. Depend-
ing on the origin of the “noise,” population stochasticity may be
classified by the following categories:
 • Within-individual variability
 • Cell-to-cell variability and age structure
 • Spatial heterogeneity
 • Temporal fluctuation of environment

 The first two categories stem from the random timing of
birth–death events and the discrete nature of individuals. These
factors play a lesser role as the population grows in size, but may
still have significant local effects. In fact, local extinctions com-
monly occur in nature, which is consistent with observations in

 4.2.2. Effects of Spatial
Heterogeneity

 4.2.3. Stochastic Modeling

 Systems Biology of Microbial Communities 489

stochastic simulations. The latter two categories are extrinsic in
origin and can be described in terms of quenched or annealed
noise. Note that, contrary to intrinsic noise, there is no constraint
on the noise amplitude or temporal correlations. Overall, the dif-
ferent sources of noise work together in real ecosystems, and
interesting behaviors emerges from their combinatorial effects
 (74, 75) . Given a noninteracting single population with a discrete
phenotypic distribution, the time evolution of species n i can be
described by the following matrix equation

d
() (()) () (()) (),

d i i i ij j
j

n t r E t n t T E t n t
t

= + ∑

 where E (t) is the random discrete variable representing the envi-
ronment at time t , r i (E (t)) is the environment-dependent fitness
of phenotype i , and the matrix elements T ij (E (t)) are transition
probabilities for an individual to switch from the j th to the i th
phenotype. Note that Tij is a Laplacian matrix (ii ijj i

T T
≠

= −∑),
and, on average, the loss term Tiini balances transitions to all other
states. Interestingly, maximal growth occurs when the pheno-
typic switching rate is similar to that of environmental fluctua-
tions. If environmental changes are slow or mostly predictable,
random switching between states outperforms responsive switch-
ing, where the organism uses sensors to identify the optimal state
of operation and transition probabilities to nonoptimal states are
consequently set to zero.

 Recent work on marine phage communities demonstrates how
the general framework of LV can be improved, and the impor-
tance of investigating microscopic origins of population growth.
Hoffmann and colleagues (76) studied the interaction of marine
phages (predator) and their host microbes (prey) by modeling
the multispecies community as a simple predator–prey model.
This can be justified since the phage–host interaction is highly
specific and the dominant microbial species effectively is repre-
sentative of the overall community (77) .

 The key observation from this approach is that the observed
cooperativity is caused by spatiotemporally nonuniform nutrient
condition ascribed to a colloid-type organic detritus called “marine
snow.” The marine snow enhances aggregation of microbes and
their predators, generating a positive feedback loop. The cluster-
ing around discrete food sources leads to locally high concentra-
tions of lysed host cells that further attract more predators. The
consequence is a superlinear dependence of predation rate in the
phage population, represented as a quadratic dependence on
the phage density:

2 2 2

1 1 1 2 2 1 2 2

d
() ; () ,

d d
d

n t n n n n t n n n
t t

a b g d= − = −

 4.3. Examples

 4.3.1. Marine Phage
Community

490 Navid et al.

 where n 1 represents the microbial population and n 2 the phages.
In order to preserve the oscillatory behavior of the predator–prey
model, it is necessary to keep the phage-degradation term quad-
ratic in the phage density. The population dynamics predicted by
this model follow experimental data closely.

 Intra- and interspecies interactions among microbes are mainly
responsible for the ripening process in spreadable cheeses. A
recent study used the population dynamics approach to identify
interactions in a spreadable cheese bacteria–eukaryote commu-
nity composed of six bacteria and three yeast species (78) . The
bacterial population behavior could be grouped into two quasis-
pecies, resulting in a five-species model system. Using the GLV
formulation as a starting point, entries in the interaction matrix A
were selected to give simulated population dynamics that agreed
with measurements. The identified possible realizations of A
were further narrowed down through a species-removal study:
A single quasispecies was removed at a time, and population
dynamics for the remaining species were measured. As a result,
the web of interaction between the five groups could be identified
(see Fig. 8). Considering the experimental difficulties in resolving
interspecies interactions in strongly interacting communities, the
GLV modeling approach provides a useful first step.

 The SBML ODE solver library (SOSlib) is a programming library
for formula representation to construct ODE systems, their Jaco-
bian matrix, a parameter dependency matrix and other derivatives
in the Systems Biology Markup Language (SBML). SOSlib pro-
vides efficient interfaces to well-established methods in theoreti-
cal chemistry, biology, and systems theory.

 http://www.tbi.univie.ac.at/~raim/odeSolver

 Dizzy is a software for stochastic chemical relations simulation. It
provides a model definition, implementation of several stochastic
and deterministic algorithms, and a graphical display of a model.

 4.3.2. Identification of
Unknown Species
Interactions

 4.4. Tools

 4.4.1. General-Purpose
ODE Solver

 4.4.2. Stochastic Simulator

 Fig. 8. Interaction among cheese microbial community is
reconstructed by using LV-type modeling (78) . Arrows
and blunt ends stand for positive and negative interac-
tions, respectively. D Debaryomyces hansenii ; Y Yarrowia
lipolytica ; G Geotrichumcandidum ; L Leucobacter sp.; C
Group including Arthrobacter arilaitensis , Hafnia alvei ,
 Corynebacterium casei , Brevibacterium aurantiacum , and
 Staphylococcus xylosus .

 Systems Biology of Microbial Communities 491

It is a standard free software written in Java and is supported on
Windows XP, Fedora Core 1 Linux, and Macintosh.

 http://magnet.systemsbiology.net/software/Dizzy

 This work was performed under the auspices of the US Depart-
ment of Energy by Lawrence Livermore National Laboratory
(LLNL) under Contract DE-AC52-07NA27344, and supported
by the LLNL Laboratory Directed Research and Development
program on grant 06-ERD-061.

 Acknowledgments

 References

 1 . Ram , R. J. , Verberkmoes , N. C. , Thelen , M.
P. , Tyson , G. W. , Baker , B. J. , Blake , R. C. ,
 2nd , Shah , M. , Hettich , R. L. , and Banfield , J.
F. (2005) Community proteomics of a natural
microbial biofilm . Science 308 , 1915 – 1920 .

 2 . Breitbart , M. , Salamon , P. , Andresen , B. ,
 Mahaffy , J. M. , Segall , A. M. , Mead , D. , Azam ,
 F. , and Rohwer , F. (2002) Genomic analysis
of uncultured marine viral communities . Proc.
Natl Acad. Sci. USA 99 , 14250 – 14255 .

 3 . Venter , J. C. , Remington , K. , Heidelberg , J.
F. , Halpern , A. L. , Rusch , D. , Eisen , J. A. ,
 Wu , D. , Paulsen , I. , Nelson , K. E. , Nelson , W. ,
 Fouts , D. E. , Levy , S. , Knap , A. H. , Lomas ,
 M. W. , Nealson , K. , White , O. , Peterson , J. ,
 Hoffman , J. , Parsons , R. , Baden-Tillson , H. ,
 Pfannkoch , C. , Rogers , Y. H. , and Smith , H.
O. (2004) Environmental genome shotgun
sequencing of the Sargasso Sea . Science 304 ,
 66 – 74 .

 4 . Tyson , G. W. , Chapman , J. , Hugenholtz , P. ,
 Allen , E. E. , Ram , R. J. , Richardson , P. M. ,
 Solovyev , V. V. , Rubin , E. M. , Rokhsar , D. S. ,
and Banfield , J. F. (2004) Community struc-
ture and metabolism through reconstruction
of microbial genomes from the environment .
 Nature 428 , 37 – 43 .

 5 . Turnbaugh , P. J. , Ley , R. E. , Mahowald , M.
A. , Magrini , V. , Mardis , E. R. , and Gordon ,
 J. I. (2006) An obesity-associated gut micro-
biome with increased capacity for energy har-
vest . Nature 444 , 1027 – 1031 .

 6 . Colwell , R. R. , Huq , A. , Islam , M. S. , Aziz ,
 K. M. , Yunus , M. , Khan , N. H. , Mahmud , A. ,
 Sack , R. B. , Nair , G. B. , Chakraborty , J. , Sack ,
 D. A. , and Russek-Cohen , E. (2003) Reduc-
tion of cholera in Bangladeshi villages by sim-

ple filtration . Proc. Natl Acad. Sci. USA 100 ,
 1051 – 1055 .

 7 . Lotka , A. J. (1925) Elements of Physical Biol-
ogy . Williams & Wilkins , Baltimore, MD .

 8 . Volterra , V. (1926) Fluctuations in the abun-
dance of a species considered mathematically .
 Nature 118 , 558 – 560 .

 9 . Chassagnole , C. , Noisommit-Rizzi , N. ,
 Schmid , J. W. , Mauch , K. , and Reuss , M.
 (2002) Dynamic modeling of the central car-
bon metabolism of Escherichia coli . Biotechnol.
Bioeng. 79 , 53 – 73 .

 10 . Maher , A. D. , Kuchel , P. W. , Ortega , F. , de
Atauri , P. , Centelles , J. , and Cascante , M.
 (2003) Mathematical modelling of the urea
cycle. A numerical investigation into substrate
channelling . Eur. J. Biochem. 270 , 3953 –
 3961 .

 11 . Teusink , B. , Passarge , J. , Reijenga , C. A. ,
 Esgalhado , E. , van der Weijden , C. C. , Schep-
per , M. , Walsh , M. C. , Bakker , B. M. , van
Dam , K. , Westerhoff , H. V. , and Snoep , J. L.
 (2000) Can yeast glycolysis be understood in
terms of in vitro kinetics of the constituent
enzymes? Testing biochemistry . Eur. J. Bio-
chem. 267 , 5313 – 5329 .

 12 . Hynne , F. , Dano , S. , and Sorensen , P. G. (2001)
 Full-scale model of glycolysis in Saccharomyces
cerevisiae . Biophys. Chem. 94 , 121 – 163 .

 13 . Zhdanov , V. P. and Kasemo , B. (2001) Sim-
ulations of oscillatory glycolytic patterns in
cells . Phys. Chem. Chem. Phys. 3 , 3786 – 3791 .

 14 . Klipp , E. (2007) Modelling dynamic proc-
esses in yeast . Yeast 24 , 943 – 959 .

 15 . Bakker , B. M. , Westerhoff , H. V. , Opperdoes ,
 F. R. , and Michels , P. A. (2000) Metabolic

492 Navid et al.

control analysis of glycolysis in trypanosomes
as an approach to improve selectivity and
effectiveness of drugs . Mol. Biochem. Parasitol.
 106 , 1 – 10 .

 16 . Navid , A. and Ortoleva , P. J. (2004) Simu-
lated complex dynamics of glycolysis in pro-
tozoan parasite Trypanosoma brucei . J. Theor.
Biol. 228 , 449 – 458 .

 17 . Smolen , P. (1995) A model for glycolylic
oscillations based on skeletal muscle phos-
photructokinase kinetics . J. Theor. Biol. 174 ,
 137 – 148 .

 18 . Westermark , P. O. and Lansner , A. (2003) A
model of phosphofructokinase and glycolytic
oscillations in the pancreatic b -cell . Biophys. J.
 85 , 126 – 139 .

 19 . Dano , S. , Madsen , M. F. , Schmidt , H. , and
 Cedersund , G. (2006) Reduction of a bio-
chemical model with preservation of its basic
dynamic properties . FEBS J. 273 , 4862 –
 4877 .

 20 . Chance , B. , Hess , B. , and Betz , A. (1964)
 DPNH oscillations in a cell-free extract of S.
carlsbergensis . Biochem. Biophys. Res. Commun.
 16 , 182 – 187 .

 21 . Chance , B. , Schoener , B. , and Elsaesser , S.
 (1964) Control of the waveform of oscilla-
tions of the reduced pyridine nucleotide level
in a cell-free extract . Proc. Natl Acad. Sci.
USA 52 , 337 – 341 .

 22 . Ghosh , A. and Chance , B. (1964) Oscillations
of glycolytic intermediates in yeast cells . Bio-
chem. Biophys. Res. Commun. 16 , 174 – 181 .

 23 . Markus , M. and Hess , B. (1984) Transitions
between oscillatory modes in a glycolytic
model system . Proc. Natl Acad. Sci. USA 81 ,
 4394 – 4398 .

 24 . Wolf , J. and Heinrich , R. (1997) Dynamics of
two-component biochemical systems in inter-
acting cells; synchronization and desynchro-
nization of oscillations and multiple steady
states . Biosystems 43 , 1 – 24 .

 25 . Markus , M. and Hess , B. (1985) Input–
response relationships in the dynamics of gly-
colysis . Arch. Biol. Med. Exp. (Santiago) 18 ,
 261 – 271 .

 26 . Markus , M. , Kuschmitz , D. , and Hess , B.
 (1984) Chaotic dynamics in yeast. Glycolysis
under periodic substrate input flux . FEBS Lett.
 172 , 235 – 238 .

 27 . Markus , M. , Mueller , S. C. , and Hess , B.
 (1985) Observation of entrainment, quasipe-
riodicity and chaos in glycolysing yeast extracts
under periodic glucose input . Ber. Bunsenges.
Phys. Chem. 89 , 651 – 654 .

 28 . Patnaik , P. R. (2003) Oscillatory metabolism
of Saccharomyces cerevisiae: An overview of

mechanisms and models . Biotechnol. Adv. 21 ,
 183 – 192 .

 29 . Wolf , J. and Heinrich , R. (1997) Dynamics of
biochemical oscillators in a large number of
interacting cells . Nonlinear Anal. 30 , 1835 –
 1845 .

 30 . Zhdanov , V. P. and Kasemo , B. (2001) Syn-
chronization of metabolic oscillations: Two
cells and ensembles of adsorbed cells . J. Biol.
Phys. 27 , 295 – 311 .

 31 . Richard , P. , Bakker , B. M. , Teusink , B. , Van
Dam , K. , and Westerhoff , H. V. (1996)
 Acetaldehyde mediates the synchronization of
sustained glycolytic oscillations in populations
of yeast cells . Eur. J. Biochem. 235 , 238 – 241 .

 32 . Wolf , J. , Passarge , J. , Somsen , O. J. , Snoep , J.
L. , Heinrich , R. , and Westerhoff , H. V. (2000)
 Transduction of intracellular and intercellular
dynamics in yeast glycolytic oscillations . Bio-
phys. J. 78 , 1145 – 1153 .

 33 . Richard , P. , Teusink , B. , Hemker , M. B. , Van
Dam , K. , and Westerhoff , H. V. (1996) Sus-
tained oscillations in free-energy state and hex-
ose phosphates in yeast . Yeast 12 , 731 – 740 .

 34 . Bergmeyer , H. U. (1974) Methods of Enzy-
matic Analysis . Verlag Chemie , Weinheim .

 35 . Fuqua , W. C. , Winans , S. C. , and Greenberg ,
 E. P. (1994) Quorum sensing in bacteria: The
LuxR–LuxI family of cell density-responsive
transcriptional regulators . J. Bacteriol. 176 ,
 269 – 275 .

 36 . Fuqua , C. , Winans , S. C. , and Greenberg , E.
P. (1996) Census and consensus in bacterial
ecosystems: The LuxR–LuxI family of quo-
rum-sensing transcriptional regulators . Annu.
Rev. Microbiol. 50 , 727 – 751 .

 37 . McFall-Ngai , M. J. and Ruby , E. G. (2000)
 Developmental biology in marine inverte-
brate symbioses . Curr. Opin. Microbiol. 3 ,
 603 – 607 .

 38 . Miller , M. B. and Bassler , B. L. (2001) Quo-
rum sensing in bacteria . Annu. Rev. Microbiol.
 55 , 165 – 199 .

 39 . Hammer , B. K. and Bassler , B. L. (2003)
 Quorum sensing controls biofilm formation in
 Vibrio cholerae . Mol. Microbiol. 50 , 101 – 104 .

 40 . Henke , J. M. and Bassler , B. L. (2004) Quo-
rum sensing regulates type III secretion in
 Vibrio harveyi and Vibrio parahaemolyticus .
 J. Bacteriol. 186 , 3794 – 3805 .

 41 . Waters , C. M. and Bassler , B. L. (2005) Quo-
rum sensing: Cell-to-cell communication in
bacteria . Annu. Rev. Cell Dev. Biol. 21 , 319 –
 346 .

 42 . Freeman , J. A. , Lilley , B. N. , and Bassler , B. L.
 (2000) A genetic analysis of the functions of
LuxN: A two-component hybrid sensor kinase

 Systems Biology of Microbial Communities 493

that regulates quorum sensing in Vibrio har-
veyi . Mol. Microbiol. 35 , 139 – 149 .

 43 . Miller , M. B. , Skorupski , K. , Lenz , D. H. , Tay-
lor , R. K. , and Bassler , B. L. (2002) Parallel
quorum sensing systems converge to regulate
virulence in Vibrio cholerae . Cell 110 , 303 – 314 .

 44 . Mok , K. C. , Wingreen , N. S. , and Bassler , B. L.
 (2003) Vibrio harveyi quorum sensing: A coin-
cidence detector for two autoinducers controls
gene expression . EMBO J. 22 , 870 – 881 .

 45 . Henke , J. M. and Bassler , B. L. (2004) Three
parallel quorum-sensing systems regulate gene
expression in Vibrio harveyi . J. Bacteriol. 186 ,
 6902 – 6914 .

 46 . Fuqua , C. and Greenberg , E. P. (2002) Lis-
tening in on bacteria: Acyl-homoserine lac-
tone signalling . Nat. Rev. Mol. Cell Biol. 3 ,
 685 – 695 .

 47 . Pesci , E. C. , Milbank , J. B. , Pearson , J. P. ,
 McKnight , S. , Kende , A. S. , Greenberg , E. P. ,
and Iglewski , B. H. (1999) Quinolone signal-
ing in the cell-to-cell communication system
of Pseudomonas aeruginosa . Proc. Natl Acad.
Sci. USA 96 , 11229 – 11234 .

 48 . McKnight , S. L. , Iglewski , B. H. , and Pesci , E.
C. (2000) The Pseudomonas quinolone signal
regulates rhl quorum sensing in Pseudomonas
aeruginosa . J. Bacteriol. 182 , 2702 – 2708 .

 49 . Pearson , J. P. , Van Delden , C. , and Iglewski , B.
H. (1999) Active eflux and diffusion are involved
in transport of Pseudomonas aeruginosa cell-to-
cell signals . J. Bacteriol. 181 , 1203 – 1210 .

 50 . James , S. , Nilsson , P. , James , G. , Kjelleberg ,
 S. , and Fagerstrom , T. (2000) Luminescence
control in the marine bacterium Vibrio fischeri :
An analysis of the dynamics of lux regulation .
 J. Mol. Biol. 296 , 1127 – 1137 .

 51 . Eberhard , A. , Burlingame , A. L. , Eberhard , C. ,
 Kenyon , G. L. , Nealson , K. H. , and Oppen-
heimer , N. J. (1981) Structural identification
of autoinducer of Photobacterium fischeri luci-
ferase . Biochemistry 20 , 2444 – 2449 .

 52 . Engebrecht , J. , Nealson , K. , and Silverman ,
 M. (1983) Bacterial bioluminescence: Isola-
tion and genetic analysis of functions from
 Vibrio fischeri . Cell 32 , 773 – 781 .

 53 . Engebrecht , J. and Silverman , M. (1984)
 Identification of genes and gene products
necessary for bacterial bioluminescence . Proc.
Natl Acad. Sci. USA 81 , 4154 – 4158 .

 54 . Fuqua , C. , Parsek , M. R. , and Greenberg , E. P.
 (2001) Regulation of gene expression by cell-
to-cell communication: Acyl-homoserine lac-
tone quorum sensing . Annu. Rev. Genet. 35 ,
 439 – 468 .

 55 . Mueller , J. , Kuttler , C. , Hense , B. A. , Roth-
baller , M. , and Hartmann , A. (2006) Cell-cell

communication by quorum sensing and dimen-
sion-reduction . J. Math. Biol. 53 , 672 – 702 .

 56 . Kuttler , C. and Hense , B. A. (2008) The
interplay of two quorum sensing regulation
systems of Vibrio fischeri . J. Theor. Biol. 251 ,
 167 – 180 .

 57 . Ward , J. P. , King , J. R. , Koerber , A. J. , Wil-
liams , P. , Croft , J. M. , and Sockett , R. E.
 (2001) Mathematical modelling of quorum
sensing in bacteria . IMA J. Math. Appl. Med.
Biol. 18 , 263 – 292 .

 58 . Dockery , J. D. and Keener , J. P. (2001) A
mathematical model for quorum sensing in
 Pseudomonas aeruginosa . Bull. Math. Biol. 63 ,
 95 – 116 .

 59 . Kreft , J. U. , Picioreanu , C. , Wimpenny , J. W. ,
and van Loosdrecht , M. C. (2001) Individ-
ual-based modelling of biofilms . Microbiology
 147 , 2897 – 2912 .

 60 . Wimpenny , J. W. T. and Colasanti , R. (1997)
 A unifying hypothesis for the structure of
microbial biofilms based on cellular automa-
ton models . FEMS Microbiol. Ecol. 22 , 1 – 16 .

 61 . Pizarro , G. , Griffeath , D. , and Noguera , D. R.
 (2001) Quantitative cellular automaton model
for biofilms . J. Environ. Eng. 127 , 782 – 789 .

 62 . Xavier , J. B. and Foster , K. R. (2007) Cooper-
ation and conflict in microbial biofilms . Proc.
Natl Acad. Sci. USA 104 , 876 – 881 .

 63 . West , S. A. , Griffin , A. S. , Gardner , A. , and Diggle ,
 S. P. (2006) Social evolution theory for microor-
ganisms . Nat. Rev. Microbiol. 4 , 597 – 607 .

 64 . Kreft , J. U. (2004) Biofilms promote altru-
ism . Microbiology 150 , 2751 – 2760 .

 65 . Chambless , J. D. , Hunt , S. M. , and Stewart ,
 P. S. (2006) A three-dimensional computer
model of four hypothetical mechanisms pro-
tecting biofilms from antimicrobials . Appl.
Environ. Microbiol. 72 , 2005 – 2013 .

 66 . Hunt , S. M. , Hamilton , M. A. , Sears , J. T. ,
 Harkin , G. , and Reno , J. (2003) A computer
investigation of chemically mediated detach-
ment in bacterial biofilms . Microbiology 149 ,
 1155 – 1163 .

 67 . Mobilia , M. , Georgiev , I. T. , and Täuber , U.
C. (2007) Phase transitions and spatio-tem-
poral fluctuations in stochastic lattice Lotka–
Volterra models . J. Stat. Phys. 128 , 447 – 483 .

 68 . May , R. M. (1976) Simple mathematical mod-
els with very complicated dynamics . Nature
 261 , 459 – 467 .

 69 . May , R. M. (1973) Stability and Complexity
in Model Ecosystems . Princeton University
Press , Princeton, NJ .

 70 . Kondoh , M. (2003) Foraging adaptation and
the relationship between food-web complex-
ity and stability . Science 299 , 1388 – 1391 .

494 Navid et al.

 71 . Ackland , G. J. and Gallagher , I. D. (2004)
 Stabilization of large generalized Lotka–Volt-
erra foodwebs by evolutionary feedback . Phys.
Rev. Lett. 93 , 158701 .

 72 . Murray , J. D. (2002) Mathematical Biology .
 Springer , New York, NY .

 73 . Collet , P. and Eckmann , J. P. (1990) Instabili-
ties and Fronts in Extended Systems . Princ-
eton University Press , Princeton, NJ .

 74 . Kussell , E. and Leibler , S. (2005) Phenotypic
diversity, population growth, and informa-
tion in fluctuating environments . Science 309 ,
 2075 – 2078 .

 75 . Thattai , M. and van Oudenaarden , A. (2004)
 Stochastic gene expression in fluctuating envi-
ronments . Genetics 167 , 523 – 530 .

 76 . Hoffmann , K. H. , Rodriguez-Brito , B. , Breit-
bart , M. , Bangor , D. , Angly , F. , Felts , B. , Nul-
ton , J. , Rohwer , F. , and Salamon , P. (2007)
 Power law rank-abundance models for marine
phage communities . FEMS Microbiol. Lett.
 273 , 224 – 228 .

 77 . Thingstad , T. F. (2000) Elements of a theory
for the mechanisms controlling abundance,
diversity, and biogeochemical role of lytic bac-
terial viruses in aquatic systems . Limnol. Ocea-
nogr. 45 , 1320 – 1328 .

 78 . Mounier , J. , Monnet , C. , Vallaeys , T. , Arditi ,
 R. , Sarthou , A. S. , Helias , A. , and Irlinger , F.
 (2008) Microbial interactions within a cheese
microbial community . Appl. Environ. Micro-
biol. 74 , 172 – 181 .

495

A

acceptance
Boltzmann ... 365, 367
function ..365, 368, 384
in reaction rules ... 136

adaptor
fluid....... ..218
protein ... 8

affector 172, 174, 180, 190, 197, 199
common errors in... 193
and interaction types .. 187–189
nondimensionalization 175–177

agent ...447, 452, 481
agent-based modeling (ABM)447, 462, 470, 480

see also hybrid modeling method
AIDS ... 431
Akaike information content (AIC) 325, 329
ammensalism ... 485
antibody binding, model of .. 156
arithmetic nonstandard ... 439
axon

membrane .. 246, 248
model of ... 248–249
specification ... 211

B

back integration method .. 25, 53
binding of protein to DNA, model of........................... 347
biochemistry ...12, 17, 362
biofilm .. 214, 363, 476, 482, 484
biofuel .. 470
biology

postgenomic... 13
systems, definition and scope3–4, 18, 203, 362

biomass
maximization ... 69
reaction ...67, 69, 72

BioModels (database) 21, 25, 29, 33, 43, 48, 53
bioreactor ... 488
blend .. 281
Boolean

description ... 363
logic............... .. 63, 70
rule............. .. 63
variable .. 439

bouton, presynaptic, model of .. 248
BRENDA (database)... 63, 472

C

calcium oscillations, model of .. 48
cancer.............213, 214, 223, 233, 435, 446, 449

see also tumor growth
cell.................. 6–10, 61, 171, 204, 237,

289, 362, 430, 446, 449
adhesion ... 365
architecture .. 292
behavior ... 10
compressibility ... 367
division .. 83, 419
generalized ... 363
growth....................................... 170, 186, 234, 409–424
interaction .. 436
lattice... .. 363
membrane area .. 365
motility .. 365

effective .. 367
muscle, model of .. 296
sorting, model of .. 378
surface area .. 471

constraint ... 367
volume. .. 471

constraint ... 368
target .. 366–367

cellular automaton ..431, 448, 480
CD-tagging ..314, 317, 326
channels, voltage-gated

calcium ... 240
chemotaxis...... ..211, 381, 488

see also gradient
cofactor...... 73, 74, 76, 77, 78, 474
commensalism ... 485
compartment 23, 62, 124, 132, 173,

238, 363, 436, 438
volume.. ... 50, 54

complexity. .. 7–8, 10, 13, 439, 449
condition

boundary ...9, 375, 378, 481
of event .. 88

confidence interval... 349
conservation relation29, 30–31, 32,

55, 82, 87–88, 90–93

INDEX

496

SYSTEMS BIOLOGY

 Index

constraint... ... 9, 41, 42, 45, 365
in flux balance analysis62, 63, 68
on parameters338–340, 346, 350
strength .. 366
thermodynamic .. 63
volume.. ... 366

container (of object) ... 434
control coefficient .. 35–37, 55
COPASI (software) ... 17, 119
correlation coefficient .. 198
crowding, molecular ... 450
curve fitting ... 337–338
cycle, futile ... 30
cytokine..... .. 113, 223, 430, 433,

435, 451, 453, 458, 459
cytoskeleton ..12, 164, 318–320

D

Daubechies wavelet feature .. 319
deduction ... 4, 11
degassing ... 210
dendrite, model of239, 248, 252, 255
Dictyostelium discoideum ... 363
diffusion

coefficient ...238, 457, 488
equation ... 385
term..... ...488

distance
Euclidean ... 370
Mahalanobis .. 325

Dizzy (software) .. 490
DNA

binding to, kinetic model of 347
clamp assembly on ... 353
content (in metabolic analysis) 72
feature (in image analysis) 318

E

elasticity coefficient ... 33–36, 55
emergence 170, 203, 449, 465, 481
endocytosis 188, 189, 213, 221, 223, 227

see also receptor; recycling
energy

balance analysis .. 63
boundary ...366, 368, 374, 380
constraint ... 366
effective...364–365, 368, 378
mimics of ... 365
minimization of use ... 62
true......... ... 365

enzyme 17, 52, 54, 61–62, 70, 446
function ... 362
interaction .. 52
kinetics..18–19, 50, 471
regulation ... 63

ENZYME (database) .. 63
epidermal growth factor receptor (EGFR)

signaling, model of 115
equation

differential algebraic (DAE) 432
ordinary differential (ODE)18, 23, 61, 82,

116, 148, 197, 206, 228, 363, 441, 449, 463, 472
integration19, 52–53, 480, 490
hybridization with stochastic simulation 50
and mass conservation relations 55
solution – see integration
stiff ... 52

partial differential (PDE)365, 448, 488
see also hybrid modeling method

erythrocyte metabolism, model of 29, 30
Euler forward method52, 365, 385
evolutionary algorithm .. 39
exocytosis ..188, 189, 238, 240
explanation .. 5–11

bottom-up ... 8–11
power of ... 170

F

fate, of carbon atom ... 129
finite element (FE) method 363, 377
fit, goodness of ..86, 337, 350, 456
flow cytometry ... 430
fluorescent labeling, model of .. 143
flux

balance analysis (FBA) .. 62
dynamic ... 63
regulated .. 63
software for .. 66–67

control coefficient .. 35, 37
distribution .. 62
modes, elementary ... 29, 54–55

function
acceptance ...365, 368, 384
biological ..7–8, 12, 362
implicit .. 290

G

Gabor texture feature ... 319
GEBABM – see gut epithelial barrier
gene................ 61, 66, 81, 186, 204,

214, 362, 430, 433, 446
expression36, 173, 179, 182, 185, 212, 450

analysis, single-cell ... 215
oscillatory ... 393

function ... 12
knockout phenotype prediction 29, 63,

65, 70–71, 362
network 81, 169–172, 184, 204, 476
trap method ... 314

GeneDB (database) ... 65

SYSTEMS BIOLOGY

497

 Index

genetic algorithms ... 39
genetics .. 12, 362
genome 61, 65, 72, 203, 208, 215, 317, 470, 471
genomics .. 361
Gene Ontology (database) 314, 327
geometry solid constructive ... 291
GFP (green fluorescent protein)314, 315, 317, 326
Gibson and Bruck’s next reaction method 57
Gillespie algorithm 20, 47, 57, 83, 140, 141

see also SSA
Glazier-Graner-Hogeweg (GGH)

method ..363, 370, 377
glycolysis .. 471–476
gradient

chemotactic .. 365, 384
experimental setting208, 211–213
in flux balance analysis ... 75
across membrane ... 473
modeling ...191, 255, 484
in optimization .. 39

growth ..212, 373, 483
cone.......... ... 211
diauxic. ... 63
population .. 486, 489
rate.......... .. 62, 69, 72, 482, 486

see also cell; tumor
gut epithelial barrier, model of 450

H

Haralick texture feature ... 318, 323
Hill function .. 174
HIV ... 431
hybrid modeling method50, 465, 482

I

immune
memory ... 431
system... ... 430–431

individual-based modeling – see agent-based modeling
inhibitor ..19, 52, 54, 186
isoenzyme .. 8, 70
isoform .. 8

J

junction, tight (TJ) ...450, 451, 453

K

k-means clustering... 325

L

lattice
multiplicity .. 370
polymer, binding to .. 347

learning, supervised ... 314

Levenberg-Marquardt method39, 46, 102
ligand

cartography .. 315
receptor binding

measurement .. 224
model ... 224, 341

link matrix ... 32
lipid content .. 72
lithography .. 207
Lotka-Volterra model .. 470, 486
LSODA method ... 52
lysosome .. 221, 319

M

macrophage-bacterium interaction,
model of ... 381, 437

MAP kinase cascade, model of 24, 43
mass action18, 48, 50, 62, 89, 109, 135,

174, 226, 228, 261, 341, 354, 438, 463, 487
translated to

logical variables .. 440
probability .. 50

see also rate law
mathematics .. 4, 171
matrix

confusion ... 321–324
extracellular (ECM)211, 362, 364

anisotropic ... 365
link........ ... 32
stoichiometric ...62, 67, 91

MCA – see metabolic control analysis
MCell (software) ... 238
metaaffector ... 174
metabolic control analysis (MCA)33–38, 42, 55
metabolism ...12, 144, 460

erythrocyte, model of ... 29
genome-scale models of 61, 74
microbial .. 470–471
of tight junctions ... 450, 453
transcriptional regulation of63, 65, 70

metagenomic sequencing ... 469
methionine biosynthesis, model of 25
Metropolis dynamics ... 365, 367
Michaelis-Menten kinetics – see rate law
microarray ...206, 216, 430
microbe .. 469
microfluidics .. 203
microscope ... 209, 298, 313, 316,

317, 321, 323, 325
microscopy 209, 214, 290, 314, 326, 330

electron ...238, 290, 308
fluorescence ... 315–316

minimization
of metabolic adjustment (MOMA) 65

see also optimization

498

SYSTEMS BIOLOGY

 Index

mitochondrium295–298, 300–303,
306–308, 319–320

mitosis ... 214, 365
entry model .. 103
model of ... 410–424
promoting factor (MPF) activity model 81

model
bottom-up ... 9
nonautonomous ... 53
role of.. ... 335–336

modification, posttranslational 8, 115
modifier (in a reaction) ...18, 52, 54
Monte Carlo method 20, 117, 140, 150, 365

see also stochasticity
morphology, quantitative ... 310
multiplicity

of a lattice .. 370
see also reaction

muscle, model of .. 296
mutualism .. 485
myofibril .. 296–297

N

Netlogo (software) ..454, 467, 484
network

biochemical17–18, 61–63, 362
gene-protein regulatory 81–83, 205
genetic.. 169
logical... 438
metabolic ... 61–62

gap analysis .. 76
protein-protein interaction 115
signal-transduction .. 113–115
transcriptional regulatory ... 215
truncated .. 149, 164
unbounded ... 137, 160

neurotransmitter release, model of 269
nondimensionalization .. 175–177
nonlinearity ...17, 18, 38, 55,

350, 358, 446, 462, 464, 472, 474, 486
Newton (Newton-Raphson) method 19, 25, 39, 53, 56

truncated .. 41

O

object (in modeling) .. 433–434
objective

coefficient .. 68
function38–40, 42, 62, 67, 86, 102, 337

observable ...126, 160, 337, 456
ODE – see equation
optimization 38–42, 46, 62, 102, 337, 351

dynamic ... 63
in flux balance analysis ... 69
static... 63

organ ...430, 446–447
culture... ... 205

organelle ...238, 289, 314, 430
geometric representation.. 296
volume and surface density (VSD)290, 292, 305

oscillation .. 197, 198
of calcium .. 48–50
detection .. 98
of gene expression .. 185, 393
of glycolysis .. 472–476
population .. 488
predator-prey ... 490
search for ..191, 193–196

P

parameter
confidence interval 336, 347–349, 351, 358
constrained, see constraint
estimation 42–46, 83, 96, 99, 337, 349

automatic ..86, 98, 182, 193
global ... 108

experimental variation ... 211
measurement, systematic ... 215
nondimensional ... 177
sampling and scanning 25, 172

logarithmic..27, 54, 190
random ...28, 172, 183, 190

sensitivity to ... 32
see also robustness

parasitism .. 485
PARIMM (software) ... 431
particle swarm method .. 39, 42
PCR (polymerase chain reaction),

microfluidic digital 215
PDMS (polydimethylsiloxane) 209
phage ... 488
phagocytosis .. 438
physics ... 4

nonequilibrium statistical .. 365
physiology ...12, 81, 238
Physiome (project) ... 362
polymer, binding to.. 347
polymerization, model of ... 146
polypeptide .. 7–8, 126
population dynamics .. 485
predator-prey interaction 485–486
pressure, osmotic.. 365
probability distribution function 18
probability density function (PDF) 20
programming

linear.... .. 63
nonlinear .. 63

protein
binding to DNA .. 347

SYSTEMS BIOLOGY

499

 Index

content ... 72
function ... 7–8, 12

proteome...313, 316, 324, 330
proteomics 115, 313–315, 324, 330
Python (programming language) 389

Q

quasispecies .. 490
quorum sensing ..475, 481–482

R

random walk ...262, 273, 483–484
rate law ...18–19, 22–23, 474

Michaelis-Menten89, 128, 156, 482
stochastic representation 50, 53

see also reaction
reaction

biomass .. 67, 69
center 130
conductance ... 63
exchange .. 68, 73
molecularity ..128, 131, 155
multiplicity128, 131, 132, 158
reversibility 22, 48, 54, 62, 128, 471
transporter ... 438, 471

reaction-diffusion system ... 488
receptor

rule-based modeling of 115–164
affinity to ... 231–233
endocytosis mediated by223, 227, 228
density.. .. 213
drug binding .. 221
in immune system430, 431, 434, 435
localization... 319–320
in synaptic transmission 238–241,

246, 252, 256, 258, 269–274 see also ligand;
recycling

recycling.... ..223, 227–229
see also endocytosis; receptor

regression.... ...329, 336–340,
348, 354, 357

response coefficient .. 36, 55
reticulum, sarcoplasmic .. 298
robustness ...32, 171, 439, 460
Runge-Kutta method .. 52

S

sarcolemma .. 298
sarcomere ... 297
SBML (programming language)21, 23–25,

29, 33, 43, 46, 48, 53, 87, 119, 140, 490
segment polarity, model of 173, 178
self-assembly .. 12
self-organization ...6–7, 208, 214

sensitivity
analysis..32–38, 42, 230
second-order .. 38

sepsis .. 446, 449
sequence (of biopolymer) 7, 72, 314, 316, 317, 348
shadow price .. 74
skeleton feature .. 319
simulated annealing ... 39
simulation, stochastic .. 18–20,

47–52, 57, 95, 110, 118–120, 124, 142, 149,
152, 160, 162, 366, 489

conversion from ODE formalism 48
see also hybrid modeling method

SLF (subcellular location feature) 317, 326
spine head model of ... 245
SSA (stochastic simulation algorithm)20, 23, 148
stability analysis ... 487
state diagram ... 447
steady state19, 24–25, 33, 55, 62, 69, 470

data in parameter estimation 43
stability analysis ... 487
unstable, finding .. 25

steepest descent method .. 39
stereology ..290, 292, 294, 308
stochasticity ..448, 449, 488

see also Monte Carlo method; SSA;
Gillespie; simulation, stochastic; hybrid
modeling method

stoichiometry
analysis

flux modes.............................. elementary 29, 54–55
mass conservation relations 30

coefficient .. 82
matrix..62, 67, 91
reduced .. 32

substantiation .. 11
sucrose accumulation in sugar cane,

model of ... 33, 38
surface, implicit.. 290
synapse, model of ... 238
system

analysis... 4, 5, 7
definition ... 3–4
theory.... ..3, 170, 490

T

tautology .. 8
T cell ... 431
teleology .. 11
threonine biosynthesis, model of 25
titration curve .. 342, 348
traffic

of inflammatory cells ... 449
intracellular .. 221

500

SYSTEMS BIOLOGY

 Index

transcription ..171–176, 188–189,
197, 477–478

factor measurement of.. 215
regulation of ... 212
in regulation of metabolism63, 65, 70

see also gene expression
transferrin .. 222, 319
transform (transformation, between models

and data) 86, 96–99, 106, 319, 346
tubules, transversal ... 298
tumor growth, model of ... 363, 423
Turing model (network) 172, 184–186, 191–196, 425
turnover number .. 19

V

vesicle, synaptic, model of .. 249
Vibrio fischeri .. 477
Virtual Cell (software)120, 337, 362, 480

volume – see cell
VSD – see organelle

W

wound healing, model of 363, 449

X

Xenopus egg division, model of .. 81
XISL (programming language) 294
XML (programming language) 373

Y

yield, maximum ... 29, 69

Z

Z band ... 296–297
Zernike moment .. 318

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

